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GENERAL DESCRIPTION OF THE THESIS 

Introduction 

Forecasting of vegetation is closely related to many important international problems such 
as global climate changes and monitoring of usage of energy, natural resource consumption 
management, forecasting of the prevalence of invasive plant species and protection of 
endangered plant species [7]. Collection of data on vegetation cover of Earth’s surface is 
usually done by using remote sensing. Remote sensing is remote surveillance of Earth’s 
surface by aircraft or satellite using different sensors [73]. Remote sensing usually provides 
satellite images where time series can be obtained from each smallest element (pixel) in the 
image [107]. 

Topicality 

Analysis and forecasting of the life cycle of vegetation are essential in planning agricultural 
work as well as monitoring of agricultural crops and forecasting their productivity. In practice, 
vegetation indices are often used that are calculated from the values of satellite image pixels like 
normalized difference vegetation index (NDVI). Forecasting of this index in precision 
agriculture allows indicating problems which are related to agricultural crop growth on time and 
making timely decisions about necessary measures to fix these problems. 

Research Aim and Tasks 

The aim of the Doctoral Thesis is to develop a forecasting system of normalized 
difference vegetation index time series based on signal decomposition and sub-signal 
approximation approach, specialized data preprocessing methods and machine learning 
methods. The following tasks have been set to achieve the aim of the Doctoral Thesis. 

1. Comparative research of methods and systems of time series of normalized difference 
vegetation index aimed at discovering its advantages and potential disadvantages that 
determine the accuracy of NDVI time series. 

2. Comparative research of signal decomposition methods to be used for frequency 
analysis with the aim to identify methods that provide high prediction accuracy and 
identify possible gaps in forecasting tasks of different time series. 

3. Development of a sub-signal approximation approach to forecasting time series of 
normalized difference vegetation index. 

4. Development of a forecasting system that uses signal decomposition-based approach, 
data preprocessing and machine learning methods. 

5. Evaluation of the developed forecasting system and comparison of its accuracy with 
other forecasting methods. 
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Research Object and Subject 

The object of the Doctoral Thesis is the process of forecasting nonlinear and 
nonstationary time series of normalized difference vegetation index. The subject of the Thesis 
is methods of data preprocessing, signal decomposition and forecasting, which are suitable for 
forecasting time series of nonlinear and nonstationary normalized difference vegetation index. 

Research Hypotheses 

Two hypotheses have been put forward for verification during the development of the 
forecasting system and sub-signal approximation approach.  

1. The forecasting accuracy of normalized difference vegetation index increases when 
the approximation approach based on signal decomposition method is applied. 

2. The forecasting model trained on normalized difference vegetation index and obtained 
preprocessed data parameters can be used for preprocessing and forecasting of other 
NDVI time series obtained from other locations with similar accuracy. 

Methods of the Research 

The following methods are used for theoretical development of the Thesis: machine 
learning, linear algebra, digital signal processing, mathematical statistics, and probability 
theory. The MATLAB application, which is also a numerical analysis environment and high-
level programming language, is used for the practical realization of the forecasting system. 

Scientific Novelty and Value of the Thesis 

The Doctoral Thesis presents the developed forecasting system which allows performing 
short-term forecasting of NDVI time series. Several new approaches have been designed in 
the system development process as well as a set of methods and approaches that are necessary 
for the system implementation and evaluation. 

1. The approximation approach for a sub-signal obtained from a modified variational 
mode decomposition method is developed, which allows calculating approximate sub-
signal values during every time step where historical observations for the appropriate 
time series of normalized difference vegetation index are available. 

2. A set of methods and approaches is developed that provides high accuracy for short-
term forecasting of time series of normalized difference vegetation index. 

3. A transferring approach for data preprocessing parameters and forecasting model is 
developed that provides forecasting of other normalized vegetation index time series 
without new preprocessing and training if the Euclidean distance between the time 
series used in the training and the time series using the data processing parameters and 
the forecasting model is small enough. 
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The Practical Significance of the Thesis 

A forecasting system is developed that allows performing short-term forecasting with 
good accuracy of time series of normalized difference vegetation index using a sub-signal 
approximation approach obtained from modified variational mode decomposition method. 
The system has two applications for precision agriculture. 

1. It is necessary to be able to identify on time the number of nutrients needed to ensure 
that no additional costs are incurred. 

2. It provides the opportunity to use forecasts of normalized difference vegetation index 
for crop yield models and to calculate expected income on time. 

Approbation 

The Thesis studies and results have been presented in nine international  
scientific conferences. 

1. International Conference on Aerospace Engineering, Applied Sciences, Information 
Technology, Electrical & Mechanical Engineering, Amsterdam, Netherlands, April  
27‒28, 2019. 

2. 2nd International Conference on Research in Engineering and Fundamental Applied 
Sciences, Barcelona, Spain, April 20‒21, 2019. 

3. RTU 58th International Scientific Conference, Riga, Latvia, October  
12‒15, 2017. 

4. 11th International Scientific and Practical Conference “Environment. Technology. 
Resources”, Rezekne, Latvia, June 15‒17, 2017. 

5. RTU 57th International Scientific Conference, Riga, Latvia, October 14‒18, 2016. 
6. 5th International Virtual Scientific Conference on Informatics and Management Sciences, 

Zilina, Slovakia, March 21‒25, 2016. 
7. 3rd Virtual Multidisciplinary Conference QUAESTI Zilina, Slovakia, December   

7‒11, 2015. 
8. RTU 56th International Scientific Conference, Riga, Latvia, October 14-16, 2015. 
9. 10th International Scientific and Practical Conference “Environment. Technology. 

Resources”, Rezekne, Latvia, June 18‒20, 2015. 

The Thesis studies and results are reflected in eight publications in international 
scientific journals. 

1. Stepchenko, A. Land Cover Classification Based on MODIS Imagery Data Using 
Artificial Neural Networks. In: Proceedings of the 11th International Scientific and 
Practical Conference “Environment. Technology. Resources”, June 15‒17, 2017, 
Rezekne, Latvia. Rezekne: Rezekne Academy of Technologies, 2017, pp. 159‒164. 
Indexed in: Scopus. 

2. Stepchenko, A., Chizhov, J., Aleksejeva, L., Tolujew, J. Nonlinear, Non-stationary 
and Seasonal Time Series Forecasting Using Different Methods Coupled with Data 
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Preprocessing. Procedia Computer Science. 2016, vol. 104, pp. 578‒585. Indexed in: 
Scopus and Web of Science. Cited: 2. 

3. Stepchenko, A., Chizhov, J. Markov Chain Modelling for Short-Term NDVI Time 
Series Forecasting. Information Technology and Management Science.  
2016, vol. 19, pp. 39‒44. Indexed in: EBSCO, CSA/ProQuest and VINITI. 

4. Stepchenko, A. NDVI Index Forecasting using a Layer Recurrent Neural Network 
Coupled with Stepwise Regression and the PCA. In: Proceedings of the 5th Virtual 
International Conference of Informatics and Management Sciences, March 21‒25, 
2016, Zilina, Slovakia. Zilina: EDIS-Publishing Institution of the University of Zilina, 
2016, pp. 130‒135. Indexed in: Google Scholar and Index Copernicus. Cited: 2. 

5. Stepchenko, A. Normalized Difference Vegetation Index Forecasting using a 
Regularized Layer Recurrent Neural Network. In: Proceedings of the 3rd Virtual 
Multidisciplinary Conference QUAESTI, December 7‒11, 2015, Zilina, Slovakia. 
Zilina: EDIS-Publishing Institution of the University of Zilina, 2015, pp. 261‒266. 
Indexed in: Google Scholar. 

