
1

Model-Oriented
Control in Intelligent
Manufacturing
Systems

Model-Oriented Control
in Intelligent Manufacturing Systems

RTU Press

Riga 2022

Model-Oriented Control in Intelligent Manufacturing Systems. Riga RTU Press, 2022. ‒ 260 p.

The purpose of this e-book is to serve as a textbook for graduate and postgraduate students in the
field of computer engineering during the study of disciplines related to software control, modeling of
production conditions and their environment. It may also be of interest to specialists in planning and
assessing the quality of the production process, as well as to specialists and engineers in the field of
industrial robot manufacturing.

Language Editor Oksana Ivanova

Layout Design Ģirts Semevics

Published by RTU Press
 Phone: +37167089123
 e-mail: izdevnieciba@rtu.lv

© Riga Technical University, 2022

This textbook is published under the Creative Commons Attribution License (cc-by) and is offered in an
e-book format. The authors and users are free to share (copy and redistribute the material in any medium
of format) and adapt (remix, transform and build upon the material for any purpose, even commercially)
this work. The licensor cannot revoke these freedoms as long as you follow the license terms.

ISBN 978-9934-22-674-8 (pdf)

3

Acknowledgements

The textbook has been developed by the financial support of the European Union.
The authors from Chernihiv Polytechnic National University, V.M. Glushkov Institute
of Cybernetics of the NAS of Ukraine and Riga Technical University are responsible for
the content of this document. This publication reflects the views only of the authors,
and it cannot be regarded as the European Union’s official position.

The textbook has been developed in a frame of the project “ERASMUS+ Capacity-
building in the Field of Higher Education 2019.

It has been co-funded by the project “Development of Practically-Oriented
Student-Centered Education in the Field of Modeling of Cyber-Physical Systems”,
CybPhys (609557-EPP-1-2019-1-LV-EPPKA2-CBHE-JP – ERASMUS+ CBHE).

The textbook is intended for students of computer engineering and industrial
automation, as well as electrical engineering specialties. It can also be useful for
students and professionals focusing on innovation management issues.

Key Action: KA2 – Cooperation for innovation and the exchange of good practices
Action: Capacity Building in Higher Education
Action Type: Joint Projects
Deliverable: 2.3. E-book of five electronic courses by the declared directions

Under the Creative Commons Attribution license, the authors and users are free
to share (copy and redistribute the material in any medium of format) and adapt
(remix, transform and build upon the material for any purpose, even commercially)
this work. The licensor cannot revoke these freedoms as long as you follow the
license terms.

4

Annotation

The use of computer models in Intelligent Manufacturing Systems (IMSs) is
the main distinguishing feature that ensures their development as Cyber-Physical
Systems (CPSs). The purpose of this e-book is to serve as a textbook for graduate
and postgraduate students in the field of computer engineering during the study
of disciplines related to software control, modeling of production conditions and
their environment. The e-book may also be of interest to specialists in planning and
assessing the quality of the production process, as well as to specialists and engineers
in the field of industrial robot manufacturing.

The e-book includes seven chapters, starting with the analysis of the features of
the CPSs. Further chapters consider the theoretical issues related to the construction
of models for the implementation of control algorithms based on the modification
of Petri nets, forecasting models using one of the varieties of temporal logic and
recovery models that provide the creation of virtual images and images of the
control object and its environment. The tools for creating the considered models and
their integration into the control loop are also described. Examples of the practical
application of the Model-Oriented Control (MOC) methods in the creation of IMSs
and planning of their activities are given.

Anotācija

Datormodeļu izmantošana viedās ražošanas sistēmās (IMS) ir noteicoša pazīme,
kas nodrošina to kā kiberfizisko sistēmu (CPS) attīstību. Šī elektroniskā grāmata
ir domāta kā mācību līdzeklis datortehnikas nozares maģistrantiem, apgūstot
priekšmetus, kas saistīti ar programmatūras vadību, ražošanas apstākļu un to vides
modelēšanu. E-grāmata var būt noderīga arī speciālistiem, kas iesaistīti ražošanas
procesu kvalitātes plānošanā un novērtēšanā, kā arī inženieriem, kuri darbojas
industriālo robotu ražošanas jomā.

E-grāmatā ir septiņas nodaļas. Grāmatas sākumā ir analizētas CPS iezīmes.
Turpmākajās nodaļās aplūkoti teorētiskie jautājumi, kas saistīti ar modeļu
konstruēšanu vadības algoritmu ieviešanai, pamatojoties uz Petri tīklu modifikācijām,
prognozēšanas modeļiem, izmantojot kādu no laika loģikas veidiem un atkopšanas
modeļiem, kas nodrošina kontroles objektu un to vides virtuālo attēlu izveidi.
Aprakstīti arī rīki aplūkoto modeļu izveidei un to integrācijai vadības sistēmās. Tiek
sniegti piemēri modeļorientētās kontroles (MOC) metožu praktiskai lietošanai IMS
izveidē un to darbības plānošanā.

5

Contributors

Volodymyr Kazymyr, Professor, Information and Computer Systems Department,
Chernihiv Polytechnic National University, 95 Shevchenko Str., Chernihiv, 14035,
Ukraine, vvkazymyr@gmail.com

Oleg Novomlynets, Professor, Rector, Chernihiv Polytechnic National University,
95 Shevchenko Str., Chernihiv, 14035, Ukraine, oon1@ukr.net

Sergey Ivanets, Associate Professor, Institute of Electronics and Information
Technologies, Chernihiv Polytechnic National University, 95 Shevchenko Str.,
Chernihiv, 14035, Ukraine, sergey.ivanets@gmail.com

Oleksandr Palagin, Professor, Academician of the National Academy of Sciences of
Ukraine, V.M. Glushkov Institute of Cybernetics, 40 Academician Glushkov Avenue,
Kyiv, 03187, Ukraine, incyb@incyb.kiev.ua

Volodymyr Opanasenko, Professor, V.M. Glushkov Institute of Cybernetics,
40 Academician Glushkov Avenue, Kyiv, 03187, Ukraine, vlopanas@ukr.net

Nadezhda Kunicina, Professor, Senior Researcher of the Division of Industrial
Electronic Equipment, Institute of Industrial Electronics and Electrical Engineering,
Faculty of Power and Electrical Engineering, Riga Technical University, 12/1 Azenes
Str. – 503, Riga, LV1048, Latvia, nadezda.kunicina@rtu.lv

Anatolijs Zabasta, Senior Researcher of the Institute of Industrial Electronics and
Electrical Engineering, Faculty of Power and Electrical Engineering, Riga Technical
University, 12/1 Azenes Str. – 503, Riga, LV1048, Latvia, anatolijs.zabashta@rtu.lv

Andrejs Romanovs, Senior Researcher of the Institute of Information Technology,
Faculty of Computer Science and Information Technology, Riga Technical University,
2 Daugavgrivas Str. – 429, Riga, LV1048, Latvia, andrejs.romanovs@rtu.lv

Jurijs Merkurjevs, Professor, Senior Researcher of the Institute of Information
Technology, Faculty of Computer Science and Information Technology, Riga Technical
University, 2 Daugavgrivas Str. – 426, Riga, LV1048, Latvia, jurijs.merkurjevs@rtu.lv

6

Foreword

Intelligent manufacturing systems (IMSs), which began to emerge at the end of
the last century, are now becoming a defining factor in technological development.
Continuing the trends in the use of automation tools, laid down by Flexible Production
Systems and Computer-Integrated Manufacturing, they brought their own special
features associated with the widespread use of computer models directly to control
not only the technological process, but also the enterprise as a whole. This became
especially evident with the beginning of the implementation of Industry 4.0 strategy,
which actually boiled down to the creation of Cyber-Physical Systems (CPSs).
Namely, the CPSs externalize all basic ideas of intellectual production. Through the
integration of the real physical world and the virtual world created with the help
of computers, IMSs provide an incredible increase of production efficiency, their
orientation towards the needs of society, and time reduction for introducing new
technology achievements.

Everything that CPSs bring to the production sphere is based on the use of
computer models, which cease to be just an element of designing new systems,
but become separate components of the manufacturing process and, above all, in
the field of control. This applies to both the control of technological processes and
management at the level of planning production activities and ensuring their quality.
Thus, the use of computer models in the context of control tasks fully justifies the
name of CPS.

It is important to note that the use of computer modeling as an approach to
managing manufacturing processes does not take away all the existing achievements
of traditional methods, but make them more intelligent and smart. This is important
from the point of view of continuity in methods and technologies which have proven
them through long-term approbation in practice.

At the same time, the use of computer models directly in the control loop poses
new challenges for science and practice that go beyond the already familiar model-
based approach, for example, in automatic control systems. Considering the all-
encompassing nature of the application of computer modeling in CPS, which goes far
beyond the scope of mathematical calculation, now we can talk about a new trend in
cybernetic science that can be named Model-Oriented Control (MOC).

The concept of MOC disclosed in this e-book covers the main components
of the control process, including the description of control algorithms using
implementation models, forcasting the possible development of the control process
based on predictive models and identifying the states of the control object using
recovery models.

However, the presented material goes beyond just a theoretical presentation of
the basic principles and methods of MOC, but also covers the issues of the practical

7

application of this approach in modern IMSs. The striking example is the use of
MOC in the creation of novel electron beam welding machines which, thanks to
built-in models, acquired the features of intelligent industrial robots. Algorithm
implementation models, which are actually executable programs, prediction of
situations using modifications of temporal logics and virtual reality models, all of
which in aggregate, solve the still impossible task of automatically welding highly
complex spatial trajectories for high-tech products in the field of aviation and
astronautics. A unique robot-welder that uses three electron guns simultaneously
solves its problems based on the principles of multi-agent control, which is
implemented using a set of built-in computer models. An important aspect of the
MOC is also its application in the planning and quality management of manufacturing
activities. Computer models of algorithms allow not only assessing in advance the
effectiveness of planned activities taking into account the risk, but also managing the
real process by assessing its development in dynamics.

These successes in the realization of the MOC are based on the already developed
software and hardware, and the ideas presented in the e-book regarding the latest
development of the MOC tools give us a reason to talk about its good prospects in the
further use for IMSs.

Undoubtedly, this e-book will serve as a good possibility in the study of methods
and technologies for constructing and applying CPS models by university students,
scientists and engineers.

I would like to express my gratitude to all the participants of the “CybPhys” project
who make their significant contribution to the training of specialists in CPS and IMS,
in general.

 Kyiv, Ukraine, April 2021
 Alexander Palagin
 Academician of the National Academy of Sciences of Ukraine,
 Deputy Director for Research of V. M. Glushkov Institute of Cybernetics

8

Contents
Glossary of Abbreviations...13

Introduction..15

Chapter 1. Intelligent Manufacturing Systems and Industry 4.0 Concept...17

1.1. Cyber-Physical Systems for Intelligent (Smart) Manufacturing Approach...17

1.2. Industry 4.0 Impact on Development of Smart Manufacturing.. 20

1.3. Adoption of Cyber-Physical System Paradigm in Smart Manufacturing Environments.....................23

1.3.1. System of Systems for Industrial Applications...23

1.3.2. Industrial Cyber-Physical Systems and RAMI 4.0..23

1.3.3. Approach of Cyber-Physical System of Systems for the Industry..24

1.3.4. The Main Components of the Approach..25

1.3.5. The Potential and Challenges of the Approach..25

1.4. Migration Approach to SOA-based Process Control and Monitoring...26

1.4.1. The Proposed Architecture..26

1.4.2. Migration Approach from Current Legacy to SOA-based Industrial System
of Systems...28

1.4.3. Industrial Information Distribution and RAMI 4.0 Concept..29

1.4.4. Flexible and Secure Communication in Intelligent Manufacturing Systems......................30

1.5. Summary...32

Chapter 2. The Principles of Model-Oriented Control...33

2.1. The Main Characteristics of the IMS in the Control Context...33

2.1.1. Open Modular Architecture Controls..33

2.1.2. Full Product Life Cycle Support...34

2.1.3. Computer Modeling...36

2.2. Features of IMS Control Process..37

2.2.1. IMS Control Principles..37

2.2.2. The Structure of IMS CCS...41

2.3. The Concept of Model-Oriented Control...43

9

2.3.1. The Method of Model-Oriented Control...43

2.3.2. Implementation Models..46

2.3.3. Predictive Models..48

2.3.4. Recovery Models..50

2.4. Summary...52

Chapter 3. Implementation Models of Control Algorithms...53

3.1. Control Algorithms and Methods of their Description...53

3.1.1. Implementation Model Requirements...53

3.1.2. Methods of Control Process Formalization..55

3.1.3. he Tasks of Control Algorithm Description..58

3.2. Formal Definition of Control E-network...59

3.2.1. Control E-network Structure..59

3.2.2. Dynamics of Control E-networks..60

3.2.3. Basic Set of CEN Transitions..63

3.2.4. CEN Semantics...64

3.3. Control E-networks as the Functional Basis of PLA...69

3.3.1. Constructing Aggregate Mapping..69

3.3.2. PLA Concretization by Means of Control E-networks...72

3.3.3. Completeness of the CEN Formal Theory...75

3.4. Summary...77

Chapter 4. Predictive Models and Dynamic Model Checking ...78

4.1. Dynamic Properties of Control Algorithms and their Assessment...79

4.1.1. Control Algorithms as a Reactive System..79

4.1.2 . Methods for Specifying the Dynamic Properties of Reactive Systems..81

4.1.3. The Problem of Automatic Verification of CA Dynamic Properties...84

4.2. Temporal Model of Control E-networks..87

4.2.1. Time Model of CEN..87

10

4.2.2. State Model of CEN..89

4.2.3. Computation Model of CEN..93

4.2.4. Algorithm of CEN Dynamic Synchronization..98

4.3. Verification of Control Algorithm Properties Using Predictive Models..100

4.3.1. DCTL Logic: Syntax and Semantics..100

4.3.2. Predictive Model..107

4.3.3. Dynamic Model Checking of DCTL Formulas on CEN...111

4.4. Summary..118

Chapter 5. Recovery Models and their Construction..119

5.1. Cases of Computer Recovery Models...119

5.1.1. Man in the Control Loop..119

5.1.2. Hardware in the Control Loop...121

5.1.3. Recovery Model Design..122

5.2. Virtual Reality Models..124

5.2.1. Display Subsystem Structure...124

5.2.2. Frame Generator..125

5.2.3. Image Supervisor..126

5.2.4. Display Supervisor..128

5.2.5. Technics for Constructing Display Models...129

5.3. Image Recognition Models..130

5.3.1. Recognition Subsystem Structure...131

5.3.2. Sampling and Quantization Models...132

5.3.3. Filtering Models...135

5.3.4. Contrasting Models..138

5.3.5. Segmentation Models..141

5.3.6. Thinning Models...143

5.3.7. Trajectory Restoration Models...145

11

5.4. Summary..148

Chapter 6. Software and Hardware Tools for MOC..149

6.1. Technology for Creation of Implementation Models..149

6.1.1. E-net Modeling System..149

6.1.2. E-net Language Definition..155

6.1.3. Simulation Process in EMS..159

6.1.4. Processing of Statistical Information in EMS..161

6.1.5. Organization of Simulation Experiments in EMS..164

6.1.6. Storing Models in EMS...169

6.2. Technology of Embedding Models into the Control Loop..172

6.2.1. Model Interpreter..173

6.2.2. Porting of Runtime Interpreter...175

6.2.3. Hardware Platform of Hybrid Embedded Models..179

6.2.4. Neural-like Network Platform for Recovery Model Implementation..................................182

6.3. Summary..188

Chapter 7. Examples of MOC Applications..188

7.1. Model-Oriented Control of EBW Machine...188

7.1.1. Model-Oriented Control Problems of EBW Machine...188

7.1.2. Principles of Constructing a Model-Oriented CS of EBW Machines…………………………...192

7.1.3. Hardware and Software Architecture of EBW CCS..193

7.2. Situational Control of a Vacuum Subsystem Based on the Implementation
 and Predictive Models...195

7.2.1. General Characteristics of Vacuum Subsystem Control Process...195

7.2.2. Implementation Model of VS Control Algorithm..196

7.3. Visual Design of Welding Programs Based on Recovery Models...200

7.3.1. Formulation of the Problem...200

7.3.2. Virtual Representation of the Sample and Welding Path...202

7.3.3. Automatic Learning of the Joint Path..205

12

7.3.4. Graphical Representation of the Joint Path..207

7.4. Adaptive Control of the Electron Beam Position in Joint Tracking..208

7.4.1. Formulation of the Problem..208

7.4.2. Recovery Models Used in Tracking..208

7.4.3. Tracking Algorithm..209

7.5. Multi-Agent Control of the Simultaneous Operation of Several Electron Beam Guns.....................212

7.5.1. Formulation of the Problem...212

7.5.2. Construction of Recovery Models...213

7.5.3. Theoretical Background of Control Method..215

7.5.4. Implementation Model of Control Algorithm...216

7.6. Model-Oriented Planning and Quality Assurance..219

7.6.1. Tasks of Model-Oriented Manufacturing Management...219

7.6.2. Implementation Models of Planning Processes...222

7.6.3. Risk Assessment in Model-Oriented Planning and Management...230

7.6.4. Implementation Models of Quality Management Processes...237

7.7. Summary..243

13

Glossary of Abbreviations

ARM Advanced RISC Machine
AS Aggregate System
BDD Binary Decision Diagram
C3 Computation, Communication and Control
CAD Computer Aided Design
CAM Computer Aided Manufacturing
CA Control Algorithm
CALS Continuous Acquisition and Life Cycle Support
CASM Cyclical Alternative Network Model
CCS Computer-Controlled System
CEN Control E-Net
CIM Computer-Integrated Manufacturing
CLB Configurable Logic Block
CNC Computer Numerical Control
COSY Concurrent System
CO Control Object
CoAP Constrained Application Protocol
CPM Critical Path Method
CPS Cyber-Physical System
CPSS Cyber-Physical Product-Service System
CPSoS Cyber-Physical System of System
CS Control System
CTL Computation Tree Logic
DCTL Duration Computation Tree Logic
EBW Electron-Beam Welding
EL E-net Language
EMS E-net Modeling System
E-Net Evaluation Net
ERP Enterprise Resource Planning
FMS Flexible Manufacturing System
FPGA Field Programmable Gate Array
HIL Hardware-in-the-Loop
HLA High Level Architecture
HMI Human Machine Interface
IA Intelligent Agent
ICPS Industrial Cyber-Physical System
IIoT Industrial Internet of Things
IIR Intelligent Industrial Robot
IMS Intelligent Manufacturing System
IoE Internet of Everything
IoS Internet of Services
IoT Internet of Things

14

IP Internet Protocol
JVM Java Virtual Machine
LC Life Cycle
LTL Linear Time Logic
M2M Machine-to-Machine
MAS Multi-Agent System
MC Model Checking
MES Manufacturing Execution System
MIL Man-in-the-Loop
MMU Memory Management Unit
MQTT Message Queue Telemetry Transport
MOC Model-Oriented Control
MPC Model Predictive Control
OMAC Open Modular Architecture Controls
OS Operating System
PLA Piecewise Linear Aggregate
PLMP Piecewise Linear Markov Process
PN Petri Net
PNML Petri Net Markup Language
PLC Programmable Logic Controller
PLTL Propositional Linear Temporal Logic
PM Predictive Model
RAMI Reference Architectural Model for Industry
RHS Receding Horizon Strategy
RISC Reduced Instruction Set Computing
RT Real Time
RTI Run-Time Infrastructure
RTM Run-Time Monitoring
SCADA Supervisory Control and Data Acquisition
SOA Service-Oriented Architecture
TCTL Timed Computation Tree Logic
TPTL Timed Propositional Temporal Logic
TQM Total Quality Management
VO Virtual Organization
VR Virtual Reality
VS Vacuum Subsystem
WSN Wireless Sensor Network

15

Introduction

The concept of Intelligent Manufacturing Systems (IMSs) was formed under the
influence of the growing capabilities of information technology, penetrating into all
spheres of human activity. An important stage in the development on this way was the
emergence of Flexible Manufacturing Systems (FMSs) (Hartley, 1984) in the 1990s.
Further development of works in this direction led to the formation of Computer-
Integrated Manufacturing (CIM) (Buffa, 1984). At this stage of development, a number
of fundamental ideas, principles and technologies arose and were partially tested. In
particular, Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM)
automated systems were created (Berg, 1985). The exchange of geometric data in
electronic form between CAD and CAM systems was one of the first real examples of
informational process integration.

However, the idea of building a modern enterprise was most developed during the
implementation of the international program “Intelligent Manufacturing Systems”
(Gaines and Norrie, 1995), deployed by the world’s leading industrial powers at
the turn of the century. Within the framework of the IMS program, more than 50
international projects have been developed, as a result of which the latest production
technologies have already been developed or will be created, forming the concept of
a modern production system.

The analysis of the stages of development of production systems shows that the
main element that forms their essence is the Computer-Controlled System (CCS)
(Astrom and Wittenmark, 1996). IMSs do not cancel or replace the principles of
building production systems, formed in the process of development of FMSs and
CIM, but make them more intelligent, flexible and progressive due to the wide use of
advanced information technologies at all management levels, including automated
technological control systems and Enterprise Resource Planning (ERP) (Busse and
Torsten, 1998), which together form an integrated automated production. In fact,
IMSs bring high-quality intelligent definitions to each of the properties inherited from
FMSs and CIM, improving the automation of technological processes and increasing
the level of information integration of enterprises.

From the point of view of automation, IMS distinguishes the development of
distributed SCADA (Supervisory Control and Data Acquisition) systems (Boyer and
Stuart, 1999) to the level of implementation of Open Modular Architecture Controls
(OMAC) (Bailo and Yen, 1997; Pritschow, 2001). In matters of information integration,
IMSs solve the problem of not only data exchange between various kinds of computer
programs, but also the problem of supporting the full life cycle of products, improving
the Continuous Acquisition and Life cycle Support (CALS) (Fuhs, 1995) technology in
the direction of creating virtual organizations (Travica, 1997).

However, the main characteristic feature of the IMSs, which actually determines
their name and makes the management process intellectually rich, is the widespread

16

use of computer modeling at all stages of management decision-making. In IMSs,
computers have received a completely new purpose. In addition to program control
and integration functions, they are increasingly assigned the tasks of perception,
recognition and display of information, as well as the formation of managerial
decisions on appropriate behavior in various situations of development of the
production process. Computer vision, computer graphics, simulation, human-
machine interface, synthetic environment and virtual organization are now becoming
the most important components of the management process. The method underlying
the functioning of these components is computer modeling.

IMS as a program of international cooperation has led to the creation of a
new technological phase, called Industry 4.0 according to one of the 10 projects
in Germany’s Hi-Tech state strategy under the Smart Manufacturing concept
launched in 2011 (Kagermann et al., 2013). The goal is to make greater use of IT
in manufacturing to increase the competitiveness of the economy. The essence of
Industry 4.0 is that the material world today is merging with the virtual, leading to the
creation of Cyber-Physical Systems that integrate into a common digital ecosystem.
An important direction in the creation and enlargement of Cyber-Physical Systems
is the development of methods and technologies for their modeling and simulation
(Kazymyr, Shkarlet, Zabasta, 2020).

The e-book is aimed at solving an urgent problem related to the development of
methods and technologies for the use of computer modeling in the control of IMSs,
which are distinguished by a complex structure and behavior dynamics. The lack of a
grounded theory that allows formulating the basic principles of using models in the
control loop of the CCS makes this problem relevant today. Its solution will contribute
to increasing the efficiency of high-tech production by improving methods and means
of management, built on the basis of progressive information technologies.

17

Chapter 1. Intelligent Manufacturing Systems and Industry
4.0 Concept

1.1. Cyber-Physical Systems for Intelligent (Smart) Manufacturing Approach

Cyber-Physical Systems (CPSs) are developed to integrate real physical processes
and virtual computational processes. Different objects used in modern daily life
represent CPSs. The definition of CPS from Cyber-Physical Systems Week (CPS, 2019)
is as follows: “Cyber-physical systems are complex engineering systems that rely on
the integration of physical, computation, and communication processes to function”.

CPSs, which integrate computing and physical processes, involve more physical
components than the pure embedded systems. In embedded systems, the key focus
is on the computing element, but in cyber-physical systems, it is on the link between
computational and physical elements (Sultanovs, Skorobogatjko, and Romаnovs,
2016). Cyber-Physical System parts exchange information with each other; therefore,
the third component – communication (see Fig. 1.1) is added there. That is why,
Cyber-Physical System is denoted by the symbol C3 (Computation, Communication
and Control).

Cyber-Physical Systems are developed to integrate real physical processes
and virtual computational processes. Concept of CPS is complicated, but it can be
illustrated with a concept map (see Fig. 1.2). The concept map depicts different views
and approaches to CPS, such as spheres of application, requirements to modeling and
design, cyber security concerns, the main features of CPS, etc.

Nowadays, it is recognized that flexibility, modularity, and reconfgurability are the
main challenges in the design of manufacturing systems. Intelligent manufacturing
applies embedded software and hardware technologies to optimize productivity
in the manufacture of goods or delivery of services. This is resulted in developing
a flexible, modular and distributed control architecture for automated warehouse
systems using Function Blocks and CPS perspective (Gunes et al., 2014; Basile et
al., 2015). An introduction to the Cyber-Physical Product-Service Systems (CPSSs)
and their application in an industrial case are provided in Wiesner et al. (2017).

Fig. 1.1. Three main components of Cyber-Physical System (Wu and Li, 2011).

18

They emphasize the multidisciplinary requirement engineering for the hardware,
software, and service components as a key aspect for the successful and dynamic
changes to CPSSs in industry. The majority of studies concerning CPS are focused on
modeling, conceptualization, and utilization plans rather than on realization (Kang
et al., 2016).

CPS perspective on the future industrial revolution will improve safety,
productivity, and efficiency by connecting embedded system production technologies
to pave the way to highly flexible workflow and efficient collaboration (Gunes et al.,
2014).

It is pointed out that CPS can potentially revolutionize interaction with many
complex systems, which the physical world critically depends on. According to Kim
and Kumar (2013), CPS applications need to be designed considering the cutting-
edge technologies, necessary system-level requirements, and overall impact on the
real world. The goal of research is increasing reliability and safety, reducing resource

See authors and contributors.
http://CyberPhysicalSystems.org

Fig. 1.2. A concept map of Cyber-Physical Systems (Berkeley, 2020).

19

consumption, or improving the overall performance of industrial processes.

Many modern cyber-physical applications demand guaranteed high performance,
ultra-low energy consumption, high dependability, safety and security. It means
that security and privacy, efficiency, and interoperability must be an integral part
of the CPS. On the other hand, CPS is vulnerable to failures and attacks on both the
physical and cyber sides, due to its scalability, complexity, and dynamic nature.
Making use of a large-scale network (such as the Internet), insecure communication
protocols, continious usage of legacy systems, application of commercial off-the-
shelf technologies, are the other factors, which cause CPS vulnerability (Gunes et al.,
2014). In addition, many of the applications of CPS are large-scale systems. It is not
easy to integrate seamlessly heterogeneous systems, since each field of CPS has a
self-contained set of models, languages and methods.