6. Stepchenko, A., Chizhov, J. Applying Markov Chains for NDVI Time Series 
Forecasting of Latvian Regions. Information Technology and Management Science. 
2015, vol. 18, pp. 57‒61. Indexed in: EBSCO, CSA/ProQuest and VINITI. Cited: 2. 

7. Stepchenko, A., Chizhov, J. NDVI Short-Term Forecasting Using Recurrent Neural 
Networks. In: Proceedings of the 10th International Scientific and Practical 
Conference “Environment. Technology. Resources”, June 18‒20, 2015, Rezekne, 
Latvia. Rezekne: Rezeknes Augstskola, 2015. Indexed in: Scopus. Cited: 2. 

8. Stepchenko, A., Borisov, A. Methods of Forecasting Based on Artificial Neural 
Networks. Information Technology and Management Science. 2014, vol. 17, pp. 25‒31. 
Indexed in: EBSCO, CSA/ProQuest and VINITI. 

The results of the Doctoral Thesis have been developed in relation to the project 
“Estimation of forest inventory parameters for afforested agricultural lands and non-
inventoried forest lands using remote sensing data” implemented by “Forest Sector 
Competence Centre of Latvia” Ltd., Ventspils University of Applied Sciences, Latvian State 
Forest Research Institute “Silava” and “Microcode” Ltd. (14.04.2014–30.09.2015).  

This Doctoral Thesis has been developed with the support from Ventspils City Council in 
accordance with the regulation of granting a scholarship “Support for Ph.D. candidates at 
Ventspils University of Applied Sciences”. 

Structure and Content of the Thesis 

The Thesis contains an introduction, five chapters, conclusions, bibliography, and 
appendices. The Thesis is written in Latvian.  

The introduction describes the topicality of the chosen topic and the aim and tasks of the 
research, puts forward hypotheses, lists the scientific methods used in the development of the 
Doctoral Thesis, demonstrates the scientific novelty of the research and the practical value of 
the results obtained, as well as provides the characterization of the work. 
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Chapter 1 describes the theoretical basis of a normalized difference vegetation index 
including the basics of remote sensing and satellite image preprocessing, gives the current 
situation analysis dedicated to the normalized vegetation index forecasting, as well as 
analyses to the use of signal decomposition methods in forecasting tasks of time series. 

Chapter 2 presents data preprocessing methods and time series forecasting methods used 
in the development of normalized difference vegetation index forecasting system NVDI FS. 

Chapter 3 experimentally tests the applicability of the original variational mode 
decomposition method in the forecasting task of time series of normalized difference 
vegetation index. Based on the analysis of experimental results, a modified variational mode 
decomposition method is developed, which is experimentally tested. The approximation 
approach is developed for the sub-signal that is obtained from the modified variational mode 
decomposition method. 

Chapter 4 presents forecasting system NDVI FS. The system architecture has been 
represented which consists of the user interface, data preprocessing module, and machine 
learning module and data store, as well as the flow of data store operations and computing 
flow in this system. The computing flow of each block in modules is shown, and the 
description of each block is given. 

Chapter 5 describes the experiments with the developed system and the results obtained. 
The system with the use of approximation approach and without the use of this approach is 
evaluated in forecasting of time series of normalized difference vegetation index. The 
accuracy of the forecasting system is compared with the accuracy achieved using classical 
forecasting methods. Experiments on the transfer of preprocessed parameters and forecasting 
models are performed. 

The last chapter contains the results and conclusions of the work based on the performed 
experiments and development and application of the proposed system NDVI FS. 
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 TIME SERIES OF NORMALIZED DIFFERENCE 
VEGETATION INDEX AND ITS FEATURES 

The chapter provides an insight into the theoretical basis in normalized difference 
vegetation index, abbreviated NDVI, and forecasting of time series of this index. The formal 
statement of the forecasting task is defined. Problems are identified that are related to 
forecasting of time series of normalized difference vegetation index and application of 
decomposition methods in forecasting tasks of different time series. A scheme with a time 
series decomposition, phase space reconstruction, feature selection, feature extraction, and 
forecasting method is provided. 

1.1. Analysis of NDVI Time Series and Forecasting Research 

Normalized difference vegetation index (NDVI) is a numerical indicator of photosynthetic 
active biomass [108], calculated by Equation (1.1): 

NIR REDNDVI
NIR RED





, (1.1) 

where NIR – reflectance in the near infrared band; 
 RED – reflectance in the red band. 

The research area used in the Thesis is Ventspils municipality of the Republic of Latvia. 
Agricultural land in Ventspils municipality covers an area of 511 000 ha or 20.9 % of the area 
of the municipality, while forest land occupies 64 % of the total area of the 
municipality [104]. The data set of the Doctoral Thesis consists of 814 smoothed NDVI 
images obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra 
satellite images with 250 m spatial resolution, the temporal resolution of seven days and 16-
bit radiometric resolution. These images cover the territory of Ventspils municipality.  

NDVI images were downloaded from data service platform for MODIS vegetation indices 
time series processing at Vienna University of Natural Resources and Life Sciences, which 
also performs preparing of MODIS Terra NDVI images that includes smoothing pixel values 
and filling missing values due to cloud cover or bad weather conditions [106]. 

In the Thesis, nonlinear and nonstationary univariate NDVI time series with elements of 
additive noise and seasonal components are used [37]. Each element of time series is obtained 
with a period of one week. The number of observations for each NDVI time series is 814 and 
an interval of values [–1; 1]. 

The Doctoral Thesis solves a forecasting task where a short-term forecast of the NDVI 
time series has been calculated for one week, using data preprocessing, signal decomposition, 
linear algebra, and machine learning methods. For estimating accuracy, the following loss 
functions have been used: root mean square error RMSE, directional symmetry DS and 
adjusted coefficient of determination 𝑅adj2 . 

The comparison of used methods [5], [13], [24], [38], [40], [60], [61] of forecasting 
NDVI time series according to their suitability for forecasting nonlinear, nonstationary and 
noisy time series is given in Table 1.1. 
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Table 1.1 

Comparison of Methods Used in NDVI Time Series Forecasting 

                         Methods and 
                            algorithms 
Features 

ARIMA  
model 

Multiple linear 
regression 

Feedforward 
neural network 

Suitability for modelling 
nonlinear processes –  – + 

Suitability for modelling 
nonstationary processes + – + 

Robustness against noise – – + 

 
The studies [5], [13], [24], [38], [40], [60], [61] do not always achieve high forecasting 

accuracy, but it depends on various factors, e.g. the use of additional data. Several studies 
used additional input data such as data of temperature or rainfall data. Obtaining additional 
data may be difficult, because: 

 these data may not always be available for the specific pixel; more often these data are 
available for large areas (average values in the municipality, district, etc.); 

 additional data may not be available for free. 

In all examined studies little attention is paid to the data preprocessing phase. 
Preprocessing methods, which help to prepare input data set for time series forecasting tasks 
so that forecasting accuracy can be increased, such as feature selection and feature extraction, 
are not used. 

Box-Jenkins ARIMA model as well as linear regression analysis used to forecast NDVI 
time series in several studies are linear forecasting methods and are not robust to noise, while 
NDVI time series are nonlinear and noisy [37]. Moreover, the identification of a suitable 
ARIMA model is a time-consuming and resource-consuming procedure. 

1.2. Analysis of Time Series Forecasting Studies With Signal Decomposition 

Analysis of many time series forecasting studies, where decomposition methods are used, 
is shown in Table 1.2. The columns contain three decomposition methods: wavelet 
decomposition [33], [84], empirical mode decomposition [33], [34], [51], [64], [95] and 
variational mode decomposition [34], [51], [64], [84], [95], but the rows contain the relevant 
forecasting methods used in different studies. Besides, two of those time series decomposition 
methods are used in each study, providing an option of comparing the forecasting accuracy.  

First, the forecasting method is used together with the first decomposition method, and 
then with the other decomposition method. For the decomposition method, which is used to 
achieve the highest forecasting accuracy, in the corresponding field “+” is applied , but for 
other decomposition method used in the research “–” is applied , as shown in Table 1.2. The 
third decomposition method is not used in these studies. 
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Table 1.2 

Comparison of Decomposition Methods Used in Time Series Forecasting 

Decomposition method 
 
 
Forecasting method 

W
av

el
et

 
de

co
m

po
si

tio
n 

E
m

pi
ri

ca
l 

m
od

e 
de

co
m

po
si

tio
n 

V
ar

ia
tio

na
l 

m
od

e 
de

co
m

po
sit

io
n 

Feedforward neural network [33]  –  +  

Least squares support vector machine, extreme learning 
machine [84]  –   + 

Weighted regularized extreme learning machine [34]   –  + 

Spiking neural network [95]   –  + 

Generalized regression neural network [51]   –  + 

Multi-kernel regularized pseudo inverse neural network [64]   –  + 

 
Therefore, the field where the third decomposition method and corresponding forecasting 

method intersect is coloured grey. It seems that most often the highest forecasting accuracy 
for time series is achieved using VMD method. 

Some of the authors in their studies [33], [95] use decomposition method to entire input 
time series in the forecasting task and only then a training and test data set are created and 
training of forecasting model is performed. However, the results that usually show a high 
forecasting accuracy do not show the real situation for use of this approach, because only 
historical observations are forecasted. In this case, a test data set is made from a part of 
historical observations to which decomposition was previously applied. But in real time, there 
are new values of time series, and their forecasting in these scientific articles [33], [95] is not 
discussed. Therefore, it is impossible to determine whether these trained forecasting models 
can forecast with equal accuracy new values of time series that will come to the time series 
behind the last element of historical observations. 

Other authors divide input time series into smaller fragments according to the length of 
the window and apply the decomposition to each fragment separately [30], [34]. This means 
that decomposition is applied to each data entry from the reconstructed phase space. In this 
way, the signal decomposition methods used for frequency analysis can also be used to 
forecast new values of time series (to forecast the values that come after historical data). 

However, the main drawback of all studies of signal decomposition methods is that they 
are not intended for decomposition of time series within the framework of forecasting tasks. 
The first problem, if the VMD method in the input receives all historical time series 
observations, is that calculating sub-signal values at some point of time, decomposition 
methods use all values of input time series, including future observation values by time. 
Accordingly, if the decomposition method uses all historical observations of input time series, 
then each time, when a new observation arrives, the values of the sub-signals must be 
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recalculated by using decomposition method, which is applied on all historical observations 
that also include latest observation, and all previously calculated values of sub-signals change 
in all time steps. The second problem is that studies [33], [95] that use decomposition method 
for entire input time series do not examine if it is possible to forecast a new value of time 
series with an equivalent accuracy compared to what was obtained from historical NDVI 
observation forecasting. 

1.3. The Formal Statement of Task 

To determine the value of process y = {y(t), t = 1, 2, …, N } at time t = N + 1, where N is 
the number of historical observations, it is necessary to establish a functional relationship 
between y = {y(t)} values of historical observation and future values. Besides, it must be 
noted that for this relationship the influence of historical values of the derived time 
series u1 = {u1(t)}, u2 = {u2(t)}, …, uK = {uK(t)} on the input time series should be taken into 
account, as described in Equation (1.2): 

           

         

1  1

1 1   

1 ( , 1 , , 1 , , 1 , ,

1 ,..., , 1 , , 1 ) ,KK K K

y t f y t y t y t m u t u t

u t m u t u t u t m t

       

      
 (1.2) 

where y – input time series; 
 K – number of derived time series; 
 u1 – the first derived time series; 
 uK – K-th derived time series; 
 m – length of the window, used for the input time series; 
 m1 – length of the window, used for the first derived time series; 
 mK – length of the window, used for the K-th derived time series; 
 t – time; 
 ε – white noise. 

Functional relationship (1.2) is a forecasting model. It is necessary to obtain a forecasting 
model for which root mean square error (RMSE) value between true and forecasted values of 
time series y = {y(t)} is minimal. 

1.4. Conceptual Description of a Forecasting System 

Based on the formal statement of the task, the structure of analysed data, as well as 
literature review and analysis, and a conceptual scheme of forecasting system is proposed, 
which includes methods and approaches of: 

 signal processing (time series decomposition);  
 data preprocessing (phase space reconstruction, creating data sets, feature selection 

and extraction); 
 and machine learning.  
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Based on the literature review and analysis, the requirements for forecasting system  

are developed. 
1. The forecasting system at the input receives only historical data of NDVI time series. 
2. An approach should be developed that allows to approximate sub-signal values in each 

time step ensuring the following: 
 the values of sub-signal are available for all time steps where historical 

observations of NDVI time series are available; 
 in each time step, the values of sub-signals are obtained without using the 

variational mode decomposition method; 
 when calculating the values of sub-signals in each new time step, the values of 

sub-signals in previous time steps do not change. 
3. To improve the forecasting accuracy of the forecasting model, it must be combined: 

 with the data preprocessing methods (feature selection and feature  
extraction methods); 

 with the proposed sub-signal approximation approach. 

In developing a forecasting system based on the requirements there are several 
limitations: 

1. The NDVI time series, each obtained from one pixel, are analysed and processed. 
2. Only short-term forecasting is performed – one-step ahead (for MODIS Terra NDVI 

images used in Thesis, it is seven days). 
3. The additional data are not used (such as data of air temperature, data of rainfall, other 

vegetation indices, and data of land surface categories). 

It is proposed to use the decomposition for data preprocessing to obtain a certain number 
of sub-signals. Phase space reconstruction can be used to obtain an initial data set from the 
scalar time series, which is divided into three parts. Feature selection can be used to determine 
the informativeness of the features and to exclude non-informative features from all sets that 
may reduce the accuracy of the forecasting. It is proposed to use the feature extraction in the 
reduced feature sets to transform these sets according to certain criteria. Then these data sets 
are passed into the input to forecasting method, which by learning on these data sets finds the 
functional relationship (see Equation (1.2)) thus obtaining forecasting model that can be used 
to forecast new values of the NDVI time series.  
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 OVERVIEW OF METHODS USED IN THE DEVELOPMENT 
OF THE FORECASTING SYSTEM 

The chapter gives an insight into the methods of data preprocessing and forecasting used 
in the development of the forecasting system. One of the modern trends in the development of 
forecasting systems is a combination of different methods and approaches; usually, different 
data preprocessing methods are combined with one or more time series forecasting methods 
[35], [80], [81], [85], [110]. That allows to compensate weaknesses of separate methods or 
approaches and increase forecasting accuracy. 

According to literature analysis, it is proposed to use a variational mode decomposition 
(VMD) method [118] as time series decomposition method. To divide the scalar NDVI time 
series and obtained sub-signals into fragments according to window length and obtain the 
initial data set, the phase space reconstruction can be used. For phase space reconstruction, it 
is proposed to use the popular time delay method [48]. The initial data set is divided into 
training, validation and test data sets, where each of these sets consists of attribute (or feature) 
set and forecasting parameter. 

Each attribute in the data sets is a lagged value of NDVI time series and sub-signals. To 
reduce training, validation and test attribute sets by selecting only informative attributes, 
feature selection methods [26], [77] can be used. The popular feature selection method, which 
can be used in time series forecasting tasks, is a stepwise regression analysis [99], which is 
proposed to use in the developed system. It is important that the features do not linearly 
correlate with each other and do not complicate the forecasting model training. Principal 
component analysis (PCA) is a method that is often used for obtaining a linear uncorrelated 
feature set [79]. The principal component method is proposed to use in the developed system 
as a feature extraction method. As a forecasting method in the system, it is proposed to use the 
layer recurrent neural network (LRNN), due to its ability to forecast nonlinear, nonstationary 
and noisy time series with good accuracy [71]. 