The Industry 4.0 project has been created as a strategic initiative, which represents
a major opportunity for manufacturing the future. It refers to the deep integration
of next generation information technologies (such as CPS) into industrial scenarios,
solutions and procedures. By integrating with production, logistics and services in
the current industrial practices, CPS will transform today’s factories into an Industry
4.0 factory with significant economic potential. CPS will be able to transform existent
factories into Industry 4.0 manufacturing with significant economic potential, by
integrating production, logistics and services using the best industrial practices, and
by integrating sensor data with enterprise information systems (Zhou et al., 2015).
The millions of devices, not all-time smart, are interconnected, providing and
consuming information available on the network. They will be able to exchange
capabilities collaborating to reach common goals thanks to such an environment.
Due to application of CPS, the production facilities, smart machineries, warehousing
systems, business processes will be capable of autonomously exchanging information,
triggering actions and controlling each other autonomously and independently
(Lanting and Lionetto, 2015).

Furthermore, robotics for service is identified as one of the six disruptive civil
technologies with potential impacts on the U.S. interests out to 2025 (Nic, 2008).
The integration of humans and smart robots is essential to enable all actors of CPS to
achieve better cooperation, collaboration, and organization to implement multiplex
tasks (Chibani et al., 2013).

The review of literature shows that CPS is tightly integrated to some latest
technologies, such as cloud, IoT, big data, M2M, and Wireless Sensor Networks
(WSNs). These technologies affect each other in application; thus, future research
should pay more attention to their interoperability and technological development.

20

1.2. Industry 4.0 Impact on Development of Smart Manufacturing

The Industry 4.0 methodology is recognized as a current driving force of
the industry development, and represents the implementation of large-scale
changes in the contemporary industry. These changes include digitization,
automation, mechatronization and ICT integration at all levels of process control and
services (Bassi, 2015).

Industry 4.0 represents the fourth industrial revolution in manufacturing industry
(see Fig. 1.3).

According to Lee (2007), Lee, Bagheri, and Kao (2015), the Fourth Industrial
Revolution is based on the following paradigms:

•	 Interoperability enables the integration and cooperation of intelligent machines,
methods and human beings to interact through Internet of Things (IoT), Industrial
Internet of Things (IIoT) and Internet of Services (IoS).

•	 Virtualization provides an opportunity to develop virtual model (or copy) of an
intelligent factory. Such a model applies real data obtained from a plant and applied
to the intelligent factory model for control of operations.

•	 Decentralization provides an opportunity for a device or a machine to carry out
operations and decentralized (autonomous) control. Therefore, maximum qualified
intelligent decisions on each subprocess for optimizing process production would
be made.

Fig. 1.3. Structure of technologies for manufacturing industrial processes
included in Industry 4.0.

21

•	 Real-time (RT) data collection and analysis. Thanks to collected information,
the real-time intelligent control and decision-making methods can be applied
for optimization and reconfiguration, as well as can take into account failures
and find optimal solutions such as component and device failures, transfer of
production, etc.

•	 Service oriented approach is implemented due to communication and
information exchange over the Internet of Things, by providing information to
other parties of the company’s services.

•	 Modularity	and	reconfigurability enable intelligent business to adapt flexibly
to the production situation by changing software and hardware modules, by
supporting the sharing, and reconfiguring processes (multi-criteria and multi-
variant optimal intelligent decisions).

The application of the IoT to the manufacturing industry is called the Industrial
Internet of Things (IIoT). IIoT is part of a larger concept known as the Internet of
Things (IoT). The Industrial Internet of Things (IIoT) means the use of Internet of
Things technologies in industrial processes, e.g., manufacturing, transportation,
energy production, etc. The IIoT incorporates machine learning, cloud computing
and big data technology, harnessing the sensor data, machine-to-machine (M2M)
communication and automation methods and technologies. The target of IIoT is
the improvement of product manufacturing, enabling supply chain efficiency due
to exchange of information, mathematical modeling, optimal control, effective
coordination and big data (Fig. 1.4).

Fig. 1.4. Basic scheme of the interconnection between IoT and Industry 4.0.

22

In literature, we can find several main principles of Industry 4.0, for example, the
use of the Internet, production flexibility, virtualization of process, etc.

Extensive Use of the Internet

The extensive use of the Internet enables the capability to collect gigabytes of
data per hour from millions of devices to be analyzed in real time, finding clusters
of potential issues or problems to be used for predictive maintenance, shortening
dramatically the loop of collecting diagnostic information in order to make a decision.

Flexibility	–	Handling	High-Mix,	Low	Volume		

One of the most attractive features of a Smart Factory is the capability to operate
on small batches, down to batch-size-one. In comparison with previous experience,
Industry 4.0 now is able to provide real-time, “zero-setup-time” production flexibility
to meet the new demand of personalization and mass customization not just in a B2C
perspective, but also in the B2B context. Industry 4.0 will be able to supply highly
customized products (like Private Label), as well as pre-series and prototypes.

Traceability	&	Product	Identification

Today data marking and reading ability are prerequisites for a Smart Factory
where machinery, products and systems are connected along the Value Chain.
Industry 4.0 enables “production flexibility” by capability to assign a unique ID to
each component and also by ensuring the real-time control, and the complete value
chain over the entire product life cycle. A unique component ID makes every single
component individually identifiable alongside the entire production process allowing
for dynamic, more efficient production paths, down to batch-size-one. It makes
possible to retrieve information regarding the origin, storage, state and location of
materials, components and products.

Communication,	Virtualization	and	Cyber-Physical	Systems	

Industry 4.0 encourages the use of a reliable stable and powerful common
language to drive the revolution across the globe through cloud technologies. For
this purpose, an open source communication standard, based on the Ethernet,
OPC-UA could aid users to share information across the entire infrastructure. Such
communication standards provide capability for secure data overcoming software
and hardware differences working on the client server model (OPC, 2020). Once a
common communication framework is available, it is possible to connect details
suppliers, assembly machines, and sensors to describe and define their functionalities
and treat them as virtual computational entities. Therefore, it makes possible to
create links between physical processes and their virtual representation.

23

1.3. Adoption of Cyber-Physical System Paradigm in Smart Manufacturing
Environments

The main objective of this chapter is to explore the ways for the effective adoption
of Cyber-Physical System of System (CPSoS) paradigms in smart manufacturing
environments to enhance the efficiency, data analytics, connectivity, multiple task
execution, self-decision making and real-time system interaction and to describe the
main principles that will be needed for the implementation of CPSoS.

1.3.1. System of Systems for Industrial Applications

A System of Systems is an integration of a finite number of constituent systems
which are independent and operable, and which are networked together for a period
of time to achieve a certain higher goal. The System of Systems concept could be
considered software design, management and exchange of information and control
techniques to optimize the production and management of physical processes in the
industrial environments. According to Haber et al. (2015), the demand of real-time, optimal
and reliability solutions is based on global information, knowledge and parametrization
to execute reconfiguration and control actions that introduce several challenges to the
industrial SoS ecosystems (Haber, Juanes, Toro and Beruvides, 2015).

A paradigm for digital transformation and the interconnectivity of multiple devices
based on the Internet of Everything (IoE) and Internet of Things concepts, and the
integration between the cyber world (e.g., algorithms, software, apps, etc.) with the
physical world (e.g., devices, machines, automobile, buildings, etc.) have been proposed
as prerequisites for Smart Manufacturing (Colombo, Bangemann, and Karnouskos, 2013;
Morkevicius, Bisikirskiene, and Bleakley, 2017).

1.3.2. Industrial Cyber-Physical Systems and RAMI 4.0

Industry 4.0 represents new paradigms of information and communication
technologies, such as Industrial Internet of Things (IIoT), Industrial Cyber-Physical
Systems (ICPSs), Service-Oriented Architectures (SOAs), cloud computing and big data
implementations, as well as the introduction of innovative advances in the cybersecurity,
distribution and decentralization of the information and computing capabilities in new
industrial connected ecosystems (Zheng et al., 2018).

Architectural Model Industry 4.0 (RAMI 4.0) combines three core dimensions of
product development and production in a cuboidal space, covering from product to
connection with a global ecosystem. The RAMI 4.0 depicts multiple layer integration from
assessments to business unit, the interconnection of the shop floor devices with condition-
bwwased monitoring, Human-Machine Interfaces, open protocols, data analytics and
management (Flatt et al., 2016). The dimension hierarchy levels are based on the layers
defined in IEC 62264 and IEC 61512 (Fleischmann, Brossog, Beck, and Franke, 2017).

24

Manufacturing Execution Systems (MESs) and Enterprise Resource Planning
(ERP) are still disseminated solutions to take into account visualization, planning and
control tasks in several industrial scenarios (Iarovyi et al., 2016; Ramis and Lastra,
2017). In the current manufactory, MES provides many functionalities in relation
to monitoring, resource allocation, task scheduling, data acquisition, maintenance,
performance analysis and control operations on the shop floor, with real-time access
to key performance indices to facilitate necessary reconfiguration actions (Arica
and Powell, 2017). On the other hand, ERP manages and tracks all the information
and operational services at a company, covering functional areas, such as human
resources, logistics, finance and production in order to support decision making by
company management.

1.3.3. Approach of Cyber-Physical System of Systems for the Industry

The high-level architecture of the proposed CPSoS is depicted in Fig. 1.5. As
cyber and physical integration, the CPSoS is composed of different subsystems
and components from the two domains, i.e., cyber and physical. These domains
are connected by the IoE technologies. The physical domain is usually composed
of physical resources that are used at different systems for altering and sensing
the environment. Examples of physical resources per CPSoS might be refrigerators
for adjusting the humidity and temperature of premises, conveyors that supply
components at factory shop floors, industrial vehicles etc.

The cyber domain might be composed of a set of soft applications, including digital
twins, and usually represented by cyber models. These models facilitate the study of
system behavior in order to monitor its performance. The cyber models are helpful
to achieve zero-defect manufacturing, since it becomes possible to find anomalies
and adjust the physical equipment using the virtual model (Vafeiadis et al., 2017).

Fig. 1.5. A high-level vision of the proposed CPSoS.

25

1.3.4. The Main Components of the Approach

The web-services that collect data enable the devices, which belong to different
systems, by connecting them to various types of sensors, actuators and data
exchangers. Even human workers can also be considered resources that generate
data, since they interact with different subsystems within the CPSoS, e.g., when they
send notifications concerning the receipt of a package necessary for production. One
of the main components that will support the interaction within CPSoS will be the
IoT devices (Sheng, Mahapatra, Zhu, and Leung, 2015). Following the SOA paradigm,
the IoT devices are often deployed at factory shop floors in order to implement both
horizontal and vertical integration of enterprise systems. However, it should be taken
into account that the proprietary solutions often represent an integral part of any
CPSoS.

1.3.5. The Potential and Challenges of the Approach

In order to orchestrate isolated systems under a CPSoS, a set of qualitative
attributes should be critical for the CPSoS:

Connectivity: Current isolated systems that affect the productivity of factories
will be connected within IoT-based implementations for collection and exchange of
data.

Digitalization: Systems will be digitalized in the cyber world with digital twins of
resources in order to monitor and even control their behavior.

Modeling: Modeling techniques adopted by the CPSoS will help monitor system
behavior, suggest the design of systems and process execution.

Flexible reconfiguration: The analysis of huge amount of data produced by
physical resources and their digital models will permit the anticipation of required
changes on runtime, providing flexible reconfiguration of systems.

Versatility and reusability: The digital twin of the system makes it possible to
analyze its performance at the operation cycle and even to assign new tasks that
were not considered during the system design cycle. The security of isolated systems
may cause problems related to the integration of CPSoS; however, the employment
of standard formats and risks, and threat modeling analysis will facilitate addressing
these technological challenges (Ferrer, Afolaranmi, and Lastr, 2017).

Heterogeneity: The problems to be resolved concerning different types of
sources of the data: a) data formats should be homogenized; b) to address data
transformation, the gateways are necessary.

Integration: The integration of isolated systems will force the creation of new and

26

adaptable interfaces among systems. In addition, the integration of legacy systems
may be problematic for retrieving/receiving signals, data and information to/from
different interested parties.

Interoperability: Apart from the issues at the interface, systems must
communicate within similar protocols. Mutual platforms that are agnostic to
protocols, such as OPC-UA1, may be of use for the implementation of CPSoS.

Security: Data security is a strong challenge for the integration of sensitive
systems in the CPSoS. The data among different systems comprising CPSoS must be
secured; therefore, the data cannot be accessed for malicious interests or retrieved
without permission.

1.4. Migration Approach to SOA-based Process Control and Monitoring

A long list of requirements has been set for the next generation of industrial
processes because of involvement of many actors and new stakeholders who create a
large challenge for technology suppliers in the future. ISA-95, standardized through
ISA (ISA 2020), represents a standard architecture for automation systems (Scholten,
2007). It is accompanied by a set of related standards, such as ISA-99, IEC 62443
(Staggs, 2020), which focuss on security of the systems. Nowadays, the key technology,
which enables the integration within and in-between different levels of the ISA-95
architecture, is a Service-Oriented Architecture (SOA) (Erl, 2007). SOA was originally
developed by IBM to enable data and information exchange between heterogeneous
information systems. Nowadays, SOA is adopted as the main approach to plant
automation due to application of a cloud technology and shared services.

1.4.1. The Proposed Architecture

The Service-Oriented Architecture enables the integration of industrial devices
and IT systems in a cross-layer interaction mode from the shop floor to the business
levels:

• The notation “service” is exposed as structural and behavioral properties and
networking capabilities.

• SOA approach implements “services” as integrated in collaborative business
relationships with other devices and systems in the CPSoS. Figure 1.6 shows
the proposed architecture composed of services (marked as an “S” and depicted
in a green cube), which are wrapping via web services many different devices
and systems in an independent way no matter of the physical location of the
devices and systems in the enterprise architecture.

The Internet Protocol (IP) set and web services are used in all layers and
subsystems. Thanks to a cloud-based approach, a multi-level composition of System

27

of Systems is possible together with Services of Services (see Fig. 1.6). The integration
and interaction between business systems, such ERP and MES, and factory floor
systems, such as SCADA, DCS, etc. are achieved thanks to the use of the cloud-based
architecture. This interaction between the different level systems allows the CPSoS to
develop additional functions, which were not initially envisioned by the constituent
systems (Karnouskos and Colombo, 2011).

Having in mind that an SOA-based system behaves asynchronously (in opposition
to the majority of currently implemented industrial process control and monitoring
systems), it is a complex and challenging task to seamlessly integrate a large number
of devices and systems from different manufacturers into a single SOA ecosystem.

The first step is the identification of the right wrapping ICT technologies and
services. Some of standardized services can be identified as “generic services”
because they are common for all devices and systems, and the other ones are labeled
as “infrastructure services” by SOCRADES (www.socrades.eu) and NESSI (www.
nessi-europe.com) projects. During the second step, we specify the mechanism for
providing orchestration, choreography and composition. This mechanism has to
include at least two main functions: to process information content of the services
and to process the events related to the services. During the next steps, we have to
define, specify and implement a mechanism for monitoring and control, which is
based on an SOA approach.

Fig. 1.6. SOA-driven architecture.

28

1.4.2. Migration Approach from Current Legacy to SOA-based Industrial System of
Systems

A migration approach from current legacy to an SOA-based industrial system of
systems (Jamshidi, 2008; Simanta et al., 2020) will follow a set of basic steps, which
are summarized in Fig. 1.8. Current legacy industrial systems are mainly specified,
implemented and running following the ISA95 standard (ISA 2020).

It means that migration to an SOA-based system cannot in general be performed
at only one or some of the levels of the architecture shown on the left side of Fig. 1.8.
This is because specifications and system characteristics at a defined level are closely
related to specifications at other levels (e.g., control specification at Level 1 will only
be well implemented when it considers information and actions performed at the
neighbour levels like SCADA or MES above them). Thus, a migration strategy has to
address how the migrated part can represent the legacy functionality and how it is
involved in another level of the control system.

Several migrations are defined and specified for each system level. The definition
and understanding of the differences within the legacy system is a necessary task,
when migration of the system is planned. The other obligatory task is definition and
understanding differences of the monitoring and control in the legacy system, which
should migrate.

Fig. 1.7. Hierarchical composition of services enables abstract cross-layer
functionality.

29

1.4.3. Industrial Information Distribution and RAMI 4.0 Concept

This concept builds upon the last generation of industrial monitoring and control
systems in order to enable a smooth level of interaction between shop-floor devices and
high-level enterprise systems. Originated from ISA 95, the Industry 4.0 initiative has
proposed the Reference Architectural Model for Industry (RAMI) 4.0 (Schweichhart,
2016) and I4.0 component model (Model, 2020; Romanovs et al., 2019). The I4.0
component model captures the notion of an administration shell that abstracts the
digitalized equipment and products with high levels of connectivity. The RAMI 4.0
captures a three-dimensional cube for modeling architectural solutions. It presents
I4.0 components at different “hierarchies”, which are designed over a complete “life-
cycle” and must participate in a functional “layer”. From a layer point of view, a single
functional “layer” cannot be confined to a single level of the “hierarchy”. Rather a
“layer” is spread across many I4.0 components at different levels of the “hierarchy”,
which is shown in Fig. 1.9.

The RAMI 4.0 determines that connectivity and integration of the industrial
systems should not be considered a purely vertical approach. According to RAMI 4.0,
the components of industrial systems could communicate with one another vertically,
horizontally and even diagonally. The components of RAMI 4.0 can participate in the
information layer as data producers and consumers.

Work centers, cells, and stations achieve a particular level of autonomy and
diminish their dependency on MES cloud in a case, when the information layer
enables a seamless flow of data. Reducing coupling between physical work cells and
software provides an additional advantage manifested through higher reliability of
work centers, as malfunction in one work cell does not degradate the production of
the whole work center.

Fig. 1.8. Migration approach from legacy to SOA-based systems.

30

To enable a flexible production process, it is important that engineers and
specialists on the shop floor get access to local data; therefore, they do not need
involvement of IT staff, when data routing change is needed. The requirements for
decentralized information distribution of the flexible production process can be
defined as follows:

• The shop machines can operate in an islanded mode: a centralized data store
is not necessary. In a case of network performance degradation, the operations
can be continued.

• The specification of data flow should be recorded in readable form both for
human personal and for machine.

• Production process should be technology independent; therefore, the choice of
technology should limit technical solutions.

• To enable granular access control support, industrial designers are allowed to
make changes and restrict untrained or hostile changes.

1.4.4. Flexible and Secure Communication in Intelligent Manufacturing Systems

The CPPS are integrated and built on many existing technologies and
components, such as industrial production environment, including industrial
devices equipped with sensors and actuators, IIoT components, and backend
systems, such as cloud platforms.

Fig. 1.9. RAMI 4.0 three-perspective cube (adapted from Basile et al., 2015).

31

The use case depicted in Fig. 1.10 shows an Industry 4.0 application scenario,
when industrial devises of the CPPS communicate in a flexible and secure
manner. In the offered use case, data are exchanged between CPPS devices via
the network, and delivered to the cloud for continued processing and analysis.
The industrial devices, which are depicted as M1, M2 and M3, for communication
with gateways, and the cloud backend system apply such protocols as MQTT
(Message Queue Telemetry Transport) and CoAP (Constrained Application
Protocol). The IIoT gateways distribute lifetime data among CPPS devices and
send them throughout a network to the cloud storage.

The MQTT protocol demonstrated in Fig. 1.6 is a lightweight protocol widely
used to accommodate constrained devices with low power and bandwidth
requirements (Zabasta et al., 2017; Zabasta et al., 2018).

We can see that modern industrial devices M2, M3 use state-of-the-art
protocols (MQTT and CoAP) when communicate inside of CPPS. On the other
hand, a protocol translator is needed to translate an appropriate protocol
of the legacy into a modern protocol. The protocol translator to be applied
also for translation among different protocols is used in IIoT. The translation
system solutions, e.g., Arrowhead protocol translation system, are described by
Derhamy, Eliasson, and Delsing (2016).

The security of modern industrial devices is a crucial issue; thus, transmitted
data must be encrypted. However, even software-based encrypted data are prone
to attacks in order to reveal encryption tools. The work (Derhamy, Eliasson, and
Delsing, 2016) offered to integrate special hardware called “Secure Element” in
the protocol translator. Such secure elements will be able to protect encryption
keys from hackers’ attacks, even in a case when physical interruption has
happened.

Fig. 1.10. CPPS end-to-end communication use case for an Industry 4.0 application
scenario.

32

1.5. Summary

In Chapter 1 “Intelligent Manufacturing Systems and Industrial 4.0 Concept”, we
have discussed the principal issues of development of smart manufacturing systems.
The subchapter “Cyber-Physical Systems for Intelligent (Smart) Manufacturing
Approach” has offered several definitions of Cyber-Physical System and provided a
concept map of application and implication of CPS recognized by researchers in this
field, which is followed by review of the relevant literature.

In its turn, the subchapter “Industry 4.0 Impact on Development of Smart
Manufacturing” provides an analysis of paradigms of the Fourth Industrial
Revolution, which reveals challenging advantages to manufacturing: interoperability
as interaction through IoT, IIoT and IoS; virtualization that enables creation of a
virtual model of the factory; production decentralization; real-time data collection
and analysis; service-oriented communication in IoT.

Further, the subchapter “Adoption of Cyber-Physical System of System Paradigm
in Smart Manufacturing Environments” explores the ways for the effective
adoption of Cyber-Physical System of System paradigms in smart manufacturing
environments. We have discussed the implementation of CPSoS that comprise
necessary components: data analytics, connectivity, multiple task execution, self-
decision making and real-time system interaction.

In subchapter “Migration Approach to SOA-based Process Control and
Monitoring”, we have analyzed the offered architecture. We have concluded that the
SOA-based enterprise architecture allows devices and systems from the shop floor
to the business levels to communicate and exchange data in a cross-layer interaction
mode. One of the discussion topics is the understanding of the approach, which will
make it possible to migrate from current legacy to an SOA-based industrial System
of Systems. The selected migration approach has to take into account information
distribution in industrial systems, when migration from legacy manufacturing to
smart manufacturing takes place under Industry 4.0 concept.

In subchapter “Flexible and Secure Communication in Intelligent Manufacturing
Systems”, we have discussed a use case that illustrates a flexible and secure end-to-
end communication, when the CPPS components are mapped to create the meta-
model of industrial CPSoS. The use case depicts data transmission between devices
and the private clouds for processing and analysis. The communication protocol used
between the industrial devices and security issues have also been discussed.

33

Chapter 2. The Principles of Model-Oriented Control

2.1. The Main Characteristics of the IMS in the Control Context

The evolutionary scheme of the development and formation of IMS as the
newest and most advanced representative of the class of production systems can be
represented in the form shown in Fig. 2.1.

Following this scheme, we can distinguish three main characteristics of Control
System (CS) of IMS in the context of solving control problems, which are presented
in Fig. 2.2.

2.1.1. Open Modular Architecture Controls

The Open Modular Architecture Controls (OMAC) concept was first proposed by
General Motors in the summer of 1994 in a document containing requirements for
controllers used in the automotive industry (Taylor, 1998).

Later it was developed by European (European Open System Architecture for
Controls within Automation Systems – OSACA) and Japanese (Japan International
Robotics and Factory Automation – IROFA and Japan Open System Environment for
Controller Architecture – OSEC) organizations (Lutz, 1998; Sawada and Akira, 1997).
A number of promising OMAC-based programs are supported by the U.S. government.

Fig. 2.1. Stages of IMS formation (Kazymyr, 2006).

Fig. 2.2. Main characteristics of IMS Control System.

34

In general terms, OMAC fundamental requirements for automation systems are
formulated as follows:

1. Open architecture that provides integration of widely used hardware and
software in the market.

2. Modular architecture that allows you to easily change the distributed structure
of the control system by changing the composition of its components and the
connections between them.

3. Scaleable architecture that allows you to easily and efficiently change the
configuration for specific needs.

4. Economical architecture providing low cost of controller equipment life cycle.

5. Maintainable architecture that can withstand harsh operating and maintenance
conditions, thus ensuring minimal downtime.

The noted features of the open architecture can be implemented to the maximum
extent by using PC-compatible industrial computers in control systems instead of
the traditionally used systems based on Programmable Logic Controllers (PLCs).
The main advantage of personal computers (PCs) in this case is associated with their
openness and the ability to use the most modern hardware and software that meet
international and regional standards.

2.1.2. Full Product Life Cycle Support

Analysis of the application of information technologies in the CCS shows that
the second (after the use of open architectures) area of their development is a more
complete coverage of all stages of the product life cycle (LC).

Despite the fact that in the instrumentation the range of tasks solved by the control
system has significantly expanded, the issues of interaction with the customer, after-
sales support of the product and many others, which form the basis of the quality
management system, remain unresolved.

For the first time, work on the creation of integrated systems that could support
the product life cycle had begun in the US defense complex. The new concept was
in demand by life as a tool to improve the management of the logistics of the US
Army. It was assumed that the implementation of the new concept CALS (Computer
Aided Logistic Support – computer support for the supply process) would reduce the
cost of organizing information interaction between government agencies and private
firms in the process of formalizing requirements, ordering, supplying and operating
military equipment. Having proved its effectiveness, this concept has consistently
been improved, supplemented and, keeping the existing abbreviation CALS, has

35

received a broader interpretation – Continuous Acquisition and Life Cycle Support
(continuous delivery and information support of the product life cycle) (Fuhs, 1995).

Now, CALS has evolved into a global business strategy for the transition to
electronic document management technology, ensuring the integration and sharing
of information at all stages of the product life cycle. The development of the concept
has led to the emergence of a new organizational form for the implementation of
large-scale projects associated with the development, production and operation of
complex products – a virtual organization (VO) (Travica, 1997).

In the conditions of the functioning of the VO, integration is carried out on
the basis of global networks, in particular the Internet. Thanks to the use of Web-
based information systems, it is possible to combine the information resources of
geographically distributed divisions and organize remote management based on a
single strategy.

The conceptual model of CALS is shown in Fig. 2.3.

CALS relies on two main process control technologies that are invariant with
respect to the object (products):

• project and task management (Project Management/Workflow Management);

• quality management.

In many developed countries, CALS is considered to be a strategy for survival in a
market environment.

Fig. 2.3. The conceptual model of CALS.

36

2.1.3. Computer Modeling

The use of computers in control systems was characteristic of all the main stages
of the IMS. However due to the growth of PC productivity, their role in control systems
changed significantly. If, at the beginning of the automation period, the functions
of computers were limited to the use of digital controllers and the maintenance of
routine accounting and statistical tasks, then in the FMS and CIM, computers became
the central link of the control systems. They started to provide not only control of
CNC machines and industrial robots, but also the implementation of technological
preparation of production.

Computers received an even more responsible appointment at the IMS. In
addition to program control and integration functions, they began to be assigned the
tasks of perception and recognition of information, assessing a dynamically changing
environment and forming managerial decisions on appropriate behavior in various
situations. The method underlying the solution of these problems is modeling because
it is always assumed to use a model – some approximation to a real object. Modeling
in this case is computer based, since it requires significant amounts of computations,
the execution of which is possible only with the use of high-performance computer
systems.

Figure 2.4 demonstrates the main types of computer modeling used in the process
of IMS management and their distribution according to the projects of the world
program “Intelligent Production Systems”.