2.1. Variational Mode Decomposition 

In variational mode decomposition model, it is assumed that the real signal f consists of 
several sub-signals uk, where k = 1, …, K is sub-signal number and K is the number of  
sub-signals. A sub-signal or intrinsic mode function is an amplitude and frequency modulated 
(AM-FM) signal [118] and can be described with Expression (2.1): 

      cos ,k k ku t A t t 
 (2.1) 

where Ak(t) – k-th sub-signal amplitude; 
 ϕk(t) – k-th sub-signal phase; 
 t – time. 

For any sub-signal, frequencies ω change in a small range. Each of K sub-signals must be 
centred around the centre frequency ωk, which is calculated during decomposition. To 
calculate sub-signals, it is necessary to minimize the sum of K sub-signal frequency 
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bandwidth, provided that the sum of all K sub-signals is equal to the original signal [118]. The 
unknowns are K sub-signal centre frequencies and K intrinsic mode functions that are centred 
on these frequencies. Since some of the unknowns are functions, variational calculations are 
used in VMD method. 

To obtain the correct results in both signal endpoints, using the algorithm of variational 
mode decomposition, the original signal is expanded, using  “mirroring” [118]. The expanded 
signal is twice as long as the original signal, and its length is T. 

2.2. Phase Space Reconstruction With Time Delay Method 

The phase space is an abstract space, which describes a set of possible states of the 
system, where each possible state corresponds to the point in phase space [11]. For a chaotic 
time series, a phase space reconstruction with a time delay method according to Taken’s 
theorem [48] is used. Using Taken’s theorem, a chaotic and dynamic system can be described 
with a set of delayed vectors. Using the phase space reconstruction method with a time delay, 
it is necessary to find two parameters – the suitable values of the embedding dimension m and 
time delay τ. The accuracy of the time series prediction depends on these parameters. In the 
formal statement, when searching for a functional relationship (1.2), as the window length m, 
before the data preprocessing is finished, the reconstructed phase space dimension is used. 

2.3. Stepwise Regression Analysis 

Stepwise regression analysis is a systematic method for sequent feature selection, where 
features (or attributes) are added to the multi-linear model and removed from it as a result of 
automatic procedures, based on the statistical significance of the attribute in the regression 
analysis [99]. 

The original stepwise regression model does not include any attribute. Then in each step  
F-statistic p-value is calculated to test models with certain attributes [111]. The attribute with 
the smallest p-value is added to the model, if it does not exceed the specified addition 
threshold and if the null hypothesis of if  this attribute having a zero coefficient is rejected. 
Out of attributes that are already in the model, the attribute with the highest p-value is 
removed from the model, if p-value of attribute  exceeds the specific removal threshold, and if 
the null hypothesis that this attribute has a zero coefficient is not rejected. However, the 
stepwise regression analysis is not globally optimal [16]. 

2.4. Principal Component Analysis  

Principal component analysis (PCA) is a statistical feature extraction method, which is 
using the orthogonal transformation to transform a potentially correlating data (attributes 

1 2, , , mx x x  in this work) set to linearly uncorrelated data set 1 2 ,ˆ  ˆ ˆ, , , px x x , where m is the 

dimensionality of original data set but p is the number of principal components [79]. 
The first step in the PCA algorithm is to normalize data so that the mean value of each 
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attribute would be zero. Then, based on the normalized data, principal components are 
calculated. Based on the attributes, a covariance matrix C  of a sample set is calculated for 
which an eigenvector set M  is obtained by performing the eigenvalue decomposition. 
Principal components x̂  are chosen in such a way that the first principal component 1x̂  
contains the most variance of the original data, the second contains the second largest 
variance of the original data; besides, it linearly does not correlate with 1x̂ , and so on. 

2.5. Artificial Neural Networks 

Artificial neural networks (ANN) is a form of artificial intelligence, which tries to imitate 
the function of biological neurons that work in the human brain [85]. One of the most 
common artificial neural network models is a multi-layer perceptron, which includes an input 
layer, output layer and one or more hidden layers [85]. 

In the case of the prediction task addressed in this Thesis, the output layer contains one 
neuron that gives the forecasted value of the time series. Each neuron in every layer receives 
the weighted inputs from the previous layer, and these weighted inputs are summed up using 
the combination function; this result of summing up is fed as an argument to activation 
function, such as hyperbolic tangent, logistic or linear function [46], where this function value 
is the output of the neuron, and it is fed to the next layer [85]. 

The aim of the neural network training is to reduce the global error, which is calculated 
using a specific goal function. One of the most popular and effective non-linear optimization 
methods is the Levenberg-Marquardt backpropagation algorithm with a Bayesian 
regularization [85]. Bayesian regularization minimizes a linear combination of squared errors 
and weights, leading to a smaller weights for neural network model; it allows obtaining 
smoother forecasts and reduces overfitting capability for forecasting data [23]. As goal function, 
using Bayesian regularization, the regularized mean square error MSEreg [23] is used. 

Layer recurrent neural network (LRNN) is one of the dynamic, recurrent neural network 
forms, which is created by adding the feedback connections from the hidden layer to 
the context layer in multi-layer perceptron [18], [71]. The context layer stores the values of 
the hidden layer with a time delay, thus providing useful information about the previous input 
vector; besides, it determines the main quality – sequence memorizing [19]. 
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 DEVELOPING THE SUB-SIGNAL APPROXIMATION 
APPROACH 

The chapter is devoted to the development of modification of variational mode 
decomposition (VMD) method and development of approximation approach to the sub-signal, 
obtained from modified VMD method, which allows to approximate value of sub-signal in 
each time step. 

3.1. The Usage of Original VMD Method in NDVI Time Series Forecasting  

Two experiments are performed to evaluate the applicability of the original variational 
mode decomposition (VMD) method in the NDVI time series forecasting task. The 
experiment uses 100 NDVI time series that are selected by generating random numbers 
corresponding to pixel rows and columns numbers in MODIS NDVI images. Each of the two 
experiments is repeated 100 times.  

The accuracy of NDVI time series forecasting is first tested using the original VMD method 
to all historical observations of NDVI time series as it is done in the studies [33], [95]. In the 
experiment, the NDVI time series is fed into the input of the VMD method, obtaining a certain 
number of sub-signals. Data sets consisting of sets of attributes and a forecasting parameter are 
generated from the NDVI time series and all sub-signals. The data sets are preprocessed by 
selecting informative, linearly uncorrelated features. The preprocessed data sets are fed into an 
input to a layer recurrent neural network obtaining a forecasting model. The values of loss 
functions obtained in the experiment: root mean square error RMSE, directional symmetry DS, 
and adjusted coefficient of determination are given in Table 3.1. 

In the next experiment, NDVI time series forecasting accuracy is tested using the original 
VMD method for each NDVI time series fragment with a certain window length as it is done 
in studies [30], [95]. The NDVI time series is divided into fragments with a certain window 
length, resulting in data sets consisting of attribute sets and a forecasting parameter. Attribute 
sets are preprocessed and the most informative, uncorrelated attribute sets are obtained. The 
preprocessed data sets are fed into an input to a layer recurrent neural network obtaining a 
forecasting model. The experiment is repeated for all 100 time series. The mean values of loss 
functions for all 100 time series obtained in this experiment are given in Table 3.1. 

Table 3.1 
The Mean Values of Loss Functions in Experiments With Original VMD Method 

 Experiment No. 1 Experiment No. 2 
Data set RMSE DS R2 RMSE DS R2 

Training data set 0.000027 99.94 % 1.00 0.0013 97.53 % 0.99 

Validation data set 0.000040 99.99 % 1.00 0.0016 97.45 % 0.99 

Test data set 0.046000 85.59 % 0.96 0.0011 97.69 % 0.99 
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In the first experiment obtained values of forecast loss functions, which are shown in 
Table 3.1.1, present a high forecast accuracy on training and validation data set. However, 
obviously mean value of all three loss functions on test data set present unsatisfactory forecast 
accuracy, and this forecasting model is not practically suitable for NDVI time series 
forecasting. This is because the variational mode decomposition, calculating sub-signal values 
in every time step t, uses all input signal values. In other words, each sub-signal value in 
every time step t contains information about time series values in previous and future time 
steps. To make the signal data available before the first and after the last NDVI time series 
observation, the authors of original VMD method use signal “mirroring” extending time 
series with values from historical observations [118]. In the second experiment the mean 
values of loss functions, as can be seen in Table 3.1, show stable forecast accuracy on all 
three data sets.  

3.2. Modification of Variational Mode Decomposition Method 

The original VMD method uses a “mirroring” algorithm [118]. If the signal input length 
is N, then the signal midpoint is calculated: an integer from N / 2. From the input signal all 
elements from the first to N / 2 are taken and in reverse order are placed in front of the input 
signal. Then all elements from N / (2 + 1) to N are taken and in reverse mode are placed at the 
end of the input signal. Thereby variational mode decomposition method works with a signal 
whose length is T. However, from the perspective of time series forecasting, this “mirroring” 
approach causes certain problems – extended parts of time series give investment in sub-
signal computing process, and hence affect the sub-signal values in time steps from t = 1 to 
t = N. It leads to a problem that they can forecast with high accuracy only historical 
observations of time series when developing forecasting models. 

To solve the problem caused by “mirroring”, one of the options is not to use the extension 
of time series but twice cut the number of original signal observations received by the VMD 
method at the input. If all the original time series (that is used as extended time series) is with 
the number of observations T, then the middle part of time series contains N  observations, 
and the obtained sub-signal is corresponding to those N  observations. Now, the real 
observations of the original time series will be replacing the extensions, and sub-signal values 
will contain information about the true value of input time series in the next time steps. The 
division of time series in the “extended” and “original” parts is shown in Fig. 3.1. 
Accordingly, the extension at the beginning of the time series will include observations from 
the first observation to the point obtained by the formula (3.1): 

4
1.A T

   (3.1) 

The extension at the end of the time series corresponds to the observations of the original 
time series from point C to the last observation. The endpoint of the new “original” NDVI 
time series C is obtained by calculating the formula (3.2): 
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4
3 1TC   . (3.2) 

The calculated proportionality of “original” (fragment AC) and “extended” time series 
correspond to the proportionality of original and extended time series obtained using the 
original VMD method. In other words, the length of original times series is half of the length 
of extended time series; besides, the extended values are located at both endpoints of the 
original time series. 

 

 

Fig. 3.1. Division of NDVI time series to the “extended” and “original” part. 

However, this modification is not yet applicable for forecasting new values of the NDVI 
time series, because the obtained sub-signal values are available only for the middle part of 
the input time series, as shown in Fig. 3.1. Accordingly, the time series value that can be 
forecasted one time-step ahead will be located behind these middle part observations ‒ in time 
step t = N + 1, while in the NDVI forecasting task the value has to be forecasted  in time 
step t = T + 1. 

An experiment is being conducted to test the accuracy of forecasting using the modified 
VMD method for all historical observations of the NDVI time series. In the experiment 
100 NDVI time series is used where each time series originally contains 814 observations. 
Each time series is taken, and several iterations are performed, where first the first 70 % 
observations are selected from time step t = 1 to t = 570, which together compose 
570 observations (T = 570). The selected 570 observations are fed to modified VMD method 
input and then sub-signals are obtained in time steps from t = 143 to t = 428, and together 
each sub-signal contains 285 observations (N = 285). From NDVI time series and obtained 
sub-signals reconstructed phase spaces are combined into a single data set, which is divided 
into training and validation data sets. On these sets the selection of informativeness features is 
performed using stepwise regression analysis, and obtaining of linearly uncorrelated features 
using principal component analysis. The preprocessed training and validation data are fed to 
an input of the layer recurrent neural network, which is learning on data. 

When the forecasting model is obtained, it is used to forecast the value of NDVI time 
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series in time step t = N + 1. When the forecast is obtained, the first iteration of the 
experiment is completed and the next 70 % observations are taken, and the process is 
repeated. The observations of NDVI time series from t = N + 1 to t = T form a test data set. 
Mean values of the loss functions from all 100 NDVI time series overall data sets obtained in 
the third experiment are shown in Table 3.2. 

Table 3.2 
The Obtained Mean Values of Loss Functions in the Experiment With Modified  

VMD Method 

Data set RMSE DS R2 

Training data set 0.000058 99.88 % 1.00 

Validation data set 0.000076 100 % 1.00 

Test data set 0.000074 100 % 0.99 

 

RMSE values obtained depending on the balancing parameter of the data-fidelity 
constraint α at different sub-signal number K are shown in Fig. 3.2. Analysing Fig. 3.2, it can 
be concluded that, firstly, RMSE values have a tendency to grow by increasing the accuracy 
of the sub-signal sum values regulating parameter α. Secondly, the lowest RMSE values are 
achieved using only one sub-signal. While analysing Table 3.2, it can be concluded that 
forecasting new values of time series (one value forward in the selection of observations) now 
shows high accuracy.  

 

 

Fig. 3.2. RMSE values depending on parameter α. 

However, due to the reduction of the original time series forecasting is only possible in the 
middle part of the original NDVI time series. It is also necessary to perform an experiment to 
evaluate how the RMSE values change depending on how many digits of decimal places the 
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sub-signal is using. The description of experiment matches the description of the third 
experiment, where the modified VMD method for all historical observations of the NDVI 
time series was used, except that a certain number of the last digits is successively discarded 
for sub-signal. In the fourth experiment, 16 mean RMSE values (see Fig. 3.3) are obtained 
using the sub-signal with the different number of decimal places. 

 

 

Fig. 3.3. RMSE values depending on decimal places of sub-signal. 

Analysing Fig. 3.3 it can be concluded that RMSE value falls sharply from one to five 
decimal places. The changes of RMSE values from six to sixteen digits of the decimal places 
are small. The mean RMSE values from one to three digits of the decimal places vary 
between 0.00164 and 0.0024. The mean RMSE value with four digits of the decimal places 
is 0.00067. The mean RMSE values starting from five to sixteen digits of the decimal places 
vary between 0.00049 and 0.000074. 

In the second experiment the original VMD method is used for each fragment of NDVI 
time series, and on the test data set obtained mean RMSE value is 0.0011. Therefore, in order 
to obtain highest forecasting accuracy of NDVI time series, for approximated sub-signal at 
least four correct digits of decimal places should be obtained compared with an original sub-
signal given by the modified VMD method. 

3.3. Approximated Calculation of Sub-Signal Values 

In order to perform NDVI time series prediction using sub-signal values as attributes, and 
to look for a functional relation calculated by Equation (1.2), it is necessary to develop an 
approach that allows approximate calculation of sub-signal values at any time step t. For this 
purpose, the author proposes to use the solutions of linear equation systems (LES). The 
system of linear equations [55] is described by Equation (3.3): 

,Aw b
 

(3.3) 
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where A – the coefficient matrix (m × n); 
 b – the vector of constant terms (m × 1); 
 w – the vector of unknowns (n × 1); 
 m – the number of equations; 
 n – the number of unknowns. 