If earlier computer modeling was considered, basically, only the main method of
analysis and synthesis of control systems, then in the IMS context it became possible
to talk about the possibility of using computer models directly in the control loop as a
means of developing control decisions. It determines the relevance of solving a whole

Fig. 2.4. Distribution of IMS projects in computer modeling types.

37

range of tasks related to the development and use of computer models in the process
of managing the IMS.

2.2. Features of IMS Control Process

The investigation of this issue is conducted in the scope of the analysis of current
IMS control principles and CS structure, which facilitate IMS realization.

2.2.1. IMS Control Principles

Control principles characterize the control law, which provides the answer to
the following strategic question: “What kind of dynamics switches the system to the
necessary condition?”

Fig. 2.5. IMS control principles and corresponding Control System classes.

38

We consider IMS control principles to be a hierarchical structure as shown in Fig.
2.5. This representation develops the already accepted terminology of control theory,
provides additional structuredness of the terms used taking into consideration
current trends in CCS development. Consequently, control principles determine the
class of CCS, which can be implemented on the basis of these principles.

CCS control principles can be grouped into three levels, according to the level of
impact on their structural and dynamic characteristics:

• control action development principles;

• principles of making managerial decisions;

• control organization principles.

We should point out that each subsequent level in the given hierarchy includes the
previous one. As a result, the general concepts of CCS construction and functioning
that facilitate its intended purpose presuppose the use of internal decision-making
mechanisms, which are implemented directly by means of the control action
development schemes. This way the target stability and constructive feasibility of
the CCS are achieved.

In the scope of the objectives of the study, we are mostly interested in the
control organization principles, which are considered to be the unifying core in the
development of a control strategy applied to the IMS. We will discuss these principles
in detail further.

Currently, the following control organization principles are singled out in the
class of complex dynamic systems: situation control, adaptive control, and multi-
agent	 control. Each of these principles is based on its own methods and sets of
mathematical models.

Situation control is based on the notion of situation, classification of situations
and their transformation. The definition of situation is based on the fact that it is not
always possible to accurately determine the description of an CS using an equation
of state in either discrete or continuous form. There are systems and particularly
complex subsystems referred to as ill-defined or semistructured (Jakobson et al.,
2007). As a rule, they are characterized by the following features: evident uniqueness
of the Control Object (CO), absence of a clearly formulated criterion of optimality,
high dynamism, incomplete description of the functioning process, and the presence
of discretion.

For such systems, it is impossible to apply the traditional control method, which
is based on any analytical model of the processes occurring in the object. On the
other hand, CO can be studied to such an extent that it may be possible to describe

39

the situations that develop in the system. The description of a situation, in this
case, is defined as a collection of all information about the structure of the CO at
a given moment in time, as well as the knowledge about the technological control
scheme, which is represented by the rules for choosing control decisions. Formally,
an elementary act of situation control can be written using the following expression:

: ()
()

() . (2.1)

The meaning of this expression is as follows. If situation, caused by the
state of CO, has developed in the CS, and the technological scheme allows for the use
of control u from the control tolerance range U, then it is applied and CO goes into a
new state .

Situation control principle presupposes the execution of the following sequence
of steps:

• analysis of emerging situations (situation detection);

• correlation of the identified situation with the known class of situations (situation
recognition);

• selection of the required control solution corresponding to the given class of
situations (making a decision regarding the control choice).

Adaptive control is the second control method, which has earned a fundamental
position in the modern theory of complex system control. Adaptation is a method
of control under conditions of insufficient a priori information and consists in
improving the quality of control by changing the structure and / or parameters of the
CCS (Astrom, 2008).

The lack of a priori information leads to the need to combine, in a sense, the study
of an object and the control over it. Therefore, adaptation implies duality of control,
when control u, by changing the state of the system x, also affects the characteristics
of information about the system P. The transition to a new state can be determined
by operators H1 and H2 in the following way:

(+1)= 1[(), (), ()] , (2.2)

(+1)= 2[(), (), ()] . (2.3)

In order for information about the system to accumulate over time, it is
necessary to explicitly choose H2 so that the description of system P(k + 1)
would be more complete than P(k). If a certain indicator of quality control is
associated with the state x(k + 1), then due to greater control awareness, as a
result of adaptation, this indicator can consistently improve. In this case, the

40

sequence of transformations [H1,	H2]k, k = 0, 1, 2, ... determines the process of
adaptive control.

The specific content of the theory of adaptive control (in particular, operators H1

and H2) is revealed in a number of works devoted to the study of adaptive control
systems of various classes. The most notable achievements of this line of research
have been made in relation to non-searching adaptation methods, methods of direct
and identification approach with adaptive control of complex systems, mainly, of the
technological level.

Multi-agent	control. At the present stage of IT development, in particular, due to
the use of OMAC, the implementation of the aforementioned directions of interaction
in the control process can be successfully carried out due to the use of intelligent
agents (IAs). There are many definitions of IA, all of which, however, are based on the
properties of autonomy and purposefulness. In this aspect, there are three functions
that characteristize IA (Wooldridge, 2002): 1) perception of the dynamics of the
environment; 2) actions that change the environment; 3) reasoning for the purpose
of interpreting observed phenomena, solving problems and determining actions. The
first two directly correspond to the tasks solved by control elements, in particular
those related to the “empowerment”. The third function significantly expands the
internal structure of control elements and creates prerequisites for their interaction.

The interaction of agents is organized within the framework of multi-agent
systems (MASs). The questions of the MAS theory were subjected to scrutiny in
many works. A significantly fewer number of publications are devoted to the issue of
practical implementation of the MAS, especially in the field of manufacture control.

Still, based on the mentioned works, we can conclude that a multi-agent control
system can be generally viewed as the following tuple:

=< , , , , >, (2.4)

where – a set of control objects;

 – a set of control agents;

 – a set of responsibility connections;

 – agent localization according to control objects;

 – information channels between the agents.

Among the many known agent architectures, InterRap architecture is considered
the most suitable one in terms of facilitating agent interaction. It includes three levels
of control: reactive, planned and cooperative. At the reactive and planned control

41

levels, it is logical to use object control models that belong to the agent’s area
of responsibility. At the cooperative level, the presence of a local control object
model may prove to be insufficient. Therefore, at this level, the agent forms
its own CS model { } either with the help of data coming from sensors or
through information exchange between agents. This requires certain actions and
calculations to determine the state of control objects of the system, for example,
sending requests to other agents via a specific information channel, receiving
responses about the state of control objects, determining the most relevant
information, etc. In the process of developing a common solution, one of the
agents can take on the role of coordinator.

2.2.2. The Structure of IMS CCS

Intelligent industrial robots (IIRs) can be considered the most notable example
of the IMS class. Unlike conventional industrial robots, all actions of which are
determined only by the control program without any subsequent adjustment, the
final actions of IIR are adjusted using perception and control units. IIR should
be able to recognize and assess the environment, analyze emerging situations
and adapt to the environment, make informed decisions in order to prevent the
occurrence of emergency situations, model their behavior and interact with
external environment, including cooperating robots. The methods of situational,
adaptive and multi-agent control are most fully and comprehensively applied to
IIR, determining the principles of control organization.

Fig. 2.6. Structure of IMS CCS.

42

Generally, IMS CCS can be attributed to the class of open-loop control systems,
which are not covered by inverse association. They implement disturbance control,
and in order to achieve invariance of the control system with respect to external
conditions, it is necessary to know the exact position of the control object. This issue
can be addressed by creating a CCS based on the principle of dual control. A distinctive
feature of such a CCS is the dynamic nature of its behavior, which is manifested
when the control program adapts to the external conditions of the control object
functioning, especially by means of self-learning and self-tuning.

The structure of the IMS CCS, used to solve the aformentioned problems, is
represented in Fig. 2.6.

This structure can be divided into three main components:

1. Control unit. It consists of an inalterable CCS core, which ensures the ex-
ecution of control programs, and situation control programs, an alterable
part of the CS, which is dynamically modified. Depending on the emerg-
ing situation, the control process is managed by means of intentionally
changing the current control program via the code generator. The latter
is capable of broadcasting both single commands and complex programs.

2. Intelligent assistance unit. Its functions are aimed at ensuring the adap-
tive properties of the control system by means of making control decisions
based on the previous experience, analyzing the predicted results of cur-
rent control scenario implementation and assessing the real situation. Un-
like the control unit, the intelligent assistance unit is capable of produc-
ing not only individual commands, but also the entire control programs,
partially or completely updating the variable part of the control system. In
any case, the decision to change the control process is made by the deci-
sion-making subsystem. The modeling subsystem is incorporated into the
control loop. Its task is to assess possible options of the control process
development in real time, supplementing the information about the state
of control object and external environment, which is sent from the identi-
fication subsystem. The generalizing component of the intelligence assis-
tance unit is data and knowledge base, which stores and accumulates the
necessary information about the parameters and properties of CO, CCS as
a whole, its individual components and the results of model experiments.
If necessary, information can be added to the data and knowledge base
through the use of the capabilities of external, in regards to this CCS, intel-
ligence. It can be either an adjacent CCS included in a distributed intelli-
gent structure or global intelligent environments, for example, the Inter-
net. The intelligent interface should ensure the intellectual openness of
the IMS CCS.

43

3. Virtual reality unit. The main task of this unit is to affect the control sys-
tem in real time in accordance with the virtual representation of the con-
trol object state and its position in regards to its surrounding. The source
information for this process is the data coming from display and identifica-
tion subsystems. In fact, these subsystems close the control organization
through themselves. Control actions are sent from external control centers
via a control channel (radio / hydroacoustic / infrared communication, re-
mote manual control devices, etc.) to the code generator for subsequent
translation into separate control commands. The influence of external con-
trol can be also extended to the decision-making system.

The discussed structure of IMS CCS can be projected onto the traditional
for industrial robots control levels, specifically, strategic, tactical and executive
levels. At the strategic level, production plan is drawn up, taking into account
the goals and objectives of the entire factory environment. The control over the
quality of the manufactured product life cycle is also carried out at this level. At
the tactical level, a sequence of technological operations is formed to ensure
the implementation of the received task. The executive level facilitates the
direct implementation of the preassigned technological operations by means of
working mechanisms and devices. It is important to keep in mind that all the
aforementioned control actions are performed using the CCS.

A typical example of IMS and CPS area of application is an electron-beam
welding (EBW) machine, which is turning from an experimental type of research
into a powerful industry based on complex industrial technologies and a high
level of the production process organization.

2.3. The Concept of Model-Oriented Control

2.3.1. The Method of Model-Oriented Control

Model-Oriented Control (MOC) is the essence of a system-based approach
to control problems. In order to control the system, it is necessary to build its
mathematical model. Only on the basis of the created model, the required control
strategy can be developed.

However, due to a vast variety of properties of a real system, its model
cannot be the exact copy of the system. Even the simplest production control
situations, upon a detailed examination, appear to be far too complex. Therefore,
the model should be able to describe reality with the highest possible accuracy,
highlighting a limited number of variables for this purpose. Ultimately, the
tasks of IMS modeling are to establish relationship between the input and the
output of a system, which ensure the achievement of the set goal with a given
accuracy, and to determine the dynamics of the system that would describe the
real process in accordance with the previously accepted assumptions.

44

In this regard, computer modeling has the following advantages (Dorf and Bishop,
1998):

1. The behavior of the system can be observed under a variety of conditions.

2. By examining the model, it is possible to make assumptions about the way the
system will behave in real conditions.

3. Comprehensive system tests can be performed in a relatively short period of
time.

4. Modeling results can be obtained at much lower costs compared to a full-scale
experiment.

5. The behavior of the system can be studied under hypothetical conditions that
are unlikely to occur.

The aforementioned advantages make computer modeling the undisputed leader
among other methods of system modeling, such as:

• analytical models are used at the executive level (differential equations, trans-
fer function coefficients of linear systems and structural schemes based on the
Laplace transform, including signal graphs);

• models of operation research are used at the tactical and strategic levels.

However, the goal that we set in this study is not only to consider computer models
only as a means of analyzing and synthesizing CCS, but also to use their capacity
directly in the control process. In this case, knowledge of the mathematical apparatus
alone is far from sufficient; the task is to learn how to apply it correctly in practice.

We usually start the analysis by looking at a real situation and trying to map it
onto a certain mathematical model that allows us to find a solution to the problem we
are facing. The result of the analysis of the chosen model is expressed in the form of a
control solution, which is then tested for optimality using an experiment that allows
us to evaluate the obtained control quality. If the required quality is not achieved, the
model will be parametrically adjusted or structurally reorganized, which is a more
complicated process. Under this approach to the use of models in control, which is
called operational, there is no guarantee that the model used will always remain
relevant, i.e., adequate to the real conditions of the system functioning and, which is
just as important, providing the required control quality.

The essence of MOC, which is considered a new approach to developing a
management strategy for IMS (Kazymyr, 2006), consists in the widespread use

45

of computer models in the control loop directly in the process of making control
decisions in real time based on situation, adaptive and multi-agent control principles.
Note that in this case the MBC does not determine any new principles of control
organization, but only acts as a certain way of their implementation, which combines
the methods and technologies for constructing and using computer models in the
control loop. Figure 2.7 shows the role and place of MBC in the control structure of
IMS.

The performed analysis of the existing hierarchy, principles and features of the
structural construction of IMS CCS demonstrates that control over them is facilitated
by three main types of models, embedded directly into the control loop:

• Implementation models, which are simulation models of the control process
in the state space executed by control devices. They allow us to describe and to
implement a control algorithm in the dynamics of its development, taking into
account changes in the state of both the control device and the CO.

Fig. 2.7. The role and place of MOC in the IMS control context.

Fig. 2.8. Model-based control diagram.

46

• Predictive models assess the future behavior of the control process for sat-
isfying the specified properties. Through this type of models, it is possible to
dynamically and timely change control algorithms in order to prevent undesir-
able development of the control process or adjust it in the required direction.

• Recovery models, which solve the problem of replenishing the missing infor-
mation about the CO and, in some cases, eliminate the effect of feedback lag,
actually closing the feedback through the model itself.

A diagram explaining the use of these models in a control loop is shown in Fig. 2.8.

In this case, the continuity of the processes of developing and implementing
control actions is ensured, which ultimately positively affects the effectiveness of
control.

2.3.2. Implementation Models

There are many ways to define the notion of an implementation model. In our case,
we will base the definition on the mathematical statements adopted in the general
theory of systems. If and are certain general systems, and

 is a homomorphism that defines the set of mappings and
, where is surjective, then the system is called a model of the system

only if the following condition is satisfied:

 . (2.5)

This definition can be extended to dynamical systems as well. Moreover, if is an
isomorphism, then the systems and are equivalent.

An important feature of the homomorphic model is that it completely preserves the
algebraic structures are certain -algebras) that are of particular interest
to us, and allow us to neglect secondary details.

Let us construct a homomorphic model of the IS, which will include the internal
and external description of a stationary system with a set of states X, a set of control
inputs U, and a set of outputs Y. For the internal description, we will use the following
pair of functions:

 . (2.6)

For the external description, the following function is used:

. (2.7)

This function represents the set input sequences in regards

47

to the set of outputs .

The given description implies that there are isomorphisms and
, which allow for the transition from internal description to external

and vice versa. By using the property:

 , (2.8)

with the help of the following equation:

 , (2.9)

it is possible to match the external description to any state .

Now let us consider the inverse problem. For a given input-output function, it
is required to find implementation , i.e., a system with such a state for which, for
example, condition (2.7) is satisfied. The equation of state is now considered not as
given, but as an unknown property characterizing the dynamics of the system. Thus,
the implementation problem for the input-output dependence consists in finding the
dynamics of the system, the representation of which in the state space would provide
the same input-output dependence.

This problem is easily solved for a linear discrete system determined by the
following equation of state:

 , (2.10)

where А and В are and matrices, respectively. The phase trajectory
of such a system is described by the expression:

 , (2.11)

where х	– the required state. If we assume that the system starts to move from
a zero state equal to zero, i.e., , then expression (1.10) can be rewritten as
follows:

. (2.12)

Taking into consideration, we conclude that the set of
states, reachable from the zero state in k steps, coincides with the set of values of the
linear transformation

. (2.13)

Based on the notion of dynamomorphism, by specifying the commutativity

48

conditions for category diagrams, solutions can be obtained for equations of state of
not only linear, but also bilinear and fuzzy systems (Skyttner, 2001). However, when
the equation of dynamics cannot be specified analytically and has the most general
definition of , the task of constructing an implementation model for an
input-output model is not trivial.

The same can be stated about the input-output models in the form of transfer
functions that are represented as the ratio of the Laplace transform of the output
parameter to the Laplace transform of the input parameter at zero-initial condition.
They exist only for linear stationary systems and do not carry any information about
the internal variables and the nature of their change. Therefore, they cannot be
considered a general model and are used only in the design of individual elements of
CCS, mainly regulators, both analog and digital. In addition, it should be noted that
the control processes occurring in IMS, generally, have an algorithmic representation
that is beyond the known analytical solutions.

2.3.3. Predictive Models

The implementation models discussed above are used in the design of CS with
specific properties. To solve this design problem, it is necessary to possess a complete
set of information about the properties of the CO and external effects on the control
system. Since there are restrictions to such information in the control process, the
use of traditional methods becomes insufficient and a predictive control strategy is
required. Control that uses models to predict the behavior of a certain process in the
future is called Model Predictive Control (MPC) (Garcia et al., 1989).

The prerequisite for the establishment of this line of research is considered to
be adaptive control with the use of models, including implementation ones, self-
organization of models using the group method of data handling and adaptive
predictive models, which are based on the solution of Lyapunov equation.

In recent years, many variations of MPC technology have appeared, which have
developed the following areas, uniting them in some way (Qin and Badgwell, 1997):

• Extended Prediction Self-Adaptive Control;

• Generalized Predictive Control;

• Model Algorithmic Control, etc.

The aforementioned technologies differ mainly in the type of models for
representing the processes and the methods for solving optimization problems in the
decision-making process, which may include certain types of restrictions. The most
important part that unites them is the application of the Receding Horizon Strategy
(RHS). The essence of this strategy is demonstrated in Fig. 2.9.

The past The future

49

The main RHS features are as follows:

• At each given moment of time k, the process output is predicted within
the finite time horizon . The value of N is called the prediction horizon.
Prediction is executed using a process model, which should be accessible. The
projection depends on the inputs and outputs in the past, and also on the fu-
ture control scenario .

• The basic trajectory

 is used to calculate trajectory deviation

,

where

,

and is the measured output value.

• The control sequence

Fig. 2.9. Receding Horizon Strategy.

50

is calculated on the basis of measurements in such a way that the prediction error
could be minimized.

• The first element of the calculated optimal control sequence
,

which is applied to the real process, determines the control actions only for the step
k. All other elements of the calculated control vector can be forgotten because all sub-
sequent sampling sequences are shifted, the new output value is measured
and the whole process is repeated. This leads to the computation of a new control
input , which may generally differ from the previously computed value

.

2.3.4. Recovery Models

The challenge facing the CCS is to find the control law that brings the CO closer
to the target or keeps it close to the target. The easiest way to do this is using the
feedback principle, when the output of the CO serves as the input for the control
element. The CCS scheme utilizing negative feedback is shown in Fig. 2.10.

If we represent the desired input as z, the real output as y, the control input signal
as u, the state vector of the control element as , and the state vector of the CO as x,
then the CS model with feedback can be written in the form of two pairs of equations:

• for control element:

, (2.14)

; (2.15)

• for control object:

–

Fig. 2.10. CCS scheme with negative feedback.

51

, (2.16)

. (2.17)

The function in Eq. (1.14) establishes the type of the target
relationship between the desired system output and its actual output. In case of
negative feedback:

. (2.18)

Applying Eq. (1.15) to Eq. (1.16), we will get:

. (2.19)

Subsequently, by using Eq. (1.14), we will get:

. (2.20)

Equation (2.20) reflects the fact that in order to calculate the state of the CO at
step , it is required to know its state at step k, as well as the state of the control
element, the desired and actual values of the output at step . This means that
in the process of determining the required control, the control element lags behind
the current state of the CO. The larger the sample spacing becomes, the greater delay
grows. Therefore, for discrete closed-loop systems, there is no direct transition from

 to in the output expression, which would allow the model to be strictly
correct. In addition to the aforementioned fact, the drawbacks of feedback include an
increase in the complexity of implementation and a decrease in the gain ratio.

However, the main condition for control with feedback, which is difficult to be
observed for the objects of any complexity, is that the current values of the state
variables or the output variable, at the time when the control action is applied to
them, are assumed to be known. A more realistic situation is when not all of the state
variables can be measured. In this case, the “recovery methods” are used, which are
implemented with the help of the observers.

Generally, the role of the observer is taken by another dynamic system, which
is able to restore the state vector of the observed system using its input and output
values. In fact, the observer imitates the controlled system. For linear continuous
and discrete systems, there are analytical methods for solving the recovery
problem, which provide for rather strong restrictions imposed on the structure of
the observer. However, for nonlinear systems, solutions become less trivial, if not
impossible. Naturally, at some stage, it is possible to use predictive models that allow
for obtaining some approximation of the system state. However, it should be kept in
mind that predicive models do not add information about the current state of the
CO; on the contrary, they need this information to improve prediction quality. In

52

this regard, there is a need to build computer recovery models that will be able to
reproduce the state of a CO of the most complex structure, using the capabilities of
computer modeling. In this case, the CO and its recovery model are considered to be
a single entity.

2.4. Summary

In recent years, a class of intelligent industrial systems has been formed that brings
high-quality intellectual definitions to each of the properties inherited from FMS as
well as CIM, improving the automation of technological processes and enhancing
the level of information integration for manufacturers. The use of computer models
in the industrial system control is the main factor that determines the intellectual
aspect of IMS.

The analysis of control principles that are applied to industrial systems has
revealed that the basic principles for IMS CCS are the principles of situation, adaptive
and multi-agent control, which relate to control organization and determine its
strategy. The structure of IMS CCS is proposed as a means of implementing these
principles; the proposed structure can be used at all control levels, including ERP and
technological CCS.

Instead of the traditional operational approach to the use of analytical models
and methods of operation research, a new model-oriented approach is proposed for
the implementation of a particular control strategy for IMS. This approach requires
the use of computer models embedded directly into the control loop, which can
dynamically change according to the conditions of the system functioning, while
constantly remaining relevant from the control point of view.

At the conceptual level, computer models, used in IIS control loop, can be divided
into three main types:

• implementation models, which simulate the control process executed by
control devices and, at the same time, set the control algorithm taking into
account changes in the state of both the control device and the control object;

• predictive models, which allow for assessing future behavior of the control
process in order to satisfy the specified properties and provide timely dynamic
changes in control algorithms for the purpose of preventing undesirable
development of the control process;

• recovery models that solve the problem of recovering the missing information
about the CO and eliminating the effect of feedback lag, basically, closing the
feedback through the model itself.

The use of the aforementioned models in the control loop ensures the continuity

53

of development and implementation of control actions, which ultimately has a
positive effect on control efficiency.

The analysis of existing formal methods, which can be used for the creation and
use of embedded models, has revealed that they are generally based on linear models
inherent in systems with a single control level. At the same time, actual processes
that occur in ISS usually have an algorithmic definition and demonstrate dynamic
and structural phenomena that require coordination of decisions at different control
levels.

Currently, there is an issue of Model-Oriented Control over IMS, which consists
in the development of methods, technologies and software for creating and using
computer models in the control over CCS with a complex structure and behavior
pattern. The defined problem presupposes the solution of the whole range of
theoretical and practical problems, which can be grouped into several categories
related to the use of implementation, predictive and recovery models in the IMS
control loop.

Chapter 3. Implementation Models of Control Algorithms

This chapter outlines the existing methods for specifying control algorithms,
taking into account the structure and functioning process of the IMS CS. Furthermore,
the grounds for the choice of a general mathematical scheme for describing control
algorithms in the form of an aggregative system are given. A class of modified
E-networks, which are called Control E-Nets (CEN), is defined, and the structural and
functional features of CEN are described. A study of CEN as a means of describing
piecewise linear aggregates is carried out. At the end of the chapter, the functional
completeness of the mathematical apparatus of CEN is analyzed in relation to the
informal theory of sequential interacting processes.

3.1. Control Algorithms and Methods of their Description

3.1.1. Implementation Model Requirements

Control algorithms form the basis for the functioning of control devices that
play the role of control elements in modern control systems. Generally, a control
algorithm (CA) is defined as a clear, unambiguous rule, an instruction or an indication
of what actions should be done and how to do them to achieve a given goal in the
current situation. CA, also known as control law, determines the development and
implementation of control actions.

Any algorithm implements some kind of a control process. Therefore, the more
accurate this implementation is, the closer to the set management goals the CCS will

54

function. This is the reason behind many examples of the use of formalized schemes
to describe algorithms that, to a certain degree, could model a control process.
Among the most notable of them, we should single out Logical Scheme of Algorithms
(LSA) and Matrix Scheme of Algorithms (MSA), as well as their varieties: Parallel
LSA (PLSA), Parallel MSA (PMSA) and Parallel Graph-Scheme of Algorithms (PGSA)
(Baranov, 1994).

It should be noted that all of the listed approaches to the description of algorithms,
in some way, implemented in the automaton model of formalized description were
proposed by V.M. Glushkov. Later, the automaton model was widely used in PLC when
creating PLC programming languages, such as Instruction List (IL), Structured Text
(ST), Ladder Diagram (LD), Functional Block Diagram (FBD), Sequential Function
Diagram (Sequential Function Chart – SFC) (Dixon, 2018).

Similarly to other automata models, PLC languages provide an advanced apparatus
for describing discrete systems and processes, but do not reflect cause-and-effect
relationships at the level of internal processes. Systems with parallel functioning
and asynchronously interacting components (which is especially important for
distributed systems) are not adequately described in terms of classical automata
theory. In addition, the composition of models and their hierarchical representation
within the framework of this apparatus are significantly complicated. Furthermore,
it should be pointed out that all PLC programming languages are deprived of the
possibility of performing any formal analysis of described algorithms, and also do not
allow for a dynamic change in the control program during its execution, since they
do not trace the relationship between the mathematical basis and the specification
language.

Therefore, it becomes necessary to use other, more powerful formal methods for
describing control processes. When considering these methods, we will take into
account the following requirements for CA implementation models:

4. CA implementation models must comprehensively represent the dynamics of
control process development, taking into account parallel and asynchronous
functioning of control elements. At the same time, mechanisms for synchroniz-
ing their work should be accounted for, if necessary.

5. The models used should provide formal description of the hierarchical rela-
tionships between control levels in IMS CCS. This means that the CA implemen-
tation models of various levels should allow for the use of information signals
to solve the problems of coordination and interaction synchronization.

6. The used CA models are required to allow for the identification of situations
requiring control decisions and provide operational influence of control ele-
ments by changing the values of state variables.

55

7. CA implementation models must also be the specification of the control pro-
gram that can be executed by the control device. This requirement makes it
possible to implement a continuous cycle of using the same models both at the
design stages of CA and in the process of their application.