The kernel functions used in machine learning can be used to obtain a quadratic 
coefficient matrix. The kernel function provides the transformation of data from an input 
space to a multi-dimensional attribute or feature space [74]. If the data set used in 
approximation algorithm consists of sub-signal u, whose number of observations is N, then by 
submitting this sub-signal as a vector to the linear kernel function, N × N  matrix  is obtained 
by Equation (3.4): 

 

           
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  (3.4) 

Solving the homogenous linear equations system with the singular value decomposition 
(SVD) method where matrix (3.4) is used as the coefficient matrix, null space x is obtained 
where the set of linearly independent solutions x describes Matrix (3.5): 
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Matrix (3.5) consists of 1N   linearly independent solutions and N  variables. Now it is 
possible to overwrite the linear kernel function (3.4) as a linear kernel function, which at the 
input receives a data set of two vectors: NDVI time series y with N  observations and sub-
signal u, as shown in Matrix (3.6): 

    
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. (3.6) 

The null space (3.6) has one solution less than the number of unknowns. It is necessary to 
obtain one more equation – to find the particular solution w of the first non-homogenous 
linear equations system, where Matrix (3.7) is used as coefficient matrix A1: 
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In Matrix (3.7) with size N × (N – 1), the first attribute is one’s vector, which allows 
calculating the regression constant, but starting from the second to the penultimate attribute 
has the corresponding attributes from linear kernel function (3.6). For depending parameter b 
it is proposed to use the NDVI time series y. The solution is obtained using the non-linear 
least squares method. Function (3.8) is used as a non-linear function f: 

2 1 1(1) ( )
2
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where S – the weighted sum. 

While the element of the weighted sum S(t), where 1,...,t N  is calculated by (3.9): 
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By adding the obtained solution vector w to the null space solutions, the coefficient 
matrix A2 is obtained as shown in Equation (3.10): 
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The vector of constant terms bt used in the second non-homogenous LES is also composed 
of  N elements. The elements of vector bt(i), where i = 1, …, N – 1  in the time step t are 
obtained using the equation system (3.11): 
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(3.11) 

Using the particular solution w  and the vector of constant terms b, an unknown weighted 
sum Ŝ  can be calculated (from Equation (3.7). The vector element bt(i), where i N  then is 
calculated by Equation (3.12): 

   ˆ( ) 2tb S t wi   . (3.12) 
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Thus, by solving the second non-homogenous linear equation system using the least 
squares method in every time step t, where the coefficient matrix A2 is obtained by Equation 
(3.10) and the vector of constant terms bt after equation system (3.11)) and Equation (3.12), 
the particular solution wt is obtained. To obtain sub-signal u approximated value in the time 
step t, first Equation (3.13) is used, which allows obtaining N different ˆ ( )iu t  values, where 
i = 1, …, N: 

      
 

ˆ ( ) t
i

w i y t y i
u t

u i


 . (3.13) 

And by all i the average value is calculated by Equation (3.14): 
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ii
u t

u t
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

 . (3.14) 

The result obtained by Equation (3.14) is an approximated value of sub-signal u in time 
step t. Depending on the condition number of the coefficient matrix (see matrix (3.10)) used 
in the second non-homogeneous system of linear equations, the resulting approximated values 
may have different degrees of precision. Using the condition number of the matrix of 
coefficients (3.10), the approximate number of digits can be calculated (Expression (3.15)), 
by which the accuracy decreases, having obtained a solution to the system of linear equations: 

10 2log (cond( ))M A . (3.15) 

The second factor that affects the accuracy of the approximated sub-signal is the error  
values of the solutions of the linear equation systems. This approximation approach uses  
quadruple precision, which uses 34 decimal places.  
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 DEVELOPMENT OF FORECASTING SYSTEM NDVI FS 

The chapter is devoted to the development of the NDVI time series forecasting system 
(NDVI FS). The forecasting system NDVI FS consists of a user interface, data preprocessing 
module, machine learning module, and a data store. The user interface is responsible for the 
input of the pixel coordinates, as well as an option of sub-signal approximation approach (use 
or not) obtained from modified VMD method.  

When getting started, the user enters into the system three required element values via the 
appropriate interface: 

 The X coordinate or geographic longitude in the MODIS NDVI images according to 
the coordinate system of these images. 

 The Y coordinate or geographic latitude in MODIS NDVI images according to the 
coordinate system of these images. 

 The value of the optional element (1: use VMD sub-signal approximation approach, 0: 
not use). 

In the data preprocessing module, the data sets are created and preprocessed. In the 
machine learning module, the forecasting model is trained and the NDVI time series 
forecasting is performed. If the forecasting model and data preprocessing parameters for user-
selected (according to the input pixel coordinates) time series are not available in the data 
store, then all available NDVI historical values are selected for the given pixel and saved in 
the comma-separated value (CSV) file. This time series is fed to data preprocessing module. 

4.1. Data Preprocessing Module 

In the data preprocessing module in the block “DP1”, a decomposition of NDVI time 
series and obtained sub-signal approximation is performed, if the user has chosen it (see 
Fig. 4.1). 

 The phase spaces are reconstructed for both time series using time delay method (or 
only for the NDVI time series if the user has not selected the approximation of  
the sub-signal). 

 In the data set creation block, phase spaces are merged (if there are two phase spaces) 
and then are divided into training (70 % of records), validation (15 % of records), and 
test (70 % of data records) data sets. Each data set consists of the attribute (feature) set 
and forecasting parameter. 

 In block “DP3”, informative features are selected from all sets using stepwise 
regression analysis, and linearly uncorrelated feature sets are obtained using principal  
component analysis. 

Now the obtained linearly uncorrelated training, validation and test attribute (feature) sets 
with a forecasting parameter of training, validation, and test data sets are the output of data 
preprocessing module.  
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Fig. 4.1. Sub-signal approximation block “DP1”. 

All the necessary data preprocessing parameters: coefficient matrix A2; particular solution 
w; indices of informativeness features; the mean values of features and set of eigenvectors M 
are saved in the data store with a unique identifier linking them with the particular NDVI 
time series. 
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4.2. Machine Learning Module 

The machine learning module consists of two components: a training block and 
forecasting block. In the input, the module receives a preprocessed training, validation, and 
test data set from data preprocessing module. The output of the module is a forecast that is 
provided to the user. 

 In the training block the layer recurrent neural network performs training on the 
training data set, evaluating the RMSE on validation data set. As a most suitable 
LRNN forecasting model is chosen the one for which the smallest value of loss 
function RMSE is achieved. 

 With the best-found forecasting model short-term forecasting is performed on training, 
validation and test data set forecasting parameter, and the values of loss 
functions RMSE, DS and 𝑅adj2  on each of these sets are evaluated. 

 When the most suitable LRNN forecasting model is found, then the parameters of this 
model (weights and bias) are saved in the data store linking them by the unique 
identifier with other data preprocessing parameters. The block output is the 
forecasting model. 

 When the forecasting model is obtained, it can be used for forecasting the new values 
of NDVI time series by performing it in the forecasting block of NDVI time series 
(see Fig. 4.2). After a certain time period, which in case of MODIS NDVI images is 
seven days, the system receives a new available image, and the forecasting process can 
be repeated by forecasting the next value. 

The practical implementation of the NDVI FS system in the form of an application is done 
using the high-level programming language MATLAB. The system is implemented using a 
set of interrelated MATLAB functions (both built-in and author-developed) and script for 
business logic, a Character-based User Interface (CUI), and a data store. The script is used to 
start the system and call up all the necessary functions in a specific order, starting with 
entering the user parameters. The data store is implemented in the form of data files stored on 
the user’s data carrier. 

The system's business logic includes calculating the NDVI time seriesshort-term forecast 
using user input parameters, MODIS NDVI images in the data store, and certain algorithms. 
In the developed system NDVI FS, all data preprocessing, LRNN model training and time 
series forecasting are fully automated.  

The development of the modified VMD method vmd_modified code is based on the 
original VMD method code created by the authors of this method [119]. The development of 
the sub-signal approximation approach, the search for suitable values for all required data 
preprocessing parameters, as well as the search for suitable values of the LRNN parameters 
are realized using the author’s MATLAB functions. The author is developing the sub-signal 
approximation approach code using the MATLAB built-in function for null space calculation 
(function null), nonlinear regression analysis with the least squares method (function 
lsqcurvefit), and linear regression analysis with the least squares method (function lsqlin).  
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Fig. 4.2. Forecasting block. 

Phase space reconstruction with time delay method is implemented with the help of the 
function phasespace, which is part of the Chaotic Systems Toolbox [54]. For stepwise 
regression analysis the built-in function stepwisefit is used. Principal component analysis 
(PCA) is performed using the MATLAB Toolbox for Dimensionality Reduction [59]. For the 
layer recurrent neural network (LRNN) model training the built-in function layrecnet is used. 

The architecture, computing flow and data store operations of forecasting 
system NDVI FS are shown in  

Fig. 4.3. The NDVI FS system receives images from the preparation platform of the 
MODIS images. The output of system NDVI FS is a short-term forecast of the NDVI time 
series selected by the user (e.g. a farmer). 
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Fig. 4.3. NDVI time series forecasting system NDVI FS. 

Thus, the developed forecasting system NDVI FS is the stage in precision agriculture that 
provides input data for the decision support system (see Fig. 4.4). 

 
 

 
 
 
 
 

 
 
 
 

Fig. 4.4. The developed system NDVI FS in precision agriculture. 

On the basis of the NDVI index forecast the decision support system makes certain 
decisions and issues recommendations to farmers.  
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 ASSESSMENT OF ACCURACY OF THE DEVELOPED 
FORECASTING SYSTEM 

The chapter is devoted to experiments with the developed forecasting system NDVI FS. 
The accuracy of the forecasting system is compared with the accuracy that is achieved using 
other forecasting methods. Each experiment is repeated 100 times each time taking a different 
NDVI time series. 

5.1. NDVI Forecasting With the Classical Methods 

There are three experiments using classical prediction methods. The aim of one 
experiment is to explore the simple moving average accuracy of forecasting task of NDVI 
time. In the experiment for the NDVI time series phase space with different values of 
dimension m is reconstructed. The phase space dimension m is searched in the interval [1; 50], 
but time delay τ = 1. The appropriate dimension m, and accordingly simple moving average 
period is the value at which the minimum value of loss function RMSE is reached. 

The aim of the next experiment is to explore the accuracy of continuous state space 
Markov chains in the forecasting task of NDVI time series. The author described an 
experiment using discrete time, discrete state space Markov chains for NDVI time series 
forecasting in a study [91], while the use of m-th order discrete time, continuous state space 
Markov chains for NDVI time series forecasting is described in the author’s paper [93]. In 
the experiment, the continuous state space Markov chains with memory m are used. Since 
the m-th order Markov chain is used, last m states or last m observations of time series are 
used to forecast the next state. This combination of m states of Markov chain creates a 
vector that is formally identical to state vector in the reconstructed phase space. 

To forecast the next value of time series, the Euclidean distance between the last delayed 
vector in phase space and all other delayed vectors is calculated. For the delayed vectors with 
a low Euclidean distance the next values of time series that follows this vector in time are 
taken and the forecast is obtained as the average value of all those next values. 

The aim of the last experiment is to explore the accuracy of ARIMA methods in the 
forecasting task of NDVI time series. In the experiment, the first 70 % observations are 
selected for the NDVI time series on which model of ARIMA(p, d, q) is trained, where p is the 
order of the autoregressive polynomial, d is differential operator order, and q is the order of 
moving average polynomial. A model with the different value of p, d and q is created and the 
forecast one time series unit forward is performed. Then the next 70 % of observations of 
NDVI time series are selected, starting from time step t = 2, and forecasting for the next value 
of time series is performed.  

All values of time series corresponding to forecasted values of time series create a test 
data set. In the end, those values of p, d and q are selected where the value of the loss function 
RMSE between forecasted and observed values from the test data set is minimum. 
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5.2. Characteristics of the Forecasting System NDVI FS Experiments 

Two experiments are performed to evaluate the accuracy of the developed forecasting 
system NDVI FS. The author described an experiment with Elman recurrent neural networks 
for NDVI time series forecasting in a study [92], an experiment with LRNN for NDVI time 
series forecasting in a study [87], and the use of a forecasting system NDVI FS that does not 
apply VMD based approximation approach is described in the author's studies [88], [94]. 

The aim of the first experiment is to explore the accuracy of forecasting system NDVI FS 
in forecasting task of NDVI time series without using the sub-signal approximation approach 
obtained from the modified VMD method. The experiment is repeated 100 times. 

 The phase space with dimension m = 50 and time delay τ = 1 is obtained from time 
series of normalized difference vegetation index and thus input data set is obtained. 
Input data set is divided into two parts: a set of attributes and forecasting parameter. 
Both the set of attributes and forecasting parameter are divided into three parts, 
providing training, validation and test data set.  

 From each feature set informative features are selected using stepwise regression 
analysis, and the linearly uncorrelated feature sets are obtained using principal 
component analysis.  

 Preprocessed training and validation data set are passed in layer recurrent neural 
network input for training and for obtaining forecasting model.  

The aim of the next experiment is to explore the accuracy of the forecasting system 
NDVI FS of forecasting task of NDVI time series, using the sub-signal approximation 
approach obtained from the modified VMD method.  

 Using the developed modification of the variational mode decomposition (VMD) 
method with the sub-signal value approximation approach obtained from this method, 
an appropriate sub-signal is obtained for normalized difference vegetation index. A 
phase space with m = 50 and time delay τ = 1 is reconstructed for sub-signal as well as 
phase space is reconstructed with the same parameters for the NDVI time series.  

 Phase spaces are combined to produce an input data set that is divided into two parts: 
an attribute set and a forecasting parameter. Both the attribute set and forecasting 
parameter are divided into three parts providing training validation and test data set.  

 From each feature set informative features are selected using stepwise regression 
analysis, and linearly uncorrelated feature sets are obtained using the PCA.  

 The preprocessed training and validation data set are passed in layer recurrent neural 
network input for training and for obtaining forecasting model.  

In five experiments, the mean values of three loss functions: root mean square error 
RMSE, directional symmetry DS, and adjusted coefficient of determination 𝑅adj2  on the test 
data sets are given in Table 5.1. 
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Table 5.1 
The Mean Values of Loss Functions 

Forecasting method or system RMSE DS 
2
adjR  

The simple moving average  0.0442 93.40 % 0.94 

A discrete time, continuous state space m-th order 
Markov chains 

0.0214 83.76 % 0.90 

Autoregressive integrated moving average 0.0108 93.85 % 0.96 

Developed forecasting system NDVI FS without  
sub-signal approximation approach 

0.0012 97.28 % 0.99 

Developed forecasting system NDVI FS with  
sub-signal approximation approach 

0.0009 98.80 % 0.99 

 
Forecasting methods and systems in Table 5.1 are arranged by the decrease of the average 

RMSE values or the increase of forecasting accuracy. It is concluded that a higher forecasting 
accuracy is shown by the developed NDVI FS using the sub-signal approximation approach 
obtained from modified variational mode decomposition method (RMSE = 0.0009, 
DS = 98.80 % and adjusted 𝑅adj2  = 0.99). 

5.3. Transfer of the Data Preprocessing Parameters and Forecasting 
Models 

Two experiments are carried out with transferring of the data preprocessing parameters 
and models. The aim of one experiment is to explore the transfer of forecasting models to 
NDVI time series of neighbouring pixels by forecasting without the new training, and without 
using the sub-signal approximation approach.  