8. CA implementation models must be based on a formal system that allows for
early preventive acquisition and evaluation of the process development proto-
col in order to dynamically change CA during the implementation of situational,
adaptive and multi-agent control principles. This requirement should be based
on the possibility of widespread use of recovery and predictive models within
the accepted formal system for constructing CA implementation models.

3.1.2. Methods of Control Process Formalization

As mentioned in Chapter 1, due to their particular complexity, control processes
of IIS cannot be described exclusively in the categories of functional relations be-
tween individual parameters and variables, for example, using differential or differ-
ence equations. Therefore, an algorithmic approach with greater flexibility should
be considered the main method for constructing IIS implementation models. Within
the framework of this approach, three main groups of methods can be distinguished:
algebraic, network and hybrid.

Some of the earliest examples of algebraic methods are abstract formal process
definitions in the form of a trace structure (Kaldewaij, 1986). In this approach, the
alphabet of the process is a set of events, and the study of algebraic properties is car-
ried out using the lattice theory. This approach was not properly developed, giving
way to formalism that more comprehensively takes into account parallelism and the
time factor. However, the notion of traces is still used today to construct the proof for
the properties of parallel processes.

Among other options for a formal definition of a process in terms of events, one
should highlight the study by Janicki and Lauer (1992), in which it was attempted
to examine the system of parallel processes using the formal apparatus COSY (Con-
current System). Although the COSY specifications are intended to describe parallel
processes taking into account synchronizing aspects, they nevertheless ignore such
important requirements for industrial system control algorithms as hierarchy and
dynamic program change. However, it should be noted that it was in the above work
that the question of program verification in the dynamics of its execution was first
raised.

The most actively used process algebras are the Hoare calculus (communicating
sequential processes) (Hoare, 1985) and the calculus of interacting Milner systems
(Calculus for Communicating Systems) (Milner, 1989). Process algebras provide ad-
vanced sets of operations and syntax analysis methods. At the same time, they are not
able to display “true parallelism”, which is the result of the partial ordering of events,

56

while the analysis of dynamic capabilities is based on operational rules being more
difficult and inconvenient compared to network methods.

An example of the use of algebraic specifications, for the purpose of describing
dynamic processes, is mutating algebras, or Abstract State Machines, proposed by
Gurevich (Gurevich, 1994). There are directions for development of ideas of Gurevich
machines, connected with object-oriented data representation (Asteziano and Zucca,
1995) and dynamic algebra corresponding to the state of a dynamical system. How-
ever, this approach is closer to defining the semantics of programming languages
rather than to describing control systems. Nevertheless, some of the ideas can be
used for analyzing the dynamic properties of control processes.

The analysis of theoretical process models can be supplemented by a whole group of
formal systems designed to describe parallel computations. This group distinguishes
completely abstract concepts of control spaces and algebraic programming, partially
abstract models of bulk-synchronous parallel (BSP) processes (Valiant, 1990) and
LogP (Culler et al., 1993), models with a limited form of Bird-Meertens parallelism
(BMF) (Bird, 1993) and pipeline computation models based on the algebrodynamic
approach. However, the listed models are simply the effective means of increasing the
performance of parallel programs, rather than the basis for constructing high-level
descriptions of CA.

The	 network	 approach in the formalization of control processes deserves
special mention. The application of network formalization methods in the field
of industrial automation is the subject of many scientific publications. Among the
most mathematically developed formal network models of processes are Petri Nets
(PNs) (Reising, 1985; Brauer, 1987) and their extensions: temporal (Zuburek, 1980),
colored (Jensen, 1981), predicate, high-level Petri nets (Kramer and Schmidt, 1991).
PNs effectively reflect the parallelism and logic of control processes, taking into
account asynchronous interactions. However, although PNs served, in their time,
as a prototype for the creation of the PLC programming language, in the practice of
describing control systems they received limited application due to the lack of the
ability to quantitatively process data during network transitions and the difficulties
of controlling the routing of process development.

The most powerful PN extension that removes the restrictions noted above are
the Evaluation Nets (E-Nets) or E-networks, and their modifications (Nutt, 1972).
Possessing all the capabilities of temporary PNs, E-networks are able to display
not only control flows, but also data flows, giving the grounds for considering them
as the basis for constructing CA implementation models. In addition, E-networks
significantly surpass other network methods in the implementation of logical
functions and form a universal algorithmic system equivalent to a Turing machine.
Thus, E-networks not only allow describing algorithms of any complexity, but also
have the ability to dynamically restructure them.

57

There are several interpretations of PNs from the class of E-networks (Pro-
networks) (Noe, 1980), macro-E-networks (Beyaert et al., 1981), the development
of which is associated with an increase in the descriptive power of this apparatus.
However, due to the complexity of the analysis of E-networks directly in the field
of CS modeling, there has been a departure from the pure theory of E-networks
towards the use of various other PN extensions: predicate-temporal, loaded, control
and hardware networks, which are significantly inferior in terms of structural
expressiveness.

Network methods of formalizing control processes are not limited to the use
of Petri nets and their extensions to describe technological processes. Suffice it
to say that the earliest applications of network models were associated with the
construction of network diagrams for scheduling purposes. The most advanced in
this regard are PERT networks and GERT networks (Phillips and Garcia-Diaz, 1990).
However, due to the limited logical capabilities, their application excluded the use
of decision-making elements, which are important from the point of view of control
tasks.

Models of distributed computing, which imply the use of a certain specification
language based on the representation of CA in the form of a graph, can also be
considered network formalization methods. They can be divided into traditional
(modular) and object models (Kerzner, 2003). Among the first, one should single
out the general model, the components of which are described in the language of
Z-scheme specifications, the system model in the form of an acyclic graph formally
created using the compositional theory, the formal model of a modular structure that
defines connections and relationships between modules using the specifications of
the assembly programming theory. All these models have a clear practical orientation
associated with the construction of distributed programs and their interfaces, but
do not have a mathematical apparatus for analyzing the properties of the described
processes.

Hybrid models lay the foundation for a unified mechanism for the algorithmic de-
scription of processes at the executive, tactical and strategic levels. Examples of this
approach provide a combination of continuous and discrete components. But most
importantly, they form a mathematical scheme that allows for combining different
models within a generalized structural representation.

The most notable hybrid models are the aggregative approach (Buslenko, 1978),
the continuous-discrete model based on the discrete event approach implemented
in the continuous-discrete system (CDS) modeling system, and A. Pnueli’s transition
system (Henzinger, 1993). It should be noted that all these models can be presented
in terms of each other. However, we will be interested in the aggregative approach,
since a clear mathematical basis for setting multilevel descriptions inherent in the
structure of the CCS can be built for it. As for Pnueli’s transition system, this model,
used in verification systems based on temporal logic, also fits into a generalized

58

aggregate scheme and is actually implemented within the framework of the CA
formalized description method, which is developed in the book.

Analyzing the existing approaches to the description of hybrid systems, one
cannot fail to note the emerging trend of using artificial neural networks (Gomi and
Kawato, 1993; Hagan et al., 2002) and genetic algorithms (Tajima, 1996; Wang et al.,
2003) in solving control problems. Allowing for the implementation of a function of
any complexity, these methods are mainly used in CS to construct control devices of
different variants. However, neural network control devices often have unacceptably
long training time and are still used mainly as expert systems. As for genetic
algorithms, they, like all evolutionary methods, should be applied in cases that are
difficult to formalize or when a rough estimate is required for making decisions in
real time. Currently, there is a search for ways to improve the efficiency of these
methods, in particular, fuzzy logic (Rajashekaran and Vijayalksmi, 2004).

3.1.3. The Tasks of Control Algorithm Description

To obtain a formalized description of the CA of a distributed CCS, it is recommended
to use the methodological concept of aggregation, which is based on the set theoretic
interpretation of a model: a model is a set, between the elements of which certain
relations are specified.

If we consider only two levels of CA interpretation (where macromodel is a
structure consisting of separate control elements, and a micromodel is the processes
of functioning of these elements), then, in the accepted concept of aggregation, the
abstract formal model of CA can be defined as follows:

, (3.1)

where structure represented by a graph with the set of control elements
and the set of arcs ;

 – a finite set of control processes that are implemented by the elements ;

 – aggregative representation, which unites formal definitions and ,
thereby specifying the distribution of functioning processes in the structure of system
elements.

It is possible to use the theory of aggregates as a formal system providing the
construction of macromodels, and the E-network as the basis for constructing
micromodels that reveal the dynamics of the aggregate behavior. This way, the
problem of developing a method for a formalized description of CA implementation
models will include the solution to the following problems:

• modification of the mathematical apparatus of E-networks in order to use

59

them to control industrial processes;

• development of aggregating visualization that allows using E-networks as a
means of describing the dynamics of aggregates;

• analysis of the properties of the modified E-networks as a formal system aimed
to describe the behavior of the IIS control elements.

3.2. Formal Definition of Control E-network

3.2.1. Control E-network Structure

A control E-net (CEN) is defined as a set of five elements:

, (3.2)

where – a finite non-empty set of places consisting of disjoint subsets
 (simple places) and (decisive places), ; a set of simple places can

contain a subset of input places and a subset of output places, which are
called limits, and it is assumed that and , ;

 – a finite non-empty set of transitions, which can consist of transitions of five
types , the so-called ordinary E-networks [101], and two
types of additional transitions-queues and , ;

 – an incidence function;

 – a finite set of network variables consisting of disjoint subsets
(input) and (output) signals ;

 – a set of control mappings defining transition firing rules;

 – an initial marking function that specifies the presence or absence
of tokens in places.

The CEN structure is equivalent to an oriented bipartite graph, where one set of
vertices is , the other is , and the arcs between the vertices of the two named sets
are determined by the incidence function . From the definition of the incidence
function, it follows that CEN is an ordinary network – there are no multiple arcs be-
tween places and transitions.

Let us associate each transition with a set of its input places
 and a set of output places , and

denote the entire set of places incident to the transition as .

60

The following limitations are imposed on the CEN structure:

• for any two transitions where , takes place; i.e., a cer-
tain place cannot be the output place for two or more transitions at the same
time;

• for any two transitions where , takes place; i.e., there
is no place that can be the input place for two or more transitions at the same
time;

• for any transition and any place , and take
place, i.e., isolated vertices do not exist in the CEN structure;

• for any transition , takes place, i.e., the decisive place cannot
be the output place of the transition and, therefore, an arc cannot be a part of it;

• for any place , takes place, where is of a type or , i.e.,
decisive places are only associated with transitions of a specific type.

Ordinary E-networks, the application of which was focused only on modeling
problems, were, in fact, autonomous, i.e., they did not interact with their surroundings.
In control E-networks that take on the role of CA implementation models, all actions
performed by the network must be consistent with the current state of the CO and
the external environment. By external environment, we will understand the CEN,
which can interact with the given network by passing tokens through the boundary
input places. Interaction with CO is performed via the corresponding network
variables . Furthermore, for discrete input signals, the designation DI is used, for
analog input signals – AI, discrete output – DO, analog output – AO, in the way that

 and . Discrete signals can take values from the set ,
and analog signals can take values from the set of real numbers.

3.2.2. Dynamics of Control E-networks

The dynamic properties of a network are determined by changing its token and
depend on the values of the control mapping components.

As a token in a control E-network, we define a vector
where . Place is called free (does not contain a token) if ;
otherwise, in case of , the place is considered occupied. For a given token , the
set of marked places will be determined as .

For all CEN places, is fulfilled, which translates CEN into a class of safe
nets, which are now commonly called Condition / Event-Net (C/E-Net) Petri nets
(Reising, 1985). Note that in ordinary E-networks, in addition to simple places
capable of storing only one token, the existence of queue places of infinite capacity

61

is allowed reducing the security condition, which, as we will see later, turns out to be
important from the point of view of the network functional properties.

Similarly to ordinary E-networks, each token located in the CEN place is assigned
a descriptor, or a tuple of numeric attributes, which determines the information
content of the token , where is the value of the attribute
j which belongs to token i. As tokens move across the network, their attribute values
may change.

When the network is running, the tokens can move from input transition places to
output ones, changing the marking of the network. Since the number of CEN places
is finite, the number of its possible markings is also finite and equal to , including
the initial marking .

As the CEN attainability set, we mean the finite non-empty set of all markings
attainable from the initial marking , including the initial marking, i.e., . An
attainability graph of CEN is a graph that includes attainable
markings as vertices. The arcs , where , show that the marking
is directly reachable from the marking .

The structural component of the control E-network, which determines its
dynamics, is a set of control mappings , which includes five functions
associated with network transitions:

• – a decision transition function;

• – a function of transition firing readiness;

• – a transition trigger function;

• – a transition delay function;

• – a transition transformation function.

Decision function

 (3.3)

is associated with decision places that do not contain tokens and control the
operations of associated transition types and by calculating the values of the so-
called decision functions . The decision function can be calculated,
taking into account the values of the attributes of tokens and network variables, i.e.,

. The decision function value determines the direction
of movement of the token when the transition is triggered. The limits of possible
values of the decision functions depend on the default number of places incident to

62

the transition .

Transition readiness function is the predicate

, (3.4)

which determines transition firing readiness: if , then the transition
to operation is not ready; otherwise, if , then the transition is ready to firing.
Each transition type has its own definition of the readiness function. The value of
predicate (3.4) depends on the marking of simple places incident to the transition, as well
as the value of the decision place of the transition, if such a place exists, and is calculated
each time the marking of the network is changed. Thus, , if
for transitions, where . The markings of the input and output places, at
which firing of transitions takes place, will be called admissible.

The trigger function is absent in the definition of transitions of an ordinary
E-network. Its use in CEN is caused by the necessity to take into account the state
of CO when determining the conditions for firing of the transition in addition to the
analysis of the admissible marking. The activation function is the predicate

, (3.5)

which is calculated for each transition and determines the possibility of its triggering:
if , then the transition remains inactive; otherwise, if , then the
transition is triggered. When calculating the trigger function, the values of the
network input signals are calculated, i.e., . By default, the trigger
function is equal to 1, and the transition is triggered for any values of the input signals.

The delay function calculates the transition delay time based on the token
attribute values located in the network places, as well as the values of the network
variables, i.e., . As a special case, the default delay time can be
set to zero. In general, the delay function can be represented as a mapping

, (3.6)

where – a set of network transitions;

 – a set of positive real numbers, which includes zero.

Transition transformation function

 (3.7)

specifies the sequence of operations that are
performed on network variables and token attributes as they are moved from input

63

places to output places of a transition. Setting the default transform function does
not change the token attribute values.

Taking into consideration the control mappings, the execution of any transition
 includes the sequential passing of the following four phases:

• readiness, when the transition is not at a delay phase and the condition of its
firing , determined by the specific type of transition, is fulfilled;

• activity, when the readiness phase started and ;

• delay, when the countdown, until the transition firing, began; the phase dura-
tion is determined by the transition delay time (t), which must be calculated
before the beginning of the delay phase; the state of the transition places does
not change until the end of the delay phase;

• firing, when, after the expiration of the delay phase, an instant change of the
transition place marking occurs by moving the tokens from their input places
to the output ones in accordance with the firing rules for transitions of this
type; at the same time, the values of the token attributes placed in the output
places are changed in accordance with the specified transition transformation
procedure.

Dynamic properties, which are traditional for E-networks, determined by the
ability of tokens to move between places and by transition firing rules, are expanded
in control E-networks due to the possibility of dynamically changing the control
functions of transitions. The decision, trigger, delay and transformation functions are
functions of time that can change during the execution of a network.

3.2.3. Basic Set of CEN Transitions

Control E-networks preserve the basic set of transitions of ordinary E-networks,
which is expanded by the introduction of queue transitions that perform the func-
tions of queueing tokens with different service discipline. This makes it possible to
use CEN in order to implement the possibilities inherent to Petri nets of the Place/
Transition-Net (P/T-Net) type.

Description of the firing schemes for all types of CEN transitions is given in Table 3.1.

For the basic set of ordinary E-network transitions, the specifications described
in Reising (1985) are generally preserved. Therefore, we will dwell only upon the
characteristics of the additional types of transitions-queues introduced as an exten-
sion of the CEN basic set. There are four types of transitions-queues, which are im-
plemented within the two main types of these transitions:

64

• the QF transition implements the FIFO (first in, first out) token service order
and priority service in ascending order;

• transition-queue QL implements the LIFO service discipline (last in, first out)

Table 3.1 Basic Set of CEN Transitions

65

and priority service in descending order.

Firing of the transitions-queues can take place in two ways: the first is when a
token arrives at the input place , the output place is free and the second way is when
the output place is occupied. In the first case, the transition is in the state of constant
readiness to work, since the only condition for its firing is the presence of a token in
the input place: . When the transition starts, the token is placed in the queue,
while when the queue is empty and the output place is free, the token immediately
takes the place, which means that the rule of moving tokens is executed:

, (3.8)

If, at the moment a token enters the queue, the output place is already occupied
by one of the tokens in the queue, the rule for moving tokens will be as follows:

• the token from input place is placed in the queue;

• the token from output place is placed in the queue;

• a token selected in accordance with the accepted queue servicing discipline is
placed in the output place from the queue. As a result, the sequence of opera-
tions will look like this:

; ; (3.9)

It should be noted that whenever an output place y is freed, a token from the
queue (if there are any) is placed in it according to the service discipline selected for
this transition.

There are the following limitations associated with the use of transition queues:

1. The transformation procedure is executed when the token is placed in the in-
put place.

9. The time delay function is not defined for transition queues.

10. For these transitions to work properly, transitions with zero delay time must
be in the same structural bond as their output places. Otherwise, transition fir-
ing rules may be violated.

A control E-network is traditionally depicted in the form of a graph, in which cir-
cles stand for simple places, squares – for decisive places, while transitions are rep-
resented by vertical lines. Transition-queues are denoted by rectangles with a bar:
a vertical bar placed closer to the output indicates a transition-queue of type,
a bar put closer to the input – , transitions-queues with priorities are denoted

66

by a rectangle with a corresponding diagonal. Links between places and transitions
are represented by directed arcs. The boundary (both input and output) places of the
network are additionally marked with triangles associated with them. The presence
of a token in a simple place is indicated by a dot. In the attainability graph, the verti-
ces in the form of ellipses correspond to the attainable markings of the network, and
the arcs between them are marked with the index numbers of transitions, and as a
result of firing of these transitions, a specific marking is achieved.

Figure 3.1 demonstrates an example of CEN and the corresponding attainability
graph.

3.2.4. CEN Semantics

Let us give semantic definitions to CEN components in the aspect of CA descrip-
tion. These definitions are based on the principle of situation control. Following this
principle, it is necessary to define the concepts of the state of both CO and CA, the
current situation in the control system, as well as the control decisions that affect the
changes of the current situation.

Definition	3.1. The current situation taking place in a conrol system is a system of
sets denoting the states of CO and CA at the present moment of time.

Definition	 3.2. CO state is a set of all available information
about the CO displayed in the set of input signals of the network

 at the present
moment of time.

Definition	3.3. CA state is the current marking of the control E-network
with the corresponding token attribute values.

Consequently, the whole set of situations that can be described by a certain CEN
is determined by the following expression:

Fig. 3.1. CEN graphical representation and its attainability graph.

67

, (3.10)

where – discrete input signal space;

 – analog input signal space;

 – network markings set.

and current situation is a vector

, (3.11)

where – a vector of input discrete signal values in situation;

 – a vector of input analog signal values in situation;

 – a vector of network place markings in situation.

The aforementioned definitions (3.4–3.6) reveal the semantic meaning of CEN
places, the marking of which sets the current state of the CA, which together
with the input signals determines the current situation.

Next, let us discuss the semantics of CEN transitions, for the purpose of which we
will use the situation control scheme proposed in [29]. In the interpretation of
control E-networks, this scheme can be represented as shown in Fig. 3.2.

In the process of their firing, network transitions sequentially perform the
following functions related to the implementation of the principle of situational
control for the current situation:

1) Analysis function takes place in case the readiness of transitions to firing under

' ,

Fig. 3.2. The scheme of situation control method by means of CEN.

68

condition is checked. If this condition is met, it means
that there is a situation that requires intervention of the control system in the
process. Otherwise, the processing of the situation does not start.

2) Classification	function is triggered when the variant is determined, according
to which the transition is fired taking into account the values of decision func-
tions . At the same time, transitions refer the current situation to a
certain class of decisions.

3) Correction function is executed after the delay phase, when transition firing
takes place. During this process, the marking of the network places is changed
and the CO is affected by setting the values of the output signals
using the conversion procedure .

Functions , and can be combined in a single operator
, which will indicate a certain action associated with

firing of transition . Consequently, the result of performing an elementary
control step, implemented according to the scheme shown in Fig. 3.2, can be
represented as follows:

. (3.12)

In addition to the introduced semantic definitions, there are the following funda-
mental features of CEN, which are important in terms of demonstrating their func-
tionality:

1. Locality.	CEN retains the principle of locality inherent to Petri nets. This means
that changes in place markings have only a local effect on the further behavior
of the network, since place markings only affect the transitions directly associ-
ated with them.

11. Direct impact. CEN does not use qualifiers, such as those available in SFC, that
implement impulse, constrained, deferred, or persistent actions. The listed
qualifiers can be implemented in CEN by means of designing an appropriate
network structure using transition delays. In contrast to CEN qualifiers, simi-
larly to Moore machines, output signals are a direct function of current states,
which are represented by situations in this study.

12. 	Recurrence.	CEN is executed in a cycle, so that all conditions provided by the
transition patterns and activation functions are relevant to the current net-
work cycle. The generated output signals are not initialized until the end of the
cycle. This means that the resulting value of a particular output, corresponding
to the current cycle of the network operation, will be determined by the last
calculation of this output in the sequence of transition firing. As for the input
signals, their values do not change during a single network operation cycle.

69

13. Lack	 of	 aftereffect. This property means that the taken control decision de-
pends only on the states of CA and CO at the current moment of time and does
not depend in any way on the decisions made earlier. The entire history of con-
trol process development is concentrated in the current marking of the net-
work and there is no need to analyze the sequence of markings that precede it.

14. Determinism. Although the control process model itself, built in the form of a
control E-network, can tolerate various behaviors depending on the param-
eters of the external environment, the actual implementation of the control
system itself has to be strictly deterministic. This means that the control deci-
sion should not depend on non-determinism that is inherent to Petri nets and
associated with the sequence of transition firing.

3.3. Control E-networks as the Functional Basis of PLA

3.3.1. Constructing Aggregate Mapping

Following the set task, we will use the aggregative approach to construct multilevel
specifications for CA. For this purpose, however, it is necessary to solve the problem
of constructing aggregate mapping that matches the formalism of the internal model
in the form of CEN with the formal representation of aggregates.

An aggregate is represented as an object defined on a set of states Z, input signals
X and output signals Y. The evolution of an aggregate is determined by the operators
of transitions and outputs , which are generally random. The arrival
of an input signal to the aggregate, which is considered to be an external event, can
cause a change in the states of the aggregate, which also affect the internal events. The
state of an aggregate for a certain moment of time is defined as specific
implementation in accordance with this distribution law. The operator determines
the change in the states of the aggregate itself, and the operator determines the
rules for issuing output signals, which, in turn, can be transmitted to the output of
other aggregates.

Among the variety of aggregates, the class of Piecewise Linear Aggregates (PLAs)
stands out. Some specification of the general approach in this case provides the
necessary formal basis for solving the problem. PLAs allow for modeling a wide class
of objects and provide the ability to build multi-level aggregate systems, which can be
considered input-output models.

The functioning of PLA is a Piecewise Linear Markov Process (PLMP) defined in
time by the following expression:

, (3.13)

where – a certain discrete value called the ground state;

70

 – a vector of complementary dimension coordinates
with respect to the ground state;

 – a non-negative value called the ground state rank.

PLA is characterized by a linear uniform change in the values of the vector
coordinates:

, (3.14)

where – a positive constant.

If we use control E-networks as formalism that specifies PLA behavior, it is
necessary to ensure the construction of aggregate mapping in the form of PLMP.

Statement	3.1. The process of CEN functioning can be represented in the form of
PLMP.

To prove the validity of this statement, we introduce the definition of the ground
state.

We define the CA ground state as the marking of the control E-network fixed
at the end of the execution cycle. The cycle is executed until there is at least one
transition ready to firing.

The process of CA functioning, as specified by the control E-network, consists in
performing a finite set of operations on the network variables and token attributes,
which can only change as a result of network transition firing. If we assume that
the change in the transition delay time occurs only at the time of the start of a new
cycle, then each ground state of the control unit can be assigned a certain number of
delayed transitions, which will not change in this cycle under any circumstances. On
the other hand, the conditions for firing transitions, including the start of the delay
phase, depend primarily on the state of place marking associated with the transition,
and do not depend on how this state began. This satisfies the accepted principle of
the lack of aftereffect in relation to CEN behavior. After entering the delay state, the
transition can exit it only after the delay time, which is calculated in the active phase.

Let us assume is the set of CEN markings corresponding to the ground states of
the CA. Let us suppose is the marking of the network at the end of the cycle
iteration i, and – a certain subset of CEN transitions delayed at , which are
connected by the mapping

, (3.15)

where is the degree set . Then the sigma-algebra of subsets selected from ,

71

the elements of which determine the observed sets of delayed transitions, defines a
measurable phase space of states . From the definition of sigma-algebra,
it is important to note that the operations of union, intersection and taking the
complement, performed on the elements of the class , are not derived from this
class. It is also assumed that the class contains each element .

Let us suppose is a variable equal to the time until the end of the transition
delay with marking . Then the process of firing transition, i.e., the occurrence of
events leading to a change in the CA state, can be represented as follows:

, (3.16)

where – network marking at the end of operation cycle;

 – a vector of additional
coordinates (transition delay times);

 – a number of transitions delayed with marking .

Let us suppose that we set the rate of change to a negative one, i.e.,

t i m e

t i m e

Fig. 3.3. Diagrams of the change in the number of delayed transitions (а)
 and the additional coordinate vector (b).

72

, (3.17)

then the process of CEN functioning will be represented by PLMP defined by
Eq. (3.16).

The trajectory of CEN functioning process with respect to Eqs. (3.16) and (3.17)
can be represented in the form of two diagrams shown in Fig. 3.3.

3.3.2. PLA Concretization by Means of Control E-networks

Since the CEN functioning under certain conditions can be narrowed down to
PLMP, it is possible to describe the dynamics of PLA behavior. Furthermore, the
E-network itself can be represented in the form of an aggregate system consisting of
PLA. This example is demonstrated further.

Statement	 3.2. CEN transition can be narrowed down to a complex system
consisting of elementary aggregates that form a PLA.

To prove this statement, it is necessary to turn to the theorem (Buslenko, 1978),
which reveals that in case the sets of ground states, input and output signals are
finite, the PLA can be represented as a complex system consisting of three types of
aggregates: memory elements, delay elements, and instantaneous piecewise linear
converters.

CEN transition, the readiness function of which is equal to one, is defined as a
tuple:

, (3.18)

where – a set of places incident to the transition;

 – transition delay time;

 – a transition transformation procedure.

Let us describe each element in this transition definition in terms of PLA. We will
consider a simple place as a memory element. Such an aggregate is capable of storing
information in the form of some real number or a vector x with a countable number of
elements. In this case, the vector elements will be the attributes of the token located
in place. The input of the aggregate, represented by a memory element, can receive
two types of signals: and an empty set, while their arrival can only alternate,
since CEN is a secure network. If a signal is received at the input of the unit,
i.e., a token with a vector of attributes has been received, then,
according to the locality principle, the state of the aggregate will be until the arrival

73

of the next input signal. Only the 0 signal can arrive at the input of the aggregate
afterwards (during the process of moving the token). If, at this moment, the state of
the aggregate is , then a signal is immediately sent to the output of the memory
aggregate, and the internal state of the aggregate becomes zero, which means there
is no token in place.

The delay element, also defined as an elementary aggregate, corresponds to the
transition delay time. Such an aggregate, at any moment , has a certain state

 in the form of a non-negative number. Furthermore, decrements
until it reaches zero in the next cycle. At this moment, a signal with a fixed value
equal to 1 is sent to the output of the delay aggregate, after which the aggregate
remains in this state until the arrival of the next input signal.

Three types of signals can be received at the input of the described aggregate:

• , which sets the transition delay time equal to the result of calculating the
delay function provided that the value of the transition activation function

;

• , which changes the value by the amount equal to the duration of the
previous execution cycle;

• , when for a non-delayed transition, provided that the value of the transition
activation function , the delay time is set to infinity .

Consequently, for the listed input signals, the transition operator of this aggregate
will implement the following changes in its state:

,

;

.

The output signals generated by the delay element are implemented by the output
operator according to the following rule:

;

;

.

As a linear converter, we will consider the transformation function defined for the
transition. The discussed elementary aggregate is able to receive and send signals in

74

the form of vectors, respectively, for input signals and for output
signals . In addition, the lengths of these vectors can exceed the
lengths of the input and output place signal vectors. In any case, the first n elements
of this aggregate input signal vector always coincide with the output signal vector
of the transition input place, from which the token is moved. The remaining
elements of the vector y can be the values of the network variables (signals). When
the input signal x arrives at the output of the converter, signal is immediately sent,
where y is the conversion result of in accordance with the given conversion
function .

Thus, it has been proved that any CEN transition can be represented in the form
of a PLA consisting of three aggregate types: memory elements, a delay element and
an instantaneous converter.

The CEN transition, specified by tuple (3.18), is called an elementary PLA.

Since the union of two or more PLAs is a PLA itself, the CEN constructed from
transitions represented in the form of elementary PLAs will also be a PLA, provided
that it implements the PLMP. The transition operator of such an aggregate is defined
as mapping:

, (3.19)

where – a set of network markings, Z – a set of PLA states;

and the output operator – mapping

, (3.20)

where is the set of output PLA signals, .

The introduced concept of an elementary PLA makes it possible to define the
rules of structural composition and decomposition of CEN of arbitrary complexity,
consisting of separate transitions. These rules must comply with the general rules for
constructing aggregate systems.

A signal at the output of the aggregate can be sent in case of transition firing, the
output place of which is the boundary place of the aggregate. Similarly, the input
signal will be received by the boundary input place of the aggregate. The aggregate
system (AS) in this case is formed by connecting several PLAs in accordance with
the conjugation scheme, which designates the mutual connections of the aggregates
using pairs of sets: a set of boundary input places and a set of boundary output places
of the aggregate.

75

The operator , which establishes links between the boundary places
of CEN, is the conjugation operator.

The conjugation scheme is used to formalize the complex structure of a
distributed control process defined on a set of aggregates. The internal behavior of
each aggregate is determined using the implementation models specified in the form
of the corresponding control E-networks.

For an unambiguous display of the dynamics of a distributed CA, we will make the
following assumptions, which are determined by the rules for the AS composition, and
consequently, individual transitions that include the description of the aggregates.

Assumption	1. Communication channels in a system consisting of aggregates are
ideal, i.e., signals are transmitted instantly and without distortion.

Assumption	 2. No more than one elementary channel connecting two adjacent
boundary places can be connected to the input boundary place of any aggregate in
the system. Any number of elementary channels can be connected to the output place,
provided that no more than one of the mentioned elementary channels is directed to
one input boundary place of the same system aggregate.

Assumption	 3. If the moments of the external (associated with the arrival of
the input signal – token) and internal (reaching the trajectories of the aggregate
of a certain subset) event occurence coincide, then the internal event has
priority over the external ones, i.e., the change of state is executed first in accordance
with the rule of internal event occurrence, and then, the actions initiated by external
events are performed.

Aggregate systems, similarly to PLA, have an important closure property, which
presuposes that the AS can be generally described as an aggregate; therefore, the
union of a finite number of AS is also an AS. It creates the basis for the construction
of complex hierarchical CCS models based on the aggregate approach. The ability to
represent various types of CA structures in the form of AS (for the aggregate, it will
be a system of elementary PLAs) allows performing structural transformations of
models based on the assumptions made regarding the features of their construction
and functioning.

3.3.3. Completeness of the CEN Formal Theory

When describing a method for specifying CA by means of PLA, concretized by the
control E-networks, we have considered only the formal side of the used mathematical
apparatus, leaving aside the conceptual meaning of the displayed process. At the
same time, the practical implementation of this method will, in a certain way, be
associated with the features of modeling control processes. From this point of view,
control E-networks should be considered a formal system. Therefore, it is necessary

76

to answer the question of adequacy, or completeness, of this formal system of the
discussed subject area.

We will investigate this issue in terms of the theory developed by Hoare (Hoare,
1985) to study interacting sequential processes. Preliminarily, it is necessary to note
that any formal theory is determined by:

1) the alphabet;

2) a decidable set of axioms;

3) a finite set of inference rules.

As noted before, we will interpret the process of CEN functioning in the form of
a finite set of transitions fired, which lead to a change in place marking. Since the
firing of transitions is associated with the movement of tokens, each of them can be
associated with a certain subprocess that includes events in which this token can
be a part of. Thus, the process of E-network functioning will generally consist of
interacting sequential subprocesses, each of which is associated with the movement
of a certain token. To terminate such a subprocess, it is enough to destroy the token
that is associated with it and to spawn a new process – the token should be created.

Let us suppose that a set of transitions is the specified alphabet of the process.
By the process protocol we define a finite sequence of symbols from the alphabet T,
which fixates the sequence of events (transitions). Let us assume that defines the
set of all finite protocols consisting of the set elements. Let us define the degree-set
of set as the set of all its subsets .

According to Hoare (1985), the process is uniquely determined by three sets,
which specify its alphabet, its divergence, and its failures, which, using the introduced
definition, can be represented as follows:

, (3.21)

where – process alphabet;

 – relation between and ;

 – subset , which meets the requirements for representing all divergences and
failures of a process.

Divergences are understood as possibilities, including the possibilities of a non-
deterministic choice of the process development direction after a specific event.
Failure, in turn, is the refusal of the process to perform further actions.

77

Generally, different processes have their own finite alphabets , but
they can only be composed of the number of transitions in the basic set

. Thus, as given axioms of the formal
CEN system, we can note and consider the elements of set that includes
the types of transitions in the basic set. Based on the set T, networks of varying
complexity can be built using inference rules (transition composition rules inherent
in the AS). In this case, each transition is also an element of a set of protocols
with alphabet , i.e., .

To prove the completeness of the formal CEN system with respect to the informal
theory of sequential interacting processes, it is required to show that it is possible
to represent any process divergences and failures defined in accordance with
expression (3.21) with the help of transitions of the basic set . Figure 3.4 shows
CEN schemes that allow displaying any variants of process development.

The conducted research gives ground to conclude that the formal theory of CEN,
in the given interpretation, has the property of completeness in the representation of
interacting sequential-parallel processes characteristic of a CCS.

3.4. Summary

The analysis of the existing methods of control process formalization, performed
while taking into account the requirements for CA implementation models, demonstrates
that the aggregate approach has the biggest advantages in this regard, within which both
the multilevel structure of CA and their dynamic properties can be taken into account.
E-networks, which are an extension of Petri nets, are the most suitable means to reveal
the internal structure of aggregates, allowing for the use of operational transformation
of information circulating in the network, simultaneously with setting a complex logical
sequence of its processing.

Following the accepted concept of aggregation, which forms the basis of the proposed
formal definition of CA, two interrelated tasks have been formulated and solved:

Fig. 2.4. CEN schemes of process development variants:
а) divergence; b) failure.

78

• the theory of E-networks has been expanded in terms of their use for describ-
ing control systems interacting with the control object by means of input and
output signal exchange;

• aggregate mapping, ensuring the embedding of E-networks into the scheme of
PLA operation, has been constructed.

In the course of solving these tasks, a class of control E-networks has been pro-
posed that is characterized by:

• an extended set of transitions, including transitions-queues, the use of which
provides the network security;

• additional use of the activation function as part of the control mapping of tran-
sitions, which ensures the execution of the network consistent with the current
state of the CO;

• the possibility to structurally change the network by dynamically changing the
functions of the control mapping of transitions.

The semantics of control E-networks fully meets the principles of situational
control over the IMS functioning processes, ensuring the development and
implementation of control actions.

The given interpretation of CEN functioning process in the form of PLMP, taking
on the role of aggregate mapping, makes it possible to consider E-networks as the
functional basis of PLA. Based on the introduced definition of the transition, it has
been proved that it is equivalent to the system of aggregates forming an elementary
PLA. This circumstance has made it possible to determine the rules for the structural
composition of control E-networks of arbitrary complexity, which must comply with
the rules for constructing aggregate systems.

The study of CEN functional capabilities has revealed that, from a mathematical
point of view, this apparatus can be considered a formal system that has complete-
ness with respect to the informal theory of interacting sequential-parallel processes.
This makes it possible to apply a unified formal approach to the description of CA at
all levels IMS control.

Chapter 4. Predictive Models and Dynamic Model Checking

The method for specifying control systems using control E-networks allows
not only specifying a formalized description of the control element behavior, but
also subjecting this description to analysis in order to predict the future behavior
of the control system. The basis for the construction of predictive models should
be the corresponding implementation of the Receding Horizon Strategy, taking into

79

account the peculiarities of CEN functioning in real time.

The problem of real-time evaluation of the dynamic properties of distributed
control algorithms can be solved on the basis of the joint use of the mathematical
apparatus of control E-networks and temporal logics. As a result, the initial
description of CAs in the form of aggregate models with E-network concretization of
aggregates is used in two qualities: as a model for the implementation of the control
process and as a model for predicting its development.

4.1. Dynamic Properties of Control Algorithms and their Assessment

4.1.1. Control Algorithms as a Reactive System

A distinctive feature of the control algorithm specified by CEN, which is actually a
formalized expression of the control program, is that its implementation depends not
only on the state of the network, but also on the external environment, in particular,
the state of the CO. For this reason, the control algorithm should be considered a
reactive system, even a reactive control program.

In the general case, reactive systems are understood as real-time systems (Harel
and Pnueli, 1985; Jansen and Gollmar, 2020) thar should develop a response to
changing input information. Errors in the operation of such systems when they are
used to control hazardous types of production (for example, this applies to control
systems for nuclear reactors, chemical production, space technology, etc.) can lead
to catastrophic consequences associated with large material losses and even human
casualties. No less serious consequences can be in case of failures in the operation
of telecommunication, information and financial systems. Therefore, extremely high
requirements are imposed on the reliability and error-free functioning of reactive
systems.

All informal requirements for the behavior of a reactive system are divided into
two main classes (the classification was proposed by L. Lamport (1983)):

• the safety requirement – guarantees that a certain property is preserved in all
states of the system;

• the requirement of liveness – guarantees that some event sometime in the
future will necessarily occur in the system, or, in other words, some property
will be true over some achievable state of the system.

Safety includes such properties as:

• a mutual exclusion, which guarantees that parallel processes will never
simultaneously end up in the same critical section;

80

• an absence of deadlocks (absence of interlocking), which means that at least
one of the processes can always continue functioning;

• a partial correction, meaning that if at the beginning of the process some
precondition is true, then at the end of the process the postcondition will be
executed.

Liveness is represented by the following properties:

• absence of infinite waiting (guaranteed response), which means that a request
for resource allocation is always satisfied in a finite time;

• unconditional justice, which means that the process must be performed
infinitely often, regardless of its internal state;

• total correctness, which means that if the process begins its functioning under
a true precondition, then it will definitely end, and the postcondition will be
fulfilled.

There is another classification of dynamic properties proposed by Alpern and
Scheider (1985). It contains the following classes of requirements for the hierarchical
behavior of the system (Borell classification):

• safety – a statement that a certain property is preserved in all states of the
process of each computation from a set of possible computations;

• liveness – a statement that the property is checked in at least one state of each
calculation;

• intermittence – the union of the safety and liveness classes on a set of
calculations;

• recurrence – a statement that a certain property happens in infinitely many
states of each computation from a set of computations (includes the safety,
liveness, intermittence classes);

• persistence – a statement that a certain property happens in infinitely many
states of each computation from a set of calculations, starting from a certain
state (includes the safety, liveness, intermittence classes);

• progress – a union of the persistence and recurrence classes.

It is easy to see that the requirements in the Borell classification are covered by
the safety and liveness requirements introduced by Lamport, and, therefore, the
latter represents two basic informal requirements that can be put forward in relation

81

to the dynamic properties of the control system. However, the specificity of CA allows
one to single out two additional properties that are important from the point of view
of control theory: the ability of the CA to resume its work from the initialization
state (Frey and Litz, 2000) and the ability of the CA to perform its functions with any
changes in the external environment. The last property is usually called robustness.

The properties of reactive systems described above, which also apply to CA,
have one important feature. All of them require consideration of the process in the
dynamics of its development in time. Such time dependence of the properties of
control processes requires the use of special methods for their specification.

4.1.2. Methods for Specifying the Dynamic Properties of Reactive Systems

The common name for these methods comes from the term “temporal”. Therefore,
dynamic properties in this terminology are interpreted as temporal (Mordechai Ben-
Ari, 2012).

The founder of the formal temporal approach is A. Pnueli, who was the first to
propose the temporal logic of linear time (Linear Time Logic – LTL) (Pnueli, 1986).
Linear Time Logic, also called Propositional Linear Temporal Logic (PLTL) (Manna
and Pnueli, 1989), is the development of modal logic and is based on propositional
calculus. Its practical appeal lies in the use of natural linear ordering on an infinite
sequence of states and the classic modal operators (F – “eventually” and G – “global”),
which can be applied to elementary statements connected by Boolean connectives.

A more precise definition of PLTL logic has two basic temporal operators: X –
“next” and U – “until”, with which the modal operators can be defined. The PLTL
formula is determined by induction in such a way:

. (4.1)

Other temporal operators are expressed using these basic operators as follows:

, (4.2)

. (4.3)

The semantics of temporal logic is determined on the logical model given by the
Kripke structure (Clarke, 2008):

, (4.4)

where – a set of elementary statements;

 – a set of states (interpretations) of the system;

82

 – an initial state;

 – a reachability relation between states;

 – an interpretation function that determines the values of propositional
variables for each state.

However, PLTL is not very suitable for analyzing the behavior of concurrent
processes, which are characterized by tree representation of many events. Therefore,
for the evaluation of parallel processes, E. Clarke and E. Emerson proposed the
Computation Tree Logic (CTL) (Clarke and Emerson, 1981). When the behavior of
a reactive system is represented by computation trees, the liveness requirement is
divided into two subclasses: when a state satisfying a given property is reachable
on each branch of the computation tree of the system (“A-liveness”) and when it is
reachable at least on one branch of the computation tree (“E-liveness”).

CTL formulas are inductively defined as follows:

, (4.5)

where – an elementary statement;

 – CTL formulas;

 and – quantifiers “existence” and “always”, respectively.

Studies have shown that most of the practical properties of reactive systems can
be expressed by CTL formulas (Ravn et al., 1993). Examples of formal definition of
the properties of safety and liveness classes are given in Table 4.1.

Table 4.1 Determination of Some Properties of Reactive Systems by CTL Formulas

83

The semantics of temporal operators when applied to the analysis of computation
trees is defined similarly to PLTL, but the consideration of quantifiers on a set of tree
paths is added.

The disadvantage of PLTL and CTL logics is that time is taken into account in
them implicitly and only at the semantic level, while the practical application of this
formal apparatus, especially in real-time control systems, requires the specification
of actions within specific time boundaries. In order to satisfy this requirement,
T. Henzinger developed a version of the real-time linear logic – Timed Propositional
Temporal Logic (TPTL) (Henzinger, 1991) and P. Alure proposed a version of the real-
time computation tree logic – Timed Computation Tree Logic (TCTL) (Alur, 1991),
which was the result of their joint work (Alur and Henzinger, 1990).

The TCTL formula is defined as follows:

, (4.6)

where ~ means one of the binary relations () that limits the duration
of the formula.

Further developments of TCTL to the real-time domain were the Parametric
Timed Computation Tree Logic (PTCTL) (Wang, 1996), Metric Temporal Logic
(MTL) (Chang et al., 1994) and Parameterized Real-Time Computation Tree Logic
(Emerson and Trefler, 1999).

Simultaneously with the development of temporal logics, another formal
approach to the specification of the properties of reactive systems, which has a
generalized name Duration Calculus – interval logics (Chaochen et al., 1993), took
place. This mathematical apparatus was analyzed most fully in the ProCoS (Provably
Correct Systems) project (Bowen, Hoare et al., 1996). Duration Calculus takes into
account the peculiarity of the control program in real time and the possibility of
parallel execution of several threads. This logic extends the traditional predicate
logic with the ability to specify time intervals with an indication of the constraints
imposed on them, as well as the definition of sequences of input and output signals.

The semantics of the Duration Calculus is determined by a specific interpretation
of this calculus, which, in principle, should correspond to the specifics of the
functioning of the system. Each state is interpreted through a function of time.

Using the Duration Calculus logic security requirements for real-time control
systems can be easily described. At the same time, it is inferior to temporal logic
from the point of view of practical implementation of automatic verification
algorithms, since for interval logic the problem of satisfiability is algorithmically
unsolvable (Paulson, 1998). In this regard, it becomes necessary to combine the
merits of each considered formalism used to describe the dynamic properties of

84

reactive systems, including CA, within the framework of a unified approach.

4.1.3. The Problem of Automatic Verification of CA Dynamic Properties

Verification is the process of certifying that a system meets specified requirements
or has specified properties (Pritsker, 1995). As a kind of verification, validation is also
considered, which implies checking the system for compliance with its specification.
However, if verification answers the question “Is the system built correctly?”, then
the purpose of validation is to verify that the “correct system” is actually built. In
the future, we will consider the first task, namely, the task of verification, which
should be assigned to the control system itself and should be solved in the dynamics
of the development of the control process. In this case, we will assume that system
validation is the prerogative of the system design stage.

It is impossible to verify reactive systems by testing, since the number of possible
variants of their behavior can be infinitely large. Therefore, in the theory of reactive
systems, there are several alternative approaches to the problem of verification:
deductive methodology, evidence-based design, model approach, and runtime
monitoring.

Deductive methodology implies that the requirements for the behavior of an
already existing system (program) are formulated in the form of a theorem to be
proved by means of mathematical logic. In fact, it involves formal verification of the
informally obtained description of the algorithm. The most prominent representatives
of deductive methods are: automated theorem proving, multiset rewriting, thread
spaces, and belief logic (Bibel and Wolfgang, 2007). At first glance, these methods are
preferable, since they do not require additional steps to build a model. However, they
are at the same time more difficult to implement and impose serious restrictions on
the range of tasks to be solved.

Evidence-based design, like deductive methods, uses declarative languages;
however, its goal is to synthesize correct algorithms using well-formed formulas,
with the help of which the requirements for the behavior of the system are specified.
In classical works on the theory of reactive systems, such algorithms are called
decision procedures (Kroening and Strichman, 2008). Examples of solutions in this
area are the proof of the feasibility and the feasibility of the specification, as well as
improved technologies based on the resolution method. However, the complexity of
the existing methods for the synthesis of algorithms is such that one can hardly hope
for their application in solving practical problems.

Another area of CA verification is the model approach. In its current form, it
means that a model is built according to the specification of the system, which is then
tested for satisfying the specified properties in each of its states. Although it sounds
paradoxical, the model approaches are especially powerful precisely because they
knowingly limit themselves, working not with a system, but with some final model.

85

This allows checking the desired property not only in the most probable situations
(as, for example, simple testing does), but, in general, in all possible states. That is
why model technologies are used in critical applications (for example, in Havelund
(2001), a formal analysis of a spacecraft flight control program is described).

The main method of the model approach in automatic verification of the dynamic
properties of programs (algorithms) is Model Checking (MC) (Clarke et al., 1999).
The formation of the MC took place simultaneously with the development of temporal
logics. In fact, it boiled down to the development of algorithms for checking temporal
formulas on a logical model specified in the form of a Kripke structure, as well as
assessing the complexity of these algorithms. In particular, it was established that
the MC problem for temporal logic CTL was solvable in linear time with respect to the
number of model states and the complexity of formulas. However, for TCTL logic, the
MC complexity becomes PSPACE complete (Alur and Henzinger, 1993).

There are several alternative approaches to solving the MC problem for various
temporal logics. The main ones are the automaton-theoretic approach (Wardy and
Wolper, 1994), using various modifications of the Büchi and Rabin tree automata,
as well as symbolic computations (Khoussainov and Nerode, 2012), the μ-calculus
(Grädel et al., 2007) based on Binary Decision Diagrams (BDDs) (Bryant, 1992).
There are also examples of the application of temporal logics to verify the properties
of Petri nets. For example, one of the extensions of the temporal logic TCTL proposed
by W. Penchek (Penczek, 1990) is projected onto a model specified in the form of a
temporary Merlin network.

Recently, verification tools based on MS have become widespread and have
demonstrated the ability to detect rather subtle errors that occur in very unlikely
situations. The most widespread tools are instrumental systems focused on the use
of temporal logics, such as SMV (Carnegie Mellon University) (Gluch and Srinivasan,
1998), VIS (University of California, Berkeley) (Brayton et al., 1996), FormalCheck
(Hardin, 1996), Spin (Holzmann, 1997), Java PathFinder (Visser et al., 2004),
Bandera (Hatcliff and Dwyer, 2001). The principle of operation of these systems
consists in the selection of an automaton model corresponding to it (for example,
a Buchi automaton) according to the program code, on which the temporal formula
is checked. However, full verification of specifications using MS is associated with
overcoming the state space explosion problem, and, therefore, it cannot be effective
for real-time systems generating NP-complete problems.

Run-Time Monitoring (RTM) is a class of methods that check system properties
directly during program execution. Unlike MS, these methods are online, i.e.,
statements about the behavior of a process are embedded directly into the program
code. The most prominent representative of RTM systems is Temporal Rover
(Drusinsky, 2000), which allows for real-time checking of the properties of programs
written in Java, C, C ++, VHDL, Verilog and ADA. This is achieved by converting the
program code with the temporal properties written in the form of comments into

86

the equivalent code that checks them. A limitation of Temporal Rover is that its state
model cannot evaluate complex properties like “x () should never run after y ()”.
Another prominent example of the RTM class is Java Path Explorer (JPaX) (Havelund
and Rosu, 2001). It is able to test only linear time properties and, like Temporal Rover,
does not allow evaluating complex properties.

Having considered the existing approaches to the problem of verification of the
dynamic properties of CA, we can draw the following conclusions:

1. Deductive methodology, like evidence-based design, tries to formalize
the system as a whole and then uses all the advantages of a formal description,
instantly obtaining qualitative assessments of the processes under study. However,
these approaches are extremely expensive, limited in application, and are not yet
compatible with the method of AC specification we have chosen in the previous
section using E-network implementation models.

2. The model approach is well developed, both theoretically and practically,
as it supports the use of the mathematical apparatus of temporal logics for the
specification of program properties and has many applications, but only at the stage
of system design.

3. RTM is more adequate to the real process, and it is reduced simply to checking
the feasibility of specified requirements for the current case of program execution
without building an exhaustive state model. However, in this case, it is not possible
to predict deviations in the behavior of the system due to the absence of its model.

Taking into account the conclusions made, let us formulate the problem of dynamic
verification of CA as the creation of a method for assessing the dynamic properties of
reactive programs, which would make it possible to apply the MC mechanism within
the framework of the RTM methodology based on predictive models that implement
the Receding Horizon Strategy. To solve the problem, it is necessary:

• to clarify the temporal properties of the E-network implementation model from
the point of view of its application for dynamic verification of control systems;

• to develop a dialect of temporal logic focused on control processes (analysis of
complex properties taking into account interval constraints);

• using the developed logic, to construct a predictive model that takes into account
the specifics of the interaction of the CA with the external environment;

• to develop an algorithm for assessing CA properties in real time.

The main difference of the proposed verification method should be the use of
the CA implementation model, which is, at the same time, its specification. On the

87

one hand, it saves time because no additional creation of automaton is required for
the existing control program. On the other hand, it eliminates the inaccuracy of the
model, which is always present, when it replaces the real system. In our case, we will
have a complete coincidence of the model and the real process, the implementation
of which is carried out according to its own model.

4.2. Temporal Model of Control E-networks

To develop and apply a formal methodology for the verification of control
algorithms, they must be modeled by mathematical objects and the relationships
between them. In our case, such a model is the description of the CA in the form of
a control E-network. The E-network itself has already dynamics that characterize
the development of the control process over time. However, to take into account the
dynamic exertion of CEN, it is necessary to make a number of additional clarifications
concerning three main points of its behavior:

• which time model is actually implemented using CEN;

• how the given time model is displayed on the network state;

• what is the calculation scheme provided by CEN.

4.2.1. Time Model of CEN

Time is the category around which all judgments about the dynamics of the
behavior of the reactive system are formed.

In CEN time is entered as a function of transition delays. Although by definition
it is considered a continuous value, in fact, in the network, time changes discretely.
When performing CEN, the time is split into separate intervals, the duration of which
does not have to be constant. In the future, each time interval will be called duration
of the CEN execution cycle. This duration is measured by the CEN internal clock. We
will assume that these clocks are started simultaneously with the start of the CA and
are common for all network units, setting a single system time. Through execution
cycles, the continuously changing real time, in which the control system operates,
is coordinated with the discrete nature of the CEN operation, which is a model for
implementing the CA.

Let us fix the moment of the beginning of the network execution cycle and
assume that all subsequent actions related to its execution will relate precisely to the
moment of the beginning of the execution cycle. It is clear that these actions take a
certain amount of time. When the network finishes firing of all active transitions, and
it comes to a static basic state, characterized by the fact that no transition can trigger
any more in the situation that has arisen, the real time will change – it will no longer
correspond to the fixed moment of the start of the execution cycle. The next cycle

88

will start execution exactly from this moment in time, which in the future we will
consider the time of a new execution cycle. For CEN, the time will change abruptly,
running sequentially through a set of values , where
is the time of the -th execution cycle when for , .

From cycle to cycle, the situation can change for two reasons. First, during the
execution cycle, the values of the input signals may change, which affect the calculation
of the transition activation functions. As a result, some transitions can become active,
triggered, or go into a delayed state. Second, the delay time on transitions already
in the delay will change, which will decrease by the amount of the duration of the
previous execution cycle. If the delay time of some transition when changing the cycle
drops to zero, then this transition can be triggered in the current execution cycle. The
condition for triggering the delayed transition in the current execution cycle will be
the true value of the next predicate

, (4.7)

where – the calculated value of the delay time at the transition when it is
activated;

 – the value of start time of the delay at the transition;

 – the value of current time of the network execution cycle.

Let us assume that the delay time at the transition changes discretely and
synchronously with the network execution cycles according to the rule:

 (4.8)

The change in the delay time at the transition from the moment of the beginning
of its delay phase () to triggering can be represented in the form of a
diagram shown in Fig. 4.1.

Figure 4.1 demonstrates that, in fact, when the network is operating, a discrete
approximation of a continuous linear change in the delay time at the transition is
carried out.

If the condition was satisfied for the last cycle within
the transition delay phase, then we would have an exact discrete model of continuous
time. However, in reality, it may turn out that the time difference between the last
two network execution cycles will be greater than the residual delay time at the

89

transition, i.e., the condition will be met. In this case, we
will have a clearly expressed error of the discrete model, which is the value

, (4.9)

where is the start time of the l-th cycle of network execution.

The shorter the duration of the real-time execution cycles, the smaller the model
error. As for the actual duration of execution cycles, it is determined solely by the
time spent on checking the readiness and firing active transitions. The duration of
the execution cycles can also be affected by the additional inclusion of any other
calculations, for example, checking the properties of the CA using the prediction
model.

The described time model differs from the discrete time model, which assumes
that all time instants are selected from the domain of integers, as well as from the
fictitious clock model, in which time is measured by the number of steps taken by the
system from one state to another. This model is closest in its meaning to the dense-
time model, which is characteristic of discrete-event systems.

How does this model of time relate to the functioning of CEN? This question is
answered by the state model of CEN.

4.2.2. State Model of CEN

The state model of CEN must take time into account. To construct it, we use the
well-known recurrent equation describing the dynamics of the Petri net (Murata,
1989):

, (4.10)

Fig. 4.1. Variation of transition delay time.

90

where – the state (marking), which is achieved at the -th control
step;

 – the state (marking) at the -th step;

 – control applied at the -th step;

 – the matrix corresponding to the F set of arcs in the network.

Let us consider CEN, all transitions of which have zero latency. We will consider the
execution of any network transition as a control step, as a result of which the marking
of its places changes. If we restrict ourselves to one cycle of network operation, then
it can include several sequentially executed steps as long as there are conditions
for triggering transitions. This follows from the fact that a stepwise change in the
marking of places can create conditions for the triggering of new transitions.

We will assume that the control vector ,
shows the possibility of triggering the transitions of the network at the -th step:
if , then the transition at the -th marking is triggered, if , then
the triggering of the transition does not occur. Each component of the vector
corresponding to a certain transition of the network is a logical function that depends
not only on the transition scheme, but also on its readiness and activation functions,
which can be represented as the following product:

, (4.11)

where – a readiness function of transition at the -th step;

 – an activation function of transition at the -th step.

Let us introduce the transformation matrix with dimension
, where is the number of network places and is the number of network

transitions. The elements of this matrix determine the effect that the triggering of
transitions has on the state of the CA, indicating in which places the tokens are added
and from which they are removed. Let (-1) mean that the token is removed from the
place, (1) – the token is added, (0) – the marking of the place remains unchanged.
As a result, each column of the matrix displays how the network marking changes
when the corresponding transition is triggered.

As an example, let us consider the CEN as shown in Fig. 4.2.

This fragment of the network includes three transitions and seven places. We will
assume that the decision functions of both transitions of the type have a value
equal to 1. We will also assume that the activation functions of all transitions are 1.
Under these conditions, all three network transitions will be sequentially triggered,

91

as a result of which the marking will change as shown in the graph reachability.

For a given CEN, we construct a transformation matrix and three control vectors
corresponding to the given sequence of transition firing as shown in Fig. 4.3.

By Eq. (4.10), it is easy to check that for given and , the reachability graph is
shown in Fig. 4.2.

Several transition firings can occur within a run loop until a token is reached where
no transition is ready to fire under existing conditions. Moreover, the triggering of
the same transitions can occur repeatedly under the influence of changing internal
conditions of the network, which are recorded in the attributes of the tags. In addition,
the values of decision procedures may change during the cycle. All this will lead to
the modification of the matrix from step to step. Therefore, the CEN equation of
state for the run loop becomes:

, (4.12)

Fig. 4.2. Fragment of CEN and graph of its markings.

Fig. 4.3. Transformation matrix and three control vectors.

92

where – a transformation matrix at the -th step of the -th cycle;

 – a control vector at the -th step of the -th cycle;

– a number of execution steps during the -th cycle.

Let us introduce the operation of component multiplication of vectors , which
for two vectors and of the same dimension allows us to construct a new vector

 whose components are calculated by the formula .

Then the vector can be represented as follows:

, (4.13)

where – a vector of transition readiness functions;

 – a vector of transition activity functions.

Taking into account Eq. (4.13), Eq. (4.12) takes the form:

, (4.14)

where – a vector of transition readiness functions at the -th step of the -th
cycle;

 – a vector of transition activity functions at the -th step of the -th
cycle.

Since during one cycle the values of the input signals do not change, the vector
will not change from step to step and can be written as .

Then we finally get

. (4.15)

Now let us consider the case when the delay time is set for transitions or at least
some of them. We will assume that the determination of the moment when the
transition is triggered is performed according to Eq. (4.7). Moreover, the delay time
at the transition changes discretely and synchronously with the network execution
cycles according to rule (4.8). It is also clear that the transitions that are in the delay
cannot in any way affect the change in the network marking, despite the fact that
they have passed the active phase. To provide for this circumstance, we introduce an
additional function, which we will define as follows:

93

 (4.16)

Then, taking into account the property of associativity of component multiplication
of vectors, the CEN equation of state can finally be written in the following form:

, (4.17)

where – a delayed transition vector.

Comparing (4.12) and (4.17), we obtain the final expression for the control vector
CEN at the -th step of the -th cycle:

. (4.18)

From Eq. (4.18) it follows that the value of the control vector is determined by the
marking of places, the state of the input signal CEN and the state of the transition. In
addition, this definition fully corresponds to the previously accepted representation
of the network behavior in the form of PLMP, when the execution cycles determine
the main states of CEN and the vector of delayed transitions.

For temporary Petri nets, the equation of state could be a sufficient basis for
revealing the dynamic properties of the process by analyzing the reachability graph
built on the set of net markings. However, in the case of CEN, the transformation
matrix is not stationary during network execution. Due to the multiplicity of variants
of the and types of transition firing schemes, the transformation matrix can
vary from step to step, i.e., for CEN, no less important than changing the tokening is
the very moment of the transition. In this regard, there is a need for a more detailed
consideration of the process of network functioning from the point of view of the
sequence of steps performed. This can be carried out on a computational model,
which defines the operational semantics of CEN that ultimately determines the
construction of a logical system for analyzing the dynamic properties of CA.

4.2.3. Computation Model of CEN

In contrast to the state model, which considers changing the markings of the network
places, the transition firing sequences must be analyzed in the CEN computation
model. Actions with data represented by the values of network variables and token
attributes can only occur as a result of the transition transformation procedures.
In this case, the conditions for performing network transitions may change. The
resulting control action depends on how the calculations will be organized. Recall
that in the general case, we consider distributed systems in which processes interact
exclusively by passing messages. In our case, implementation models in the form of

94

CEN are used in the role of such descriptions, and the messages are tokens passed
between the units. From a computational standpoint, this means that there can be
no shared variables. Therefore, we will restrict ourselves to considering one process
represented by an aggregate concretized by CEN. Other processes will implement
similar computation models.

First of all, we note that according to the time model we have adopted, all
operational actions in the system occur instantly. The model time does not change
during the execution of the transition transformation procedures. Only after all the
actions planned at the time of the execution cycle have been completed, the model time
changes by linking it to the current real-time value. This means that the calculations
are synchronized with the moments when the CEN execution cycles change, i.e., each
cycle corresponds to its own portion of calculations. In the same execution cycle,
multiple transitions, which are active and have timed out, may fire. From the point of
view of model time, all these operations should be considered parallelly executable
actions related to one computation.

Usually, when considering parallel processes, two main types of operational
semantics are used: interleaving and partial ordering. In interleaving semantics
(Emerson, 1990), the parallel execution of several actions is replaced by a non-
deterministic choice of the order of their sequential execution. In partial order
semantics (Peled and Pnualy, 1994), a partial order relation is established on the
set of basic actions, reflecting the cause-and-effect relationships (CER) between
events. The CER makes it possible to quite simply analyze many properties of
computations associated with parallel execution of operations. In particular, it
specifies the necessary conditions for ordering actions in alternating computations.
For the specification of these properties, a new type of non-classical logics was even
developed in due time – the logic of causality or causality logics (Alur et al., 1995).

The relationship between the semantics of interleaving and partial ordering
for abstract parallel computation was studied by Bechet (1997), who formulated
necessary and sufficient conditions under which the model of alternating
computations was completely characterized by a single causal model, taking into
account some restrictions imposed on causal relationships. This issue was studied
separately for ordinary Petri nets. This result, however, cannot be directly extended
to control E-networks, which, although they belong to the class of safe networks,
have a number of functioning features that require additional rules. The difficulties
that distinguish E-nets from ordinary Petri nets in terms of implementing parallelism
are due to the use of type transitions and, when triggered, a check is performed for
the absence of tokens in places (check for zero). In this case, an arbitrary (non-
deterministic) order of execution of active transitions that are in the chain of actions
with a conditional transition can lead to the wrong choice of the variant of its
operation and, consequently, to the wrong direction of development of the control
process.

95

Let us define a set of additional CER, which must correspond to the sequence of
triggering of CEN transitions to ensure the deterministic execution of the parallel
process implemented by the network. Let us denote a countable set
of elementary actions performed on CEN transitions during one execution cycle. In
fact, any elementary action will correspond to the transformation procedure

 of some transition of CEN. Let us introduce a marking function that
assigns some action to each transition in the network.

Let us introduce a number of definitions.

Definition 4.1. An oriented graph, each arc of which is tokened with one of the
symbols of the set, is called a computational graph. The vertices of the graph are
called states of computations.

The fact that a transition marked by an action leads from a graph state to a
state will be denoted by . We will assume that the activation functions are
true for all CEN transitions, and the delay time is equal to zero. Under these conditions,
we split the readiness function of a transition marked with an action into
two components: a precondition , which is a predicate that is true for an admissible
marking of the transition input places, and a postcondition , which is a predicate
that is true for an admissible marking of the transition output places. Recall that the
admissible marking satisfies the transition firing scheme. In this case, the action
connecting the states and can be performed under the condition and

. We assign predicates and to the states of the computational graph. In
fact, these predicates express the generalized state of transition places. The presence
of a path between the states and will be denoted by , and for each path

 connecting a pair of states and , and we
will use to denote the set of actions that token its arcs.

Definition	 4.2. Any path in the graph outgoing from the initial state is
called computation, and the sequence of actions that tokens the transitions of this
computation is called a trace.

Definition	4.3.	A computational graph is called deterministic if no two different
computations have identical traces.

We note right away that each computational graph can be transformed into a
computation tree that generates the same set of traces.

We also denote as the set of all computations of the graph that end in a
state , and as – the set of all computations starting in the state .

Definition	 4.4. A prefix of the state is a set of actions
immediately preceding .

96

Definition	4.5. The suffix of the state is the set of actions
immediately following .

The set of traces of all possible computations generated by graph will be denoted
as . This set will define the functioning of CEN in interleaving semantics. For us,
it will be important that the implemented sequence of actions should unambiguously
determine the achieved state, which is dictated by the principle of CEN determinism.

Definition	 4.6. Any binary relation possessing the properties of
antireflexivity and transitivity will be called the relation of the CER on the set of
actions of the marked CEN.

An action is dependent on the action if . Let us denote
 a set of actions on which a given action depends.

A sequence of actions, or trace, obeys if all actions of the
sequence are pairwise different and for any action the condition is satisfied

, i.e., all actions of the set , on which depends, precede
it in this sequence. Let us denote by using a sequence of actions that obeys the
CER . If the system of parallel processes is compared with the family of relations
of the CER , then the functioning of CEN in the semantics of partial order will be
characterized by a set .

The functional characteristics of the computational graph and the family of
CER relations are interconnected. We will assume that the CER approximates the
computational graph if . For the correct disclosure of the parallelism
contained in CEN, it is necessary that the computational graph be consistent with the
family of relations of the CER, i.e., should be done. It is obvious that the
union and intersection of any set of approximating CER is also an approximating
CER.

Let us denote the maximum ratio that approximates the
computational graph and formulate in the form of axioms the laws of operation of
CEN, which set restrictions on the structure of the computational graph.

Axiom	of	uniqueness	(A1). Each elementary action occurs no more than once on
any trace .

According to the axiom of uniqueness, repeated execution of the same transition
transformation procedure during some computation corresponds to two different
actions. This condition eliminates the possibility of loops occurring and can be
provided by renaming actions if you need to execute a certain transition multiple
times in one loop. It should be borne in mind that actions that may refer to the
same transition must differ in the values of the parameters of the transformation
procedure.

97

Axiom	of	commutativity	(A2). If the actions and are not connected by a relation
that is a transitive closure of the incidence relation of the network ,
then the result of the calculation does not depend on the order of their sequential
execution.

This axiom means that no action blocks another if they are not in some ordering
relation. This situation applies to all tagged CEN transitions.

Follow-up	axiom	(A3).	For any triple of states , such that both and
 are allowed, the actions or can be performed only after all other actions

belonging to and have been performed. The succession axiom defines the
condition for the execution of transitions of type “X”, which consists in the fact that
before their execution all traces of actions that belong to the suffixes of the transition
post-conditions must be checked.

Precedence	axiom	(A4).	For any triple of states , such that both and
 are allowed, actions can be performed only after all other actions belonging

to and have been performed.

This axiom defines a condition for the execution of transitions of type “Y”, which
consists in the fact that before their execution, all traces of actions that belong to the
prefixes of the transition preconditions must be checked.

Priority	axiom	(A5).	For any states and that satisfy axiom A3 or A4, there is an
order relation that establishes the sequence of their execution.

If axioms A1 and A2 define the general properties of the computational graph,
then axioms A3–A5 are the CER. Moreover, each of these relations represents one of
the variants of causality on the set of CEN actions.

Theorem	4.1. If the graph of computations satisfies axioms A1–A5, then it is
deterministic.

Evidence.	 Let us suppose that some state has been reached as a result of
computation. It means that there is some trace that leads from
the initial state to . Let us show that any other computation leading to this state
has an equivalent trace. Let this other computation have a trace
that differs in the sequence of the first action. If this trace does not contain actions
on transitions of types “X” or “Y”, then, following axiom A2, actions and can
be arbitrarily rearranged in a sequence of actions. As a result, we get . By
induction, similar transformations can be performed for other actions. If the traces
and contain transitions of types “X” or “Y”, then according to axioms A3 and A4, all
actions corresponding to these transitions will be located at the end of the sequences
of traces. We will divide the trace into two non-intersecting traces and so that

 will contain all transitions except types “X” and “Y”, and – all transition types “X”

98

and “Y”. For the above-described permutation of actions can be applied. As for , it
will be completely equivalent to the trace , since the mutual arrangement of actions
inherent in the transitions types “X” and “Y” is uniquely determined by axiom A5.

Corollary 4.1. The sequence of CEN actions, built for the execution cycle
in accordance with axioms A1–A5, uniquely determines the achieved state of
computation, the characteristic of which coincides with the set of actions of this
sequence. The introduced axioms A1–A5 form the basis for constructing the dynamic
synchronization algorithm of CEN, which is described below. This algorithm ensures
the deterministic operation of the network according to the PLMP scheme.

4.2.4. Algorithm of CEN Dynamic Synchronization

We assume that is a finite set of CEN transitions. Let us conditionally divide this
set into two subsets:

1) – a set of transitions with decisive places, which we will
call a set of conditional transitions;

2) – a set, which we will call a set of simple transitions,
.

Since the PLMP corresponding to the operation of CEN is determined by the
sequence of transitions for which the delay time has expired, a subset of active
transitions can be selected from the sets and . All transitions that are not in
a delayed state at the moment the marking is changed are classified as active
transitions. In contrast, transitions that are delayed, i.e., those for which , we
will call passive. At the moment they do not affect the development of the process
in any way and are not taken into account. Thus, for each moment in time at which
the network marking is changed, subsets of active conditional and simple transitions
can be distinguished, which we will denote and , respectively. In the
course of the model operation, the composition of the sets and will change. In
this algorithm, we will use two auxiliary lists: the list of simple transitions, where
active simple transitions from the set are entered, and the list of conditional
transitions, where active conditional transitions from the set are entered. Items
are listed in the order in which they are received, i.e., the first items on the list are the
items that arrived first. When you retrieve the first item from the list, the next item
becomes the first item in the list. When the lists are cleaned, all the elements in them
are deleted. We will assume that the algorithm starts to work at the moment
after the movements of the tokens in the transitions, the delay time of which expired
at the moment , are performed.

The synchronization algorithm in each cycle of CEN execution includes the
following steps.

99

1. Start. Selecting a set of active transitions. From the set of network transitions ,
determine the subset of active transitions that are not in delay at
a given moment .

2. Formation of the list of conditional jumps. From the set , select a subset
of conditional transitions , the elements of which are added to the list of
conditional transitions in the order they are listed.

3. Formation of a list of simple transitions. From the set , select a subset of
active simple transitions , the elements of which are added to the list of
simple transitions.

4. Checking the condition “The list of simple transitions is empty”. If this condition
is met, then go to Step 10.

5. Checking the readiness for firing of the first transition in the list of simple
transitions. Analyze the marking of the transition places and the value of the
activation function. If they do not meet the conditions for firing the transition,
then go to Step 8.

6. Determination of the delay time of the first transition in the list of simple
transitions. The transition delay time is calculated. If the delay time is zero,
then go to Step 9.

7. Correction of the composition of many active transitions. Transfer the first
transition in the list of simple transitions to a delay and exclude it from the set
of active transitions .

8. Correction of the list of simple transitions. Exclude the first transition in the list
of simple transition from the list . Go to Step 4.

9. Firing the transition first in the list of simple transitions. Change the marking of
the transition places in accordance with the transition firing rules. Perform the
transition transformation procedure. Go to Step 3.

10. Checking the condition “The list of conditional jumps is empty”. If this
condition is met, then go to Step 14.

11. Checking the readiness to fire the first transition in the list of conditional
transitions. Analyze the tokening of the entry and exit places of the transition.
Determine the state of the decision place by calculating the value of the
corresponding decision procedure. If the transition firing condition is not met,
then go to Step 13.

12. Initiating the execution of the first branch in the conditional branch list. If the

100

calculated transition delay time is equal to zero, then change the marking of its
places in accordance with the rules for firing transitions of this type. Perform
the transition transformation procedure. If the transition delay time is not
zero, then convert the transition to a delay.

13. Correction of the list of conditional branches. Exclude the first transition in
the list of conditional transition from the list . Go to Step 3.

14. Stop the algorithm. With the network marking created at the moment, further
triggering of its transitions is impossible.

Taking into account the above algorithm, we will make two remarks about the
structure of CEN. First, among the transitions with zero delay included in the chain of
structural links with conditional transitions, there may be transitions that also belong
to one of the types “X” or “Y”. In this case, for the synchronization algorithm to work
correctly, the sequence of triggering conditional transitions must be additionally
specified. This can be done without introducing complicated specifications of jump
priorities, by providing at the step of compiling a list of conditional jumps to include
them in the list in accordance with the numbering that must be set when describing
the network. If conditional transitions are separated by transitions with a non-zero
delay so that their inclusion in one group event is excluded, this requirement may not
be taken into account.

Second, the operation of the algorithm implies compliance with the network
security condition (there can be no more than one token in the place). This was made
possible by the introduction of simple place queue transitions, which replaced the
queue places previously used in practice.

4.3. Verification of Control Algorithm Properties Using Predictive Models

Models of time, states and computations constitute the basis on which the theory
of formal verification of the dynamic properties of CA is built. Based on these models,
it is possible to justify the used logical system. This clause describes a new control-
oriented CTL logic extension that is used in conjunction with the developed predictive
models that implement the Receding Horizon Strategy.

4.3.1. DCTL Logic: Syntax and Semantics

While LTL and CTL contain expressions about the relationship of pure Boolean
assertions, in CA it is required to consider logical assertions taking into account
the time sequence and duration of execution, as well as the simultaneous control
of parameter threshold values. For example, a statement of the form “Within one
minute from the moment of event A, the value of the variable X should not change by
more than 5 %” already needs additional definitions, even in the case of TCTL logic.
Such a requirement combines the time dependence between the sequence of events

101

in the system with an assertion based on the temporal properties of the variable X.
Such a need to take into account the duration of retention of some assertion is typical
of the robustness property when it is required to evaluate the characteristics of the
system in the dynamics of their change.

Another example might be related to the following statement: “Within any 30
second observation cycle, the duration of event B should not exceed 4 seconds”. This
statement combines the requirements for two interconnected intervals, which also
cannot be described using the known temporal real-time logics. Our goal will be to
build an extension of the TCTL temporal logic by giving it the ability to set interval
constraints for formulas, similar to how it is done, for example, in Duration Calculus.

Syntax	of	Duration	Computation	Tree	Logic	(DCTL)	

The DCTL alphabet consists of:

• an infinite countable set of propositional variables that denote
predicates and two logical constants true and false;

• signs of logical connectives of the propositional calculus ∧,	∨,	¬,	→;

• signs of binary relations ;

• quantifiers of generality A (“everywhere”) and existence E (“eventually”);

• temporal operators: F (“sometimes”), G (“always”), X (“in the next cycle”), U
(“until”);

• separators <,> and <;>;

• brackets (), [], (], [);

• interval expressions of the form , constructed using constants ,
brackets and signs of binary relations .

An elementary DCTL formula is any propositional variable or the constants true
and false. Other DCTL formulas are defined by induction:

. (4.19)

Temporal operators G (“always”) and F (“sometimes”) are defined in a traditional
way for temporal logics by Eqs. (4.2) and (4.3).

In DCTL, interval expressions that limit the time domain under consideration will
be applied not only to temporal operators but also to propositional variables.

102

In the case of setting a restriction on the scope of the temporal operator, the absolute
system time is always assumed, which is counted from the moment the control
program starts.

For example, the expression means that there are always up to 50 units
of time, i.e., at , the property must be fulfilled. An interval expression
can also be defined as a closed or open interval. For example, means that
sometimes in the interval a condition must be met.

Unlike temporal operators, the application of interval expressions to propositional
variables always implies a relative timing and denotes the duration of the interval,
during which a given variable continuously retains its true value. For example,
means that the time interval is considered when the propositional variable remains
true for more than 5 time units. Note that temporal operators and variables without
interval expressions are treated as constrained operators.

Semantics	of	DCTL

Let us introduce a logical model corresponding to the temporal structure of CEN.

Statement	4.1. Evaluation of the CEN properties should be carried out in situations
corresponding to the basic states of the network.

The confirmation of this statement is based on three fundamental principles that
define three options for accounting for the values of CEN variables and tag attributes.
The first of them is related to taking into account changes in the values of the input

Fig. 4.3. Situation tree structure.

103

signals. Due to the principle of periodicity or frequency, the values of the input signals
are fixed at the start of the cycle and do not change during the entire execution cycle.

The second option is related to the values of the output signals. Due to the
principle of direct action, all data operations in CEN can be performed only on
network transitions when calling transformation functions. It means that a change in
the output signals in the future cannot occur otherwise than as a result of a change in
marking, the final formation of which ends at the end of the execution cycle.

The third option is due to the dynamics of changes in the values of the attributes
of tokens. By virtue of the principle of determinism, for any particular set of values
of the input signals, a computation trace will always be executed, leading to a single
final marking corresponding to the basic state of the network.

Let us consider a separate loop of network execution. We will call -state a pair
, where is the situation corresponding to the basic state of the

network, and is the vector of additional coordinates that fixes the delay time on
network transitions in the situation . After the expiration of the delay time at any of
the transitions marked in , regardless of the values of the input signals, a situation
change will occur, which will lead to a new -state .

The current situation can be inherited not by a particular situation, but by a
whole variety of situations. This may be due to non-determinism of the control object
behavior. In addition, the development of the situation may be affected by the receipt
of tokens from related aggregates. Therefore, in the general case, for each specific
situation , a whole set of subsequent situations can be determined, which we denote

. Each situation can also have similar
evolution. As a result, a tree of situations will be formed. This fact can be illustrated
using the situation tree structure shown in Fig. 4.4.

For a formal definition of a situation tree, we introduce two definitions.

Definition	4.7. Let us call -way an infinite sequence of situations and times
of the form such that .

Further we will consider the -path as a mapping that satisfies the
condition . Then is the path from in the moment time.

Definition	4.8. We will call a prefix of , which we denote , a subset of defining
mapping from a domain to .

Definition	4.9.	Let us introduce the operation of concatenation of path segments,
which we define as follows:

104

 . (4.20)

Definition 4.10. Let us call -tree in CEN the set of -paths starting at . If
 then is the -tree starting at .

Since is a set of -paths, then .

We will also assume that the relation has the property of closure:

. (4.21)

From (4.21) it follows that the behavior of the network does not depend on the
past and depends only on the current situation. This fully complies with the CEN
principle of no aftereffect. The property of closure asserts that the relation of total
attainability is established on the tree of situations.

Statement	4.2.	CEN generates Kripke’s temporal structure

, (4.22)

where – a set of propositional variables that are elementary statements on a
set of network variables and a set of values of attributes of tokens
located in places;

 – a set of situations corresponding to the main states of the network ;

 – a tree of situations with the property of closure;

 – an initial situation, ;

 – an interpretation function that sets the values of propositional
variables for each situation corresponding to the CEN basic state.

We will confirm this statement by establishing correspondence between the
components of CEN and the elements of the Kripke structure given by Eq. (4.22).
We will assume that predicates constructed from network variables, attributes of
tokens, functional symbols, signs of arithmetic operations and binary relations

, as well as brackets and constants correspond to propositional variables.
For example, a variable can mean a predicate , where is a network
variable indicating the amount of deviation. A set of interpretations is determined
on a set of situations corresponding to the main states of the network. This means

105

that the evaluation of the values of the propositional variables will be performed
at the end of each execution cycle, and we are only interested in the final markings
of each execution cycle. Intermediate markings that can be achieved within the run
cycle will not be counted. The relation means that every situation has at
least one follower . The interpretation function is determined for each situation
by calculating predicates corresponding to propositional variables.

Based on these calculations, the values of subformulas and formulas in general
are determined as it is shown below.

For a structure , a state and a formula , the satisfiability relation
is defined as follows:

.

“In the state , the predicate is true”;

“The negation of a false predicate is true”;

“If the formula is not satisfied or the formula is fulfilled, it means that the
formula follows the formula ”;

“The predicate is true during the time on the state , if there is a prefix with
the duration on which the predicate is true”;

“The formula is true if on the time interval in the s-tree there is a path on which
the formula is executed in the following situation”;

“The formula is true if on the time interval in the -tree on all paths the formula
 is executed in the following situation”;

“The formula is true if in the time interval in the -tree there is a path along
which the formula is executed until the formula becomes true”;

106

“The formula is true if the formula is executed on all paths in the -tree on
all paths until the formula becomes true”;

“The formula is true if there is a path in the -tree in the time interval on which
the formula is ever executed”;

“The formula is true if there is a path in the -tree in the time interval on which
the formula is always executed”;

“The formula is true if the formula is ever fulfilled on the time interval in the

Table 3.2 Determination of CA Properties by DCTL Formulas

107

 -tree on all paths”;

“The formula is true if the formula is always fulfilled on the time interval in
the -tree on all paths”.

Let us note a number of equivalences inherent in DCTL formulas:

• ;

• ;

• ;

• .

In addition to using interval constraints for predicates in DCTL, compared to TCTL,
the operator X (“next”) is returned, which is determined after the current situation.
It is convenient for specifying properties that take into account the dynamics of
changes in a certain parameter at each execution cycle.

Examples of the description of CA properties using DCTL formulas are given in
Table 4.2.

4.3.2. Predictive Model

The interpretation of the CEN behavior in the form of PLMP allows determining
the Kripke structure to substantiate the semantics of the temporal logic used, as
well as provides the construction of a predictive model for analyzing the dynamic
properties of the control process in the future. The forecast should consist in
establishing a correspondence between the state of the CA and the state of the CO.
This correspondence will be determined using the DCTL formula. We will assume
that the state of the CA corresponds to the state of the CO if the value of the predicate
written in the form of the DCTL formula is true. In this case, the situation arising in
the CCS will be considered acceptable. Otherwise, an exception must be recorded
that initiates changes to the CO.

Definition	4.10. The predictive model (PM) is called the six

, (4.23)

where CEN – a given formal definition of CA in the form of a control E-network;

 – a set of DCTL logic formulas that specify the dynamic properties of the CA;

108

 – mapping of the output signals of the network to its inputs;

 – mapping of discrete inputs of the network at many points in time;

 – mapping that sets the laws of their change in time for analog input
signals;

 – the initial situation from which the prediction is based.

Let us consider each of the PM components in more detail.

CEN, which is the CA model, specifies all possible options for its implementation.
Thus, CEN provides a simulation model of the control process with which
computational experiments can be carried out. No additional steps are required to
simulate CA. It is enough only to trace the movement of CEN in the space of ground
states determined by the PLMP.

The initial situation for the prediction is determined by the marking of the
network places and the set values of the input signals. Further, the process can
develop from one basic state of the network to another. Moments of changing the
main states will be determined by the specified transition delay functions. Following
the PLMP scheme, the future development of the control process, up to the discrete
model error, can be represented as a set of pairs
where is a set of transitions delayed in the -th basic state of the network, and

 is the vector of additional
coordinates corresponding to this ground state. Then, the predicted time of the main
state change will be calculated by the formula

, (4.24)

where is the time to reach the -th basic state of the network.

Taking into account the time delays at network transitions by ranking them within
the framework of PLMP is only part of the simulated network dynamics determined
by its internal conditions. Another part of this process is associated with a change
in operating conditions external to the CEN – a change in the input signals of the
network. To simulate external conditions, we will use the CO model, which we will
build on the basis of the given relations .

This model should provide for the fixation of two variants of events related to the
operation of the CO. The first option concerns the generation of discrete input signals,
the second – the calculation of analog (continuous) values. Let us first consider a
variant of discrete signals. We will assume that in a general case, each CEN output

 can be assigned not one input signal, but a whole set of discrete input signals
, such that . It may be .

109

To simulate each -th element of the set , we will use the unit function

. (4.25)

In the case when an inverse change of the input value is required, the operator is
used

. (4.26)

The value is defined by mapping as a function . The prediction for
analog (continuous) inputs is based on the values specified by the mapping of the
laws of change corresponding to these inputs. Continuous input signal models can
be represented by difference or differential equations. The state of such models
changes continuously over time. In a general case, the analyzed -th continuous input
corresponds to the equation of the form

, (4.27)

where .

When there is a linear dependence of the input quantity on state variables, a
difference equation is as follows:

, (4.28)

where is the predictive time point;

 – current moment in time;

 – the value of the entry at the time ;

 – a variable denoting the rate of change of the -th input signal (can be specified
as a function of other variables in the model).

An alternative way of determination is a definition of the derivative of a state
variable. In this case, the derivative is integrated to obtain values at each step:

, (4.29)

where , which corresponds to the differential equation:

110

. (4.30)

Usually, in simulation systems the values of state variables are calculated as a result
of solving the corresponding equations at a separate point in time corresponding to
the simulation step, with the obtained values being saved for later use. For a new
point in time, information about the values of the state variables obtained in the
previous step is used. The required variable is calculated step by step, which is then
displayed as a simulation result.

In our case, when analyzing the input signals, it is advisable to solve the inverse
problem and determine the moment in time when the state variable reaches a
given threshold value. Then you can avoid additional performance losses associated
with changing the model time with a small constant step, which is critical for real-
time systems. For discrete signals, this will be a simple calculation of function .

In the case of analog signals, there are two options:

1. Solution of the difference equation (4.28) with respect to time

. (4.31)

2. Solution of Eq. (3.30).

From (3.30) we obtain

. (4.32)

After integrating both sides of Eq. (4.32), we will have

. (4.33)

The integration constant must be recalculated after each CEN cycle based on
the measured value of the input . The first measured value should be taken as the
initial condition for the first CEN execution cycle at .

We will define the dynamics of the states of the CO as the PLMP proceeding in
parallel with the process of CEN functioning. Let us denote this process and
give its formal definition for :

 (4.34)

where is the set of input signals generated by the output ;

 – a vector of additional coordinates (delay times for inputs);

111

 – the number of inputs corresponding to the output .

As with the CEN process, the rate of change of is minus one, i.e.,

. (4.35)

The union of the sets and forms a generalized PLMP
describing the dynamics of the control process in the space of situations. The
predicted time for changing situations will be calculated by the formula

, (4.36)

where is the time of the -th step of the prediction.

Expression (4.36) means that the advance of time at each step of the forecast is
carried out to the nearest event in the models of the CEN and CO processes. After
each such step, the time values of the additional coordinates are recalculated. It
should be noted that in reality the moments of setting the input signals, calculated
by the predictive model, may not exactly coincide with the beginning of the next real
execution cycle. This fact will determine the accuracy of the forecast, which is caused
by discretization of the continuous time model.

The set of formulas defines the scope of the predictive definition. Based on the
preliminary syntactic analysis of these formulas, sets of output and input signals
are formed, which must be controlled during the forecast. In addition, information
is extracted from these formulas regarding the threshold values of the input analog
signals and the duration of the time intervals to be monitored. The mappings
are set in the form of correspondence tables. The mechanism for verifying the
dynamic properties of CA, given in the form of DCTL formulas, is discussed in detail
in the next subsection.

4.3.3. Dynamic Model Checking of DCTL Formulas on CEN

Following the verification task, we will use the implementation model presented
in the form of CEN to check the properties of the CA.

If we do not consider the development of the control process in the future but
restrict ourselves only to monitoring the given specifications in real time, the whole
solution may consist in calculating the values of the corresponding DCTL formulas
for the current situation. In this case, the verification task is reduced to checking the
formulas on the state model determined by the change of markings at a time.

This approach, although it allows for control over the implementation of CA,
is devoid of any predictive capability. To provide this opportunity, we will use
the Receding Horizon Strategy, which we will project onto the predictive model

112

described above. We will assume that the predictive time horizon is determined by
the PLMP obtained as a result of combining the list of events associated with the
planned triggering of delayed transitions of CEN and events occurring in the CO. In
this case, the total distance of the horizon at each cycle of the network execution will
be determined as follows:

, (4.37)

where – the execution cycle number;

 -th delay vector component CEN of CA in the -th cycle;

 -th delay vector component of the input signals in the -th cycle.

From Eq. (4.37) it follows that the predictive interval, determined by the horizon
remoteness, can change from cycle to cycle, which actually leads to a floating
predictive horizon as shown in Fig. 4.4.

Within the horizon set at each CEN execution cycle, it is possible to compute
formula values on states that include temporal operators, including those with interval
expressions. In this case, one counter is sufficient, which counts the real operating
time of the CA. However, to control the intervals specified for the propositional
variables, it is necessary to provide additional counters that would count the time
the predicate, indicated by the propositional variable, remains in the true state.

Let us denote to be the set of propositional variables with interval
expressions that are present in DCTL formulas for a particular CEN. Each variable

 will be assigned a time counter , which starts when the
variable becomes true and resets to zero when the variable becomes false. When
checking formulas on states that contain propositional variables with interval
expressions, the values of the counters must be checked to see if they satisfy
the given constraints.

Fig. 4.4. Predictive model implementation diagram.

113

More complex than checking formulas on states is checking formulas on trees.
The set of situations that inherit the current situation will be formed on the set
of possible options for marking input places and values of input signals. Among
the latter, let us single out those signals that are not considered in the predictive
model. Let us designate them as . These will be signals whose values cannot be
tracked by CEN, since they are determined by non-deterministic external conditions
of the control process. Such signals can arise, for example, as a result of the actions
of an operator, dispatcher, etc. We will assume that all these signals are discrete. The
influence of analog signals on the development of the control process can be set
by giving them the status of discrete signals. For input places , we will consider
only the fact of marking these places without taking into account the values of
the parameters, assuming that the parameters do not affect the calculation of the
decision procedures for conditional transitions.

Thus, all the many options that can develop in any situation will be equal
. Taking into account the remoteness of the predictive horizon in the -th

cycle of execution, the total number of options will be .

The input signals that are included in the predictive model (denote them) are taken
into account when calculating the DCTL formulas according to their values, which are
set at the time of verification. In this case, the analog signals are recalculated for each
execution cycle according to the corresponding equations, and we can assume that
their influence exactly corresponds to the condition of the absence of aftereffect. This
may not be the case for discrete signals.

For example, let us consider a case where the delay until the input signal is set
to the desired value is longer than the duration of a cycle. Such a case is shown in Fig.
4.6.

If the output signal for setting the input to the “1” state arrived at the moment
of time , then the corresponding reaction of the CO should be detected after a
time interval equal to . At each cycle, the predictive model should take into account

Fig. 4.6. Timing diagram of the prediction for a discrete signal.

114

the fact of signal generation, but not after interval , but after an interval equal to

, (4.38)

where – the number of the cycles following the initialization cycle of the output
signal.

Let us look at the procedure for calculating the value of the DCTL formula for a
particular situation. If we assume that the current situation satisfies the specified
interval constraints imposed on the operators, then the formula under the temporal
quantifier is subject to verification. To calculate it, we will use BDDs; however,
each binary propositional variable will be compared with predicates given on the
variables CEN. This correspondence can be displayed in a separate table. As example,
for formula see Table 4.3.

A decision diagram based on Table 4.3 can be displayed in the form shown in Fig.
4.7.

Table 4.3 Propositional Variables

Fig. 4.7. Binary decision diagram.

115

Following this diagram, the DCTL formula is calculated in the following order:

• first, all formulas of depth 0 are calculated: – predicates denoted by
propositional variables;

• then subformulas of depth 1 – and are calculated;

• then the sub-formula of depth 2 – is calculated;

• then the sub-formula of depth 3 – is calculated;

• and finally the formula of depth 4 is calculated – the original formula .

Since the formula contains a temporal operator, its calculation should be
postponed until the next cycle. This also entails a delay in the calculation of the
initial formula, which, due to the presence of the quantifier, should generally take
the final value only after the results of calculations on all paths of the situation tree
during prediction. When calculating each of the propositional variables for which
interval constraints are indicated, the conditions for their fulfillment according to the
readings of the counters must be checked.

The preliminary clarifications made regarding the specifics of calculations during
the implementation of the proposed predictive method allow us to go directly to the
description of the algorithm for checking DCTL formulas. This algorithm includes
two blocks of basic operations: an initialization block and a computation block. A
detailed description of the dynamic model checking algorithm is given below.

The initialization block is executed before the start of the CA and includes the
following steps:

1. Plotting BDD for each given DCTL formula. For each formula
define a set of formulas of depth 0 (propositional variables) a set of
formulas of depth 1 , etc. We will assume that the formula , where
is the set of -depth formulas included in the formula .

2. Allocation of a subset of input signals controlled by the predictive model. Using the
predictive model, select a subset of the input variables

3. Calculation of threshold values for input signals. For each analog input signal
 present in the table of propositional variables, a threshold value is

assigned equal to the constant written in the predicate corresponding to this signal.

4. Creation of CEN model of CO. Initialize the creation of a CEN of CO by setting
the number of X-type transition output places and Y-type transition input places to

. In the transition-queue T1, using the token generator, tokens are placed

116

that simulate the input signals. For all transitions of type T, the value of the activation
function is set.

5. Allocation of a subset of input signals that form computation trees
This set, together with a set of input places , will determine the options for the
development of situations when constructing situation trees, i.e., form a set

The block of calculations is executed in each cycle of the CA execution and includes
the following steps:

1. Fix the system execution cycle time. Store the system time of the current run
cycle in a variable TIME.

2. Form a set of verifiable formulas. Create set of formulas .

3. Choose a postponed situation. Extract place markings from a variety of
pending situations . If , then go to item 12.

4. Build an s-tree for the current situation. Form a set of binary vectors
 of lengths that differ in at least one

component.

5. Perform the cycle of testing – s-paths. If , then select an element, remove
an element from:, otherwise go to Step 3.

6. Check the compliance of the current system time with the interval constraints
specified for propositional variables. If , where – the value of the
time counter for variable ; – an interval expression that specifies the domain of
definition of a propositional variable, then go to Step 5.

7. Check whether the current system time matches the interval limits set for
temporal operators. If , where – an interval expression
specifying the domain of definition of the temporal operator, then go to Step 5.

8. Activate the CEN model of CO. For CEN transitions of the CO model
that are not in delay, the delay time is assigned according to the following rule:

• for discrete signals – ;

• for analog signals – , where is calculated
according to Eqs. (4.31) and (4.33).

For all transitions of type T, the value of the activation function is set in .

9. Calculate the values of formulas. For each formula , pass through its BDD

117

and sequentially calculate the values of all subformulas and the formula as a whole,
starting with subformulas of depth 0. In this case:

• if any subformula of the formula contains a temporal operator and its value
is equal to “false”, then replace this subformula with “false”;

• if any subformula of the formula contains a temporal operator and its value
is “true”, then replace this subformula with “true”;

• if any subformula of a formula contains a temporal operator , then remember
the values of all subformulas, calculate the value of the formula taking into
account the values of the previous step;

• if any subformula of the formula contains a temporal operator , then save all
the values of the formula obtained at each step of prediction, calculate the
value of the subformula when the value of the formula is “true”, and replace
the subformula with the obtained value;

• if none of the subformulas of the formula contains temporal operators, then
assign the calculated value to the formula, otherwise assign the
formula a value calculated without taking into account the temporal operators;

• if all subformulas of the formula containing the quantifier have received the
value “true”, then assign this value to the formula, ;

• if any subformula of the formula containing the quantifier received the value
“false”, then assign this value to the formula, ;

10. If , then go to item 12.

11. Pass through the forecast horizon. If , there are no delayed
transitions to either CEN of CA or CEN of CO, then go to Step 5, otherwise

• put the current marking in a lot of pending situations ;

• calculate the new value of the model time according to the formula

,

where – the delay time of the -th transition to the CEN of CA;

 – the delay time of the -th transition to the CEN of CO;

• make calculations for CEN of CA and CEN of CO;

118

• go to item 6.

12. Complete the algorithm. Assign the calculated values to all formulas.

4.4. Summary

The control algorithms specified by the control E-networks can be considered
reactive systems for which there are known classifications of dynamic properties
based on safety and survivability requirements. The most appropriate means of
specifying these properties are temporal logics, in particular, Timed Computation
Tree Logic (TCTL), which, nevertheless, does not allow taking into account interval
dependencies between events occurring in the control system.

To assess the dynamic properties of control systems in real time, a set of tasks
must be solved related to clarifying the temporal properties of control E-networks,
developing a dialect of temporal logic focused on control processes, and building
a predictive model that takes into account the specifics of interaction between the
control system and the external environment.

The temporal model of the control E-network includes a time model, a state
model and a computation model that determine the nature of the network behavior
in time. As a time model, a discrete-event model is adopted, which is characterized
by a change in the basic states of the network at times determined by the duration of
the CA execution cycle.

To ensure the determinism of the CA behavior in emerging situations, it is proposed
to use the dynamic synchronization procedure, which is built on the observance of
the introduced set of axioms that specify the cause-and-effect relationships between
network transitions. The reliability of the result obtained is confirmed by the proved
theorem on the conditions for observing the property of deterministic behavior of
the control E-network.

In order to specify the complex dynamic properties of CA, a new kind of temporal
logic is proposed – the interval logic of the DCTL computation tree, which allows
taking into account the temporal domain of definition of temporal operators and
individual propositional variables using interval expressions. The semantics of DCTL
logic formulas can be defined both on individual situations and on a tree of situations,
taking into account the possibility of non-deterministic behavior of the CO.

The predictive model used to analyze the dynamic properties of the ontrol system,
specified using DCTL logic formulas, implements the Receding Horizon Strategy
and makes it possible to take into account the hybrid nature of the control system
behavior, modeling it by means of an automatically created control E-network. The
coordinated execution of the CA model and the CO model is the essence of the used
dynamic verification mechanism, which applies a binary decision tree to analyze

119

formulas on predictable situations.

The developed algorithm for checking DCTL formulas on control E-networks
provides dynamic verification of the control process in real time, which creates
conditions for a timely response to emerging situations in order to prevent
undesirable developments by dynamically changing the control system.

Chapter 5. Recovery Models and their Construction

Like predictive models, recovery models must provide the control system with
missing information that cannot be obtained from the sensors through the input
data transmission channels. In this chapter, such a problem is solved by using models
created by means of computer graphics and computer vision, which are directly
embedded in the control loop. Computer recovery models make it possible to fill in
the missing information regarding the spatial location of the CO at the macro and
micro levels and thereby create conditions for the implementation of methods of
adaptive and multi-agent control based on model data. Recovery models play an
especially important role when the operator involved in decision making is included
in the control loop.

5.1. Cases of Computer Recovery Models

The role played by the recovery models in the CS of IMS is to implement a closed
control loop even in cases where the real capabilities of sensor devices do not allow
it. In such cases, the CO is replaced by a model, which should provide the CS with
all the missing information required by the conditions of the CS functioning. Most
often, such situations arise in control tasks with space-temporal information, which
concerns, for example, the relative position of the CO and its environment, the
location of the tool performing a complex technological operation on the surface of
the product, the spatial direction of energy fields, etc.

5.1.1. Man in the Control Loop

Undoubtedly, the most popular recovery models are the ones that involve the
active participation of the operator in the management of the system, as is the case,
for example, at nuclear power plants, when using deep-sea manipulation robots, in
the cockpits of airliners. Recovery models should be able to simulate the environment
and provide the operator with all the missing information through detailed real-time
reproduction of the state of spatial objects and its visualization. What cannot be seen
in real life must be available on the recovery model used. This use of recovery models
can be characterized by the well-known term “Man-in-the-Loop” (MIL) – “operator in
the control loop” (Pollini and Innocenti, 2000).

An example of building a control system using recovery models according to the
MIL version is shown in Fig. 5.1. The main distinguishing feature of a control system,

120

which contains an operator, is the presence of a display (monitor) with a Human
Machine Interface (HMI).

The input, or communication, processor processes information from the interface
modules, which gives a partial view of the state of the CO. It can be data on the spatial
location of the CO, for example, the values of the current coordinates, or indications
of navigation devices (direction of movement, speed, etc.). Information about the
state of the environment can also be partially obtained: temperature, air pressure,
and vacuum level. However, all this may not be enough for the operator to make a
decision, since all the information listed does not create the effect of presence, which
is achieved only with direct observation of the process. But even if such observation
is feasible, it may also be limited by a view angle, image scale, or even hidden by
nearby objects.

The visual computer model, which is displayed on the monitor screen, is able
to reproduce by means of graphical imitation all the details of the CO state in real
time and thereby compensate for the arising limitations of the observation system.
Typically, such a model is a three-dimensional representation of an op-amp immersed
in a synthetically generated environment. It allows the operator to observe the object
in all positions of interest using the controls.

Such a representation of CO in combination with a synthetic environment most
fully corresponds to the modern concept of Virtual Reality (VR) (Delaney, 2017).
Allowing with the same success for the simulation of quite tangible, as well as more
abstract objects (for example, magnetic fields or turbulent flows), virtual reality
technology helps reproduce the entire production process from the development of
the product concept to the stage of its operation. At the same time, virtual reality
provides, as a rule, the creation of more complex models than when using other
methods. For example, when working with a virtual model, the motor housing can be
made transparent so that its internal structure is visible for observation.

It should be noted that virtual reality as recovery models can be used at various

Fig. 5.1. MIL case of recovery model usage.

121

stages of the product life cycle:

• creating products, when the simultaneous work of several departments at
different stages of design is required;

• forming tasks for technological lines without use of real product samples;

• testing the created control programs;

• evaluating the developed plans, etc.

In all cases, the use of virtual models provides not only high quality control of the
design process, but also significant time and cost savings, eliminating the need to
create physical prototypes.

Another important application of the MIL control option is personnel training.
Simulation of real operating conditions of systems can be used for training pilots
and operators of complex industrial installations. The virtual object will allow you
to work out all control operations, including even those that arise in the event of
breakdowns, equipment failure or due to extreme external conditions of operation. It
also saves time, money, and at the same time prepares you to act in the most difficult
situations.

Finally, the most important aspect of using virtual recovery models is the
implementation of remote object management. Surveillance cameras that are
actually used can be replaced by virtual computer models that change synchronously
with the actions performed. In this case, the location of the observation means can
be chosen by the operator independently. The main requirement that such recovery
models must meet is high modeling accuracy.

5.1.2. Hardware in the Control Loop

The need for recovery models may not be limited to the operator. Reconstruction
may be subject to the conditions of real processes when they are evaluated by
hardware solely from the obtained images. This is often the case, for example, in
automatic detection and tracking systems.

For example, the recognition of cartographic information in missile homing
systems, the detection and classification of target marks on the radar screens, the
training of the tool paths along the marked lines on the surface of the products and
the tracking of the specified trajectories of movement are the tasks that are solved by
hardware automatically directly from the digitized images of objects obtained.

These images can either be displayed on monitors for observation by operators,
or hidden for observation, remaining in the computer memory. The important thing

122

is that these models are an integral part of the control process, closing the feedback
loop. Such use of recovery models will be called “Hardware-in-the-Loop” (HIL).

Figure 5.2 shows a recovery model usage diagram for HIL case recovery model
usage.

A distinctive feature of this scheme is that the HMI no longer plays a decisive
role and is only an auxiliary element in the CS structure. All actions for analyzing
the situation and making decisions are carried out automatically by hardware,
which can combine sensors (observation equipment) and actuators, together with
controllers that ensure their work. This means that it is not the creation of virtual
reality pictures that comes to the fore in the construction of reconstruction models,
but the acquisition of a high-precision image of the CO and its recognition.

The key point for the successful functioning of a CCS that implements the
use of recovery models according to the HIL option is the high speed of input/
output channels and high-speed data exchange between hardware and software.
Computations related to the recognition and classification of digitized images should
be completed no later than it is provided by the cycle of functioning of the hardware
complex. Real-time operation in sync with the control program is a fundamental
requirement for HIL recovery models. This can be achieved using highly efficient
digital image processing and recognition algorithms. No less important is the speed
of data transmission channels.

5.1.3. Recovery Model Design

An analysis of the use cases of recovery models in the control loop shows that
their implementation is associated with the creation of virtual reality display models
and image recognition models. In the MIL variant, display models prevail, while in
the HIL variant, the main burden falls on the recognition models.

The main requirement for display models is the maximum compliance with the
situation arising in the control process. In addition, the formation of virtual mappings
should occur in real time, ensuring that the model is synchronized with the position

Fig. 5.2. HIL case recovery model usage.

123

of the CO. In addition to display models, a requirement for extensibility can be put
forward – the possibility of complicating the virtual world model with new objects
and properties.

Recognition models, in turn, should provide automatic recognition of the current
state of the CO based on its images obtained using observation tools. Since the
problem of recognition is solved automatically, the main requirements for it are
efficiency and flexibility. Efficiency means that the time of recognition (acquisition,
processing and analysis of the image) should not increase the duration of the control
cycle, and flexibility implies the ability of the system to recognize arbitrary objects
both with and without preliminary training.

The listed requirements make it possible to formulate a list of tasks that must
be solved when building recovery models. Mapping models in the structure of
reconstruction models should perform the following functions (Dorf and Bishop,
1998):

1. To simulate virtual three-dimensional representations of the CO state and its
position in the surrounding space. At the same time, the required accuracy in the
presentation of image details that are important from the point of view of the control
process must be ensured, and the use of color gamut to convey the internal state of
the displayed objects.

2. To provide an opportunity for the operator to actively influence the resulting
virtual display by changing the viewing angle for inspecting any point of the CO and
objects of the external environment, as well as by changing the image scale.

3. To scan the states of the control process, based on the data received from the
sensors. In fact, it is necessary to give the operator the possibility of situational
control of the object, based on the provided virtual display.

The functions of recognition models used when working with images differ from
those inherent in the classical formulation of the mathematical theory of recognition
(Silbert and Hawkins, 2016). In a pure form, the theory of recognition considers
situations that are characterized by the absence of order relations specified on the
set of object attributes. It is assumed that each object is identified with some point
of the multidimensional attribute space, and the class of objects is represented by
a compact set of such points. The task of recognition is to assign an object to one
or another class, and knowledge of the formal description of the object itself is not
required.

In contrast to this approach, in image recognition, mathematical problems arise
associated with the formal description of an image as an object of analysis (Schyn
et al., 2003). In this case, information should be used that reflects the mechanism
of image formation – both the image as a whole and the objects represented on it.

124

The structure of the image allows determining what objects can be distinguished in
the image, how elementary they can be, and in what relationships they are located.
Moreover, image analysis is only part of the overall recognition task in this case.
Based on the information contained in the image, a model should be obtained that
gives an idea of the shape of the object. In the future, this model can be used in CS
when implementing one or another control method.

Thus, the recognition models used in the control loop should provide:

• construction of an image model as an object of mathematical analysis;

• formal description of the structure of the recognition object;

• conversion of image models to a form convenient for recognition;

• restoring the shape of an object using image models;

• training on reference images.

It should be noted that the considered recovery models can closely interact
with each other in the process of solving control problems. The expediency of the
connection between them follows from considerations of the maximum information
content of the display subsystem, on the one hand, and the high efficiency of the
recognition subsystem, on the other. In particular, the use of these models makes it
possible to implement methods of adaptive and multi-agent control of the IMS, which
are based on the acquisition and analysis of visual information. Moreover, what is
especially important, the application of these methods is possible at all levels of
control, as well as with the involvement of predictive models.

5.2. Virtual Reality Models

5.2.1. Display Subsystem Structure

The display subsystem is intended for virtual display of objects. Moreover, both
real objects and models of objects of the virtual world are subject to display. The
block diagram of the display subsystem is shown in Fig. 5.3.

The main components of the display system are:

• monitor – a set of hardware for the presentation of virtual reality;

• frame generator – algorithms for creating virtual display frames;

• images of objects in virtual space;

125

• image supervisor – an algorithm for managing the interaction between object
images;

• control unit – a set of hardware for receiving control commands from the
operator (sensors, drives, consoles, etc.);

• display supervisor – an algorithm for controlling the viewing angle in the
virtual world;

• database (DB) of object images containing three-dimensional models of objects
from which frames are formed.

The display subsystem has three main elements that perform control functions:
frame generator, image supervisor, display supervisor. Let us consider them in detail.

5.2.2. Frame Generator

The block diagram of the frame generator is shown in Fig. 5.4. The main
components of the frame generator are the following:

• OpenGL Graphics API – libraries of graphic functions of the OpenGL standard,
which transform the commands of the standard into the form required for the

Fig. 5.3. Block diagram of the display subsystem.

126

complex of display hardware;

• API callings service – an extension of the implementation language that allows
using the OpenGL standard;

• Compiler of API callings – a language extension that converts higher-level calls
into commands of the OpenGL standard;

• Calling of primitive – language words that call the image of an object consisting
of primitives;

• Calling the view angle – language words that control the view angle.

5.2.3. Image Supervisor

The structure of the image supervisor is shown in Fig. 5.5. The main components
of the image supervisor are the following:

• Image access API – provides access to the attributes of images;

• Display rule analyzer – analyzes the rules of behavior of objects and executes a
request to the image attributes to change them in accordance with the analysis
results;

• Object behavior rules – a set of rules that determine the features of the behavior

Fig. 5.4. Block diagram of the frame generator.

127

of objects (an object can be transparent for other objects, hidden, etc.);

• Behavior rule t description language compiler – compiles the rules for mapping
objects written in the object description language into expressions in the
programming language;

• Image attribute generator – executes a request via the image access API to
change the attributes for the corresponding images;

• Object relationship analyzer – analyzes the rules of relations between objects
and makes a request through the API access to the attributes of images to
change them in accordance with the results of the analysis;

• Object relationship rules – to define relations between objects. For example,
when an object rotates around its axis, then all objects associated with it can
rotate. At the same time, the movement of an object does not affect objects that
are not associated with it;

• Relationship rule description language compiler – compiles the relations
between objects written in the language of the rules of relations into the rules
of relations for the programming language;

Fig. 5.5. Block diagram of the image supervisor.

128

• Preprocessor of requests for changing the state of objects – state change
requests are divided into three categories: requests to change object display
rules, requests to change object attributes, and requests to change relations
between objects.

5.2.4. Display Supervisor

The structure of the display supervisor is shown in Fig. 5.6.

The main components of the display supervisor are the following:

• Request generator – creates a request to change the position of the surveillance
camera;

• Active camera – model of the active camera from which the observation is
carried out at the current time;

• Model of camera 1, .., Model of camera N – a stack of cameras that are needed
to quickly switch from one place of virtual space to another while maintaining
the position at the current point;

• Commands compiler – converts commands from the control unit hardware
complex into camera model commands;

Fig. 5.6. Block diagram of the display supervisor.

129

• Camera control commands API – language extension for managing a stack of
cameras;

• Behavior scripts API – language extension for script execution. A script is a
sequence of commands, the execution of which is similar to a certain sequence
of control actions, for example, a script of a standard traversal of some part of
the virtual world;

• Scripting request compiler – scripting requests in the virtual world are compiled
into scripts in a programming language.

5.2.5. Technics for Constructing Display Models

Three-dimensional images for the display subsystem can be developed in two
main ways:

• created from a set of standard objects, which are a straight parallelepiped, cube,
sphere, cone, pyramid, cylinder, etc.

• generated according to the given descriptions using any graphics software
system that supports standard 3D formats: Autodesk 3dsMax, 3D Bruce
Models, NuGraf Rendering System, OpenGL, etc.

A view of a welding robot model built from standard objects created using the
OpenGL library is shown in Fig. 5.7.

The basic objects (primitives) in this case are a cylinder and a straight
parallelepiped. The number and position of the primitives used are specified using
parameters, and the generated object is represented as a tree of inherited primitives.

 a) view angle 1 b) view angle 2

Fig. 5.7. Welding robot display model view.

130

The process of developing such a model in the NuGraf Rendering System is shown
in Fig. 5.8.

The image database can be expanded by introducing new objects. Figure 5.9
shows the process of developing scene objects for a welding chamber using Autodesk
3dsMax.

5.3. Image Recognition Models

An image is usually understood as one or more projections of a spatial object
obtained using an observation system. Therefore, the task of automatic recognition
deals with flat images with all their inherent processing features. This applies to both
the procedure for obtaining an image and its preliminary filtering, and recognition
of the contours of objects. The end result of recognition should be the restoration of
information about the state of the object, which is necessary for making a managerial
decision and, above all, the shape of the object.

 a) image design b) image representation

Fig. 5.8. Welding robot model development process.

Fig. 5.9. Expansion of the virtual world with new models.

131

5.3.1. Recognition Subsystem Structure

Consideration of the image recognition models used in the control loop will be
carried out on the example of the CCS for electron beam welding machines.

The problem that arises during the welding process is the precise hitting of the
electron beam in the middle of the joint between the edges of the products being
welded. Considering that the joint can have a width of tenths of a millimeter, it is
impossible to do this process without using special observation means. In addition,
welding must be carried out inside a vacuum chamber, which isolates the operator
from direct observation of the welding process. It is possible to ensure contact with
the joint in such conditions only by obtaining and processing enlarged images of the
joint. Moreover, it must be done in the process of moving the electron beam over the
surface of the product synchronously with the movement and taking into account the
interference caused by the influence of strong electric and magnetic fields. The use of
television cameras in this case is limited only at the stage of preparation for welding
and is excluded at the time of welding.

Thus, the task of image recognition in the welding process includes:

• obtaining an image of the product surface at the welding site;

• filtering of the received images;

• recognition of the joint area in the resulting image;

• accurate detection of the middle of the joint;

• restoration of the joint trajectory.

The functional structure of the recognition subsystem, which provides the
solution of the recognition problem in this setting, is shown in Fig. 5.10.

This structure reflects the sequence of functional tasks solved in the process of
image recognition. It should be borne in mind that there are no universal models of

Fig. 5.10. Functional structure of the recognition subsystem.

132

images that have the necessary degree of constructivism for all recognition problems.
In this regard, at each of the stages, an image model of a certain type is formed, which
is then converted into a model of the next level. We can say that a hierarchy of image
models is formed with its inherent transformation procedures. If we denote an image
, and the transformation applied to it , then the whole recognition process will

consist in defining on the equivalence classes a set of algebraic transformation
systems such that, where .

The advantages of the proposed approach are that the decomposition of the
general recognition problem into a sequence of stages makes it possible to reduce
the complexity of the solution due to the sequential use of various image models and
their mutual transformations. It should be borne in mind that all stages of recognition
should be performed at the rate of development of the process synchronously with
the movements of the electron beam. Let us consider these models in more detail.

5.3.2. Sampling and Quantization Models

To process an image on a computer, it must be converted to a finite set of numbers.
However, the image is primarily some kind of signal that conveys information to
the surveillance system. Therefore, the task of forming an image is a task of signal
processing for the purpose of its sampling.

Among discrete signaling models, the most widespread models are the ones that
are focused on the positional representation of image elements. In them, the image is
a matrix , each element (pixel) of which contains some characteristics
of the original image. The main advantage of the matrix representation of the image
is to preserve the structure of the original image. Such representation of video data
is also called direct, and it allows for easy implementation of their digital processing
(Gonzalez and Woods, 2018).

When processing signal information, two basic procedures are used: sampling
and quantization. The goal of sampling is to build an image matrix for some
limited space. In the course of further processing, only the signal values recorded
in the elements of the image matrix will be used. The classical way of discretizing
continuous signals, which are real images, is the application of the Nyquist–Shannon–
Kotelnikov theorem. Despite the fact that this theorem admits a trivial generalization
to the two-dimensional case, it is of little interest in computer observation systems.
When working with images, the sampling rate should be significantly higher than
that determined by the results of spectral analysis.

Quantization consists in mapping the values of brightness (for black and white
images) and color (for color images) into integers. It is correct to assume that 8
bits (256 levels of brightness) are required to represent most images, and in many
practical tasks, in particular, for welding robots, 4 bits (16 levels) are sufficient. But
fewer bits guarantee less processing time, which is critical in control tasks.

133

Currently, spatial sampling of images is carried out, as a rule, using hardware by means
of electronic scanning. Moreover, in these cases, sequential processing is sufficient. As a
result, the two-dimensional function of brightness , describing a flat image, is
converted into a one-dimensional function of time using line-
frame scanning. Such systems are usually called raster systems. With the cyclical
operation of the observation equipment, all points of one frame have the same
reference time.

For example, in an EBW machine, a special device is used as such observation
equipment. This device has a number of advantages over other surveillance means,
including television (Nazarenko, 1993). Its principle of operation (Fig. 5.11) is
based on the measurement of the energy of secondary electrons, which, after being
reflected from the joint, are captured by a special sensor installed at the end of the
electron gun.

As a result of these measurements, a signal is generated, and then it is processed

Fig. 5.11. The principle of operation of the joint recognition equipment.

Table 5.1 Parameters of the generated Joint Image Frame

134

by a special electronic board. The board converts in real time the signals of the
secondary electron sensor into digital codes, which are sent to the computer in
the form of separate frames. The computer program, based on the received data,
generates an image frame, which has the parameters shown in Table. 5.1.

An image frame is saved in the computer memory for further processing. It can also
be displayed on the monitor screen for operator observation of the joint. Although
this operation is not required when using the HIL variant, it is quite convenient
because it allows you to trace the entire recognition process. In some cases, as, for
example, when teaching the paths of joints, it is mandatory.

The view of the joint image formed using the sampling and quantization models
is shown in Fig. 5.12.

The joint on the monitor screen looks like a narrow dark strip, the smooth surface
of the products being welded – a light area on both sides of the joint. Both the joint and
the surface of the products have a fairly uniform texture. In the computer memory,
information about the image frame is presented as a two-dimensional array (matrix).
The number in each cell of the matrix corresponds to the brightness of the dot, which
depends on the value of the flux of secondary electrons captured by the sensor. There
four bits are used to define color results in 16 shades of gray with brightness ranging
from 0 (for the darkest pixel) to 1:5 (for the lightest pixel).

For a more visual representation of the image, each pixel of the matrix is
represented by four pixels on the monitor screen, which at a set resolution of
640×480 gives an image magnification of about 1: 5 (Fig. 5.12 a). When the ZOOM
option is enabled, the size of the scanned area is halved, which corresponds to a
representation scale 1:10 (Fig. 5.12 b).

It should be noted that technical systems do not have the task of lowering the

 without increasing in ZOOM mode.

Fig. 5.12. View of the joint image on the monitor screen:

135

image contrast by using histogram equalization procedures. This circumstance is a
positive factor, since no additional time is required for the primary image processing.

5.3.3. Filtering Models

The need to filter interference in technical surveillance systems is primarily
associated with the effect of various physical fields caused by the operation of
equipment and nearby mechanisms. Therefore, any technique for accounting for
interference should be adequate to the real situation and the adopted recognition
concept, since the general procedure for eliminating interference by introducing a
certain random scatter of feature values in some cases leads to the appearance of
additional errors.

The simplest technique is linear space-invariant filters (threshold, moving
average, recursive, etc.), which are widely used in time signal processing. However,
the relationship between noise removal and blurring of the edges of an image means
that line filters should be used with caution when processing images. In particular,
they are not suitable for our task, which requires a clear image of the joint against
the background of product surfaces. In technical systems, it is more often required
not to smooth out the contours of areas, but to eliminate the gaps in image areas and
changes in texture that occur due to interference.

Filters, the use of which precisely removes noise from areas located inside the
image regions, without causing blurring of its edges, are much more complicated
than a simple linear transformation. They form a class of non-linear filters. Among
the latter, the most widely used for spatial image filtering is the method of anisotropic
filtering (Olano, 2001). A discrete interpretation of this method leads to the relation

, (5.1)

where – an element of the filtered image matrix located at the intersection of
the -th row and the -th column;

 – an element of the image matrix distorted by noise, which is located at the
intersection of the -th row and the -th column;

 – an element of the aperture (additional matrix in size) located at the
intersection of the -th row and the -th column;

 – a filtering threshold (constant);

 – a threshold function.

For complete filtering, the image matrix is symmetrically supplemented with
elements equal to zero so that the resulting size is equal to the

136

elements, where is the size of the image in pixels. Note that for , the
averaging algorithm takes place. In addition, when filtering a quantized image, it is
necessary to introduce a set of thresholds, the power of which is equal to the number
of brightness gradations (in our case, these are 16 values). The element is assigned
a value corresponding to the maximum threshold that exceeds the sum on the right
side of Eq. (5.1).

The filtering quality increases with increasing aperture size . However, at
the same time, the time spent on calculations increases proportionally . In practice,
it is enough to have , which gives good quality with a short filtration time. The
aperture of this size corresponds to Table 5.2.

Elements are usually selected based on a normal uncorrelated bivariate
distribution, the maximum of which coincides with the center of the aperture. The
smaller the standard deviation of the distribution , the more weight is given to the
central element if the next normalization condition is met:

. (5.2)

Practice shows that narrow apertures () are more effective at a low noise
level, while wide () – at a large one. In this case, the values range from 0.4 to
0.02.

Anisotropic filtering works successfully in many situations; however, in the
above application, the structure of the image is not taken into account, while such
information can be useful in solving a specific filtering problem. In particular, in EBW
it is a priori known that the joint has sufficiently smooth edges and, therefore, its
image should not have large gaps and thinning. Based on this information, you can
improve the anisotropic filtering method using the idea of constructing a composite
filter. This filter calculates the gradient of the original image.

One could first simply apply a linear directional filter to the image and then perform

Table 5.2 Aperture Size

137

anisotropic filtering. In this case, we will have an obvious loss of performance. It will
be more efficient to use a linear directional transform together with the aperture at
a single filtering step. In this case, a narrow aperture with can be chosen,
since when the weight of the central element is 1, the other elements with

 are not filtered. It can be accepted , since for it there are already
known from practice values . As you can see, in this
case, the aperture degenerates into a matrix , and eight predefined directions
from the central element can be set for it, which can be investigated when calculating
the image gradient. Taking into account these directions, each pixel of the image
corresponding to the aperture will, in addition to coordinates, be characterized by an
angle of location relative to the central element of the aperture:

, (5.3)

where is the direction of the aperture element specified by coordinates.
The coordinates and directions will be counted according to Fig. 5.13.

The gradient of the image point coinciding with the center of the aperture is
defined as a vector directed towards the maximum decrease in brightness, assuming
that the joint is always represented by a dark stripe. The gradient value is calculated
by the formula

, (5.4)

where – the brightness value of the -th pixel, counting from the central
element of the aperture in the direction ;

 – the specified length of the direction vector;

 – the direction of the gradient.

Based on Eqs. (4.3) and (4.4), the final formula can be obtained for calculating the
brightness levels of image pixels during filtering

Fig. 5.13. Coordinates and directions of aperture.

138

, (5.5)

where when and when – the
threshold function.

Figure 5.14 shows the images of the joint before (Fig. 5.14 a) and after (Fig. 5.14 b)
the application of the anisotropic filtering method together with a directional filter.

Thus, using the applied filtering model, it is possible to restore the areas of the
joint image distorted by interference (indicated by red squares) and clear the surface
texture of the sample.

5.3.4. Contrasting Models

Many manufacturing tasks require precise definition of the boundaries of objects
in order to isolate their shape or find the middle pixels. The anisotropic filter,
although it does not introduce additional blurring of the edges, does not solve the
contrast problem. Figure 5.15 shows an example of the various contrast options that
may arise in practice.

To increase the contrast, special algorithms are used that perform image
reconstruction functions. These algorithms usually implement the idea of linear

Fig. 5.14. View of the joint image before (a) and after (b) filtration.

Fig. 5.15. Examples of image contrast: a) perfect border; b) blurred border.

139

filtering, when the original image is converted to an image as a result
of applying a linear transformation

. (5.6)

Known methods for determining boundaries mainly used as linear transformations
the convolution of image points with template. For example, for convolutions along
the x-axis and y-axis, respectively, the Sobel method (Parker, 1999) uses templates of
the form that is shown in Fig. 5.16.

Eight templates with size are used in the method of contrasting with
directional gradient masks (the number of templates corresponds to the number
of main directions: north, northeast, etc.). The course name indicates the direction
of the slope of the brightness difference at which the template gives the maximum
response. It should be noted that in all methods using templates, the latter have zero
total weight; therefore, in image regions with constant brightness, they give zero
response. The disadvantage of the listed methods can be considered that they all use
static templates that do not take into account the real values of the brightness of the
image pixels and their relative position.

With the existing information regarding the structure of the analyzed image, the
construction of templates can be improved by making this process dynamic. Unlike
simple filtering, we need to reorganize the original image to highlight the difference
at the levels of the seam image and the background area. At the same time, we will
adhere to the following assumptions:

1. The joint is always displayed as a dark bar and has the lowest brightness level.

2. The brightness of the joint points should not change, which means, taking into
account clause 1, there should be no correction towards decreasing brightness for
any points.

3. The diagonal of the template is oriented in the direction of the gradient of the
image point corresponding to the center of the template.

Fig. 5.16. The forms of image templates.

140

Under the assumptions made, the algorithm for calculating the template for all
image points will include the following steps:

1. Select an element of the image in size (each side of the original image
should be initially increased by 1 pixel).

2. Align the template with the image point and set the central element of the
template to 1.

3. Calculate the gradient of the point .

4. Divide the image element by the diagonal into two disjoint subsets and ;
set all elements of the template located on the diagonal to 1.

5. Calculate the average brightness of the pixels for each formed subset

.

6. Compare the brightness of the subsets with the brightness of the average pixel:
if , then all elements of the template that cover ,
assign the value 1, but the elements – the value 2, otherwise all elements of the
template get the value 1.

7. Apply transformation to the image element 5.6.

An example of a template generated by this algorithm is shown in Fig. 5.17.

Figure 5.18 shows a view of the joint image obtained before and after applying the
contrasting method described above.

Fig. 5.17. Dynamically generated template.

Image element5 3 24 3 14 3 3 2 1 12 1 12 1 1Gradient Template

141

5.3.5. Segmentation Models

Segmentation allows you to select homogeneous areas of images, such as a joint.
The main methods traditionally used in segmentation are thresholding, boundary
detection, and augmentation of areas.

The first two of the listed methods are based on determining the difference in
the brightness values of pixels, while the segmentation method by augmentation
involves finding groups of pixels with similar brightness values. In its simplest form,
it also involves selecting a pixel and examining adjacent pixels to check the proximity
of brightness values. If the brightness values are close, then the corresponding pixels
are included in the same group to form a region. In this case, the area is formed by
splicing individual pixels.

However, it is more efficient to use in segmentation not separate points, but
entire areas. There is, for example, a group of methods related to digital morphology
(Latecki and Gross, 1995). The concept of digital morphology is that pixels are
assembled into groups that have a given structure. These groups of pixels are called
shapes, or building blocks. The main morphological operations that are applied to
already selected pixels are deleting and adding shapes. As a rule, binary templates
are used, consisting of two types of pixels: white and black, which are designated 1
and 0, respectively.

Formally, the operation of adding a template is defined as

, (5.7)

where – the image to be segmented;

 – a figure template.

Sketchily, the operation of adding shapes looks as shown in Fig. 5.19.

Fig. 5.17. Dynamically generated template.

Image element5 3 24 3 14 3 3 2 1 12 1 12 1 1Gradient Template

Fig. 5.18. View of the joint image before (a) and after (b) contrasting.

142

For gradient images, it is possible to propose, instead of binary templates, the
calculation of the average brightness value for all pixels of the template. The same
condition can serve as a constructive rule for constructing the template itself:
those pixels that do not worsen the uniformity (average brightness) of the area will
be enrolled in the template area. As a result, templates of a certain shape will be
generated dynamically in the course of segmentation.

By combining the augmentation method with digital morphology, it is possible
to obtain a more efficient algorithm for selecting areas to be recognized, since whole
groups of pixels will be added at once. This algorithm will include the following steps:

1. On the original image, determine the first element belonging to the seam area
(perform training) with brightness .

2. Determine the width of the joint (the diameter of the smallest circle,
homogeneous to the first element).

3. Determine the direction of the joint by circular scanning the image with a
vector of a given length. The direction of the joint will correspond to the direction of
the vector of image pixels, which has the lowest brightness (darkest); assign .

4. Having chosen as the base , construct a rectangular area with a width equal
to , and a length equal to , located perpendicular to the calculated direction
of the joint.

5. Check the homogeneity of the resulting area. If the average brightness of the
area has not improved, i.e., , then assign and go to
item 4, otherwise go to item 6.

6. If , then go to item 7, otherwise assign , where is the median
element of the side of the rectangle opposite to the base, which was obtained in the
previous step; go to Step 3.

7. Finish selection of the joint area in the image frame.

Figure 5.20 shows a view of the segmentation model built using the augmentation
method with digital morphology for joint recognition.

Fig. 5.19. Scheme for adding a template.

143

5.3.6. Thinning Models

Skeleton models are used to restore the geometric properties of objects to be
recognized, in particular the path of the joint.

At this stage, the original regions obtained as a result of segmentation are
converted into lines one pixel wide. This approach is most widespread in the problems
of character recognition, but it can be successfully applied in technical vision systems.

The basic technique in skeletal models is thinning. It is an iterative procedure that
eventually extracts the skeleton of an object. At each iteration, a border pixel that
has at least one pixel adjacent to the background is removed if it does not violate the
object topology. There are two main requirements that a thinning model must satisfy:

• if the object is connected, then the result must also be connected;

• the line obtained after thinning should pass in the middle of the area subject to
thinning.

The thinning algorithms based on the use of templates have become most popular
in recent years. The principle of their work is to iteratively align the template with the
image and remove the middle pixels. The original image is gradually thinned until the
last layer of boundary pixels is reached.

An example of this kind of algorithms is the Stantiford’s algorithm (Parker, 1999).
It uses a set of four templates of the size shown in Fig. 5.21.

Note that when checking images, only template pixels marked with circles are
considered. The rest of the pixels are not counted. In addition, the Stantiford’s
algorithm considers binary images whose pixels are marked with either 0 (white) or
1 (black). Application of templates is based on two definitions.

Fig. 5.20. Joint image segmentation model.

144

Definition	5.1. An endpoint is a black pixel that has only one bordering black pixel
out of eight adjacent pixels.

Definition	5.2. The indicator of the connectivity of an image element covered by
a pattern is the number of connected components that are formed when the central
pixel is removed.

In Fig. 5.22, image elements with different connectivity indicators are given as an
example: .

Within the template, pixels are numbered counterclockwise, starting from the
pixel to the right of the center. The center pixel itself is numbered 0.

Let us apply the Stantiford’s algorithm for thinning the image of the joint, slightly
modifying it. In particular, we will calculate the connectivity index of the central pixel
by the formula:

. (5.8)

Further, let us perform the following steps:

1. Convert the image obtained after segmentation to a binary form, assigning all
black pixels of the selected area to 1, and all other pixels to 0.

2. Find an element of the image A that satisfies the pattern , sequentially passing
through the image with this pattern along the top border of the image from left to
right and from top to bottom.

Fig. 5.22. Examples of picture elements with different connectivity indicators.

Fig. 5.21. Patterns for removing pixels by the Stantiford’s algorithm.

145

3. If the central pixel of the image element A is not the end point and has a
connectivity index equal to 1, then this pixel is marked for deletion.

4. Repeat Steps 2 and 3 for all image points that match the pattern .

5. Delete all points marked for deletion.

6. Repeat Steps 2–4 for all templates . The pattern passes, starting from
the left edge of the image, sequentially moving from the left edge of the image from
bottom to top and from left to right. The pattern passes from the bottom edge of
the image, moving sequentially from right to left and from bottom to top. The pattern

 is traversed starting from the right border of the image, moving sequentially from
top to bottom and from right to left.

7. Repeat Steps 2–6 until at least one pixel is removed.

Figure 5.23 shows the result of this thinning algorithm.

Note that always after applying the thinning model, an image of the selection is
one pixel wide.

5.3.7. Trajectory Restoration Models

Analysis of the majority of applied problems of image processing shows that most
often a distinctive feature of an object is its shape.

The set of points obtained as a result of the primary image processing must be
converted into a mathematical description of the object shape. The requirements for
such a description depend on the recovery goals. In some cases, it is necessary to
obtain a description of the outline of the selected area in order to then use it for
classifying objects. In the problem we are considering, the trajectory of the joint
of the welded products is subject to restoration, which should set the program for
moving the electron beam.

Fig. 5.23. View of the joint image before (a) and after (b) the thinning algorithm.

146

There are several problems associated with the restoration of trajectories. Finding
a trajectory passing through a given set of points is an interpolation problem. If it is
necessary to draw a trajectory near a given set of points, then the approximation
problem is solved. Finally, when it is necessary to reproduce the curve according to
the obtained mathematical descriptions, the problem of computer graphics is solved.

From a mathematical point of view, interpolation problems are easier to solve.
However, in many cases, an approximation is more appropriate. First, data distortion
is often caused by the presence of noise, which should not be mistaken for actual
deviations. Second, the tool movement program is usually specified as a set of standard
CNC commands, including linear and circular interpolations; spline interpolations,
like Bezier polynomials, do not always reproduce the trajectory correctly, since they
allow for unwanted deviations in the spacing between points. The latter problem can
be partially overcome by localizing and interactively defining glue points. However,
for automatic systems of the HIL class, this solution is no longer trivial.

With the existing tolerances for accuracy, the trajectory can be successfully
reconstructed by an automatic approximation. The choice of reference points in this
case is replaced by measures of proximity, precisely determined mathematically. Note
that the approximation by splines with variable knots generally cannot be solved by
strictly mathematical means.

Let us consider an automatic approximation algorithm that provides trajectory
reconstruction from the resulting image. The limitations of this algorithm are as
follows:

• a sequence of points obtained as a result
of primary image processing at the stages from sampling to refinement is
considered the initial data;

• only trajectories defined on the plane are considered;

• approximation is carried out using segments of straight lines and arcs of circles
starting at fixed points, which are the gluing points of the local areas (trajectory
segments) selected during the operation of the algorithm;

• the Least Squares Method (LSM) is used to calculate the parameters of the
approximating functions.

The automatic approximation algorithm includes the following steps:

1. Select the path segment that includes the first three points in the sequence .
Assigned to – a starting point number, – a segment last point number.

2. – a sign of linear interpolation, – a sign of

147

circular interpolation. If , then go to Step 6. The possibility of approximating
the selected trajectory segment consisting of points with a straight
line segment is checked. Straight line coefficients are calculated by the
formulas:

, (5.9)

where .

3. The error of linear approximation is calculated by formula:

, (5.10)

where – the distance from a point to the interpolating line.

If , where is the specified accuracy of the linear approximation, then
the initial point of the approximating straight line is fixed, the error of
the corrected linear approximation is calculated by Eq. (4.10) and, if