 When on randomly chosen NDVI time series data preprocessing and training is 
performed using the developed NDVI FS without approximation approach, all the 
necessary parameters are saved, and a suitable forecasting model is obtained.  

 Around this corresponding pixel of NDVI time series in satellite image, a grid is 
drawn that corresponds to radius r = 5. Thus, around the chosen corresponding pixel 
of NDVI time series a large grid of size 11 × 11 is drawn, where there are 120 pixels 
excluding the trained central pixel.  

 For each of these neighbouring pixels 120 NDVI time series are obtained and each of 
these time series first is preprocessed and forecasted using from the training time 
series obtained data preprocessing parameters and forecasting model.  

 Then, on each of these time series data preprocessing parameters and the forecasting 
model are individually obtained, then forecasts and RMSE values are calculated. 

For each time series both RMSE values are compared. The experiment is repeated 100 
times, each time forecasting 120 time series. In fifteen cases of the experiment obtained 
results are shown in Fig. 5.1. 
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Fig. 5.1. Application of the forecasting model without approximation approach. 

On the left side of the binary image (see Fig. 5.1), the pixels that are marked yellow (the 
value is one) are the ones on which time series can use transferred data preprocessing 
parameters and forecasting model. The pixels that are marked blue (the value is zero) are the 
ones on whose time series it is necessary to individually use the obtained data preprocessing 
parameters and original forecasting model. On the right-hand side of Fig. 5.1, a Euclidean 
distance with a threshold 0.8 is shown. Euclidean distances are calculated between the central 
pixel time series and all other time series. Analysing Fig. 5.1, it is concluded that by 
transferring preprocessing parameters and forecasting models and by performing the 
forecasting a similar RMSE value can be obtained, if between time series used in training the 
and time series where there are used transferred parameters and models the Euclidean distance 
is similar or lower than the value of threshold 0.8. 

The aim of the next experiment is to explore the transfer of forecasting models to NDVI 
time series of neighbouring pixels by forecasting without the new training, and using the sub-
signal approximation approach.  

 The 11 × 11 pixel grid is obtained from the satellite image (121 pixels in total), where 
the central pixel is the pixel on which NDVI time series preprocessing and training  
are performed. 

 Each of the 120 time series is preprocessed and predicted, first, using the transmitted 
parameters and models derived from the central pixel NDVI time series, and then using 
the individual parameters and models obtained on each time series, in both cases 
calculating the RMSE values between the observed and the predicted NDVI time series. 

The experiment is repeated 100 times each time forecasting 120 time series. The results 
obtained from the first fifteen cases of the experiment are shown in Fig. 5.2. 
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Fig. 5.2. Application of the forecasting model with approximation approach. 

Also, on the left in Fig. 5.2.  there is a binary image where in yellow are marked those 
pixels on which time series can transfer data preprocessing parameters and forecasting model, 
but in blue are marked those pixels on which time series it is not possible to perform transfer. 
On the right in Fig.   there is the binary image of the Euclidean distance with a threshold 0.1 
where Euclidean distances are calculated between time series from the central pixel and all 
other time series. Analysing Fig. , it is concluded that transferring of preprocessing 
parameters and forecasting model that are obtained from central pixel time series of 
normalized difference vegetation index can be used to forecast other NDVI time series with 
the similar values of RMSE if between the time series used in training and time series where 
transferred parameters and models are used, a Euclidean distance should be lower or equal 
than the value of threshold 0.1. 
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RESULTS AND CONCLUSIONS  

Within the framework of the Doctoral Thesis, a forecasting system of NDVI time series 
NDVI FS has been developed, which provides forecasts of dynamics of the  
short-term vegetation changes that are extremely important in precision agriculture. The 
developed forecasting system is evaluated using the author’s proposed approximation 
approach and without this approach to test the first hypothesis. To test the second hypothesis, 
model transfer experiments were performed, using parameters and models of one NDVI time 
series to forecast other NDVI time series. When the tasks set in the Doctoral Thesis were 
solved, the following main results were obtained. 

1. Analysis of scientific literature on forecasting time series of normalized difference 
vegetation index was performed. Defined requirements and the choice of forecasting 
method for developing the system were reasoned. 

2. Analysis of scientific literature on forecasting time series using a different signal 
decomposition method used in frequency analysis was performed. The choice of the 
decomposition method in forecasting task of NDVI time series and the need for 
approximation of the sub-signal was justified. 

3. Approximation approach of sub-signal that is obtained usingmodified variational 
mode decomposition method is developed, which allows to approximate sub-signal 
values for all time steps for which historical observations of normalized difference 
vegetation index are available. 

4. The forecasting system of time series of normalized difference vegetation index is 
developed, which is based on a set of specialized methods and approaches. It allows 
increasing the accuracy without using additional input data such as air temperature, 
rainfall, and land surface categories, as well as other vegetation indices. The whole in 
the system implemented data preprocessing process, LRNN model training and time 
series forecasting is automatized. 

5. Evaluation of the developed system NDVI FS was performed, its accuracy both using 
and without using sub-signal approximation approach has been compared to a simple 
moving average, a discrete time, continuous state space m-th order Markov chains and 
an autoregressive integrated moving average accuracy in NDVI time  
series forecasting. 

6. An approach is developed for transferring the trained forecasting model and 
appropriate data preprocessing parameters to the territory where forecasting models 
are not available. The forecasting accuracy in many cases is similar to the results 
provided by a trained forecasting model for a specific time series of normalized 
difference vegetation index.  

The following conclusions were reached during the development of the Doctoral Thesis. 
1. In studies on forecasting of time series of normalized difference vegetation index data 

preprocessing methods are not sufficiently used, which does not allow to achieve high 
forecasting accuracy. 
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2. The developed forecasting system performs a short-term forecast of the new value of 
the time series of normalized difference vegetation index using only the NDVI 
historical values. 

3. The developed approach approximates the sub-signal of the variational mode 
decomposition at any time step where the historical values of the time series of 
normalized difference vegetation index are available; it allows using the approximated 
sub-signal to forecast the new values of the NDVI time series. 

4. The accuracy of the approximated sub-signal depends on the condition number of the 
coefficient matrix of the second linear equations system and the error size of the 
particular solution of the first linear equations system. 

5. The accuracy of forecasting that uses the system developed with the approximation 
approach proposed by the author is higher than without using this approach, which 
confirms the first hypothesis. 

6. The forecasting accuracy of forecasting system NDVI FS used with or without the 
approximation approach proposed by the author is higher than the accuracy achieved 
by forecasting NDVI time series with a simple moving average, a discrete time, 
continuous state space m-th order Markov chains and an autoregressive integrated 
moving average. 

7. Using forecasting system NDVI FS and training on NDVI time series the data 
preprocessing parameters and forecasting model can be obtained, which can be used to 
forecast other NDVI time series with similar accuracy compared to the accuracy that 
can be achieved by forecasting the time series with individually obtained data 
preprocessing parameters and forecasting model, if a Euclidean distance between both 
the time series is less or equal to the defined threshold, which confirms the  
second hypothesis. 

8. The developed system NDVI FS without approximation approach can be used, if it is 
necessary to forecast values of the time series of normalized difference vegetation 
index for a large area in a relatively short period and where a slight decrease in 
forecasting accuracy is allowed. 

9. The developed forecasting system NDVI FS with the approximation approach can be 
used when forecasts of the time series of NDVI with higher accuracy are needed, but 
for a relatively small area. 

Further research is related to the improvement of the models and parameters transfer 
approach with a more precise definition of conditions where such a transfer can be performed 
as well as an improvement of the sub-signal approximation approach. 
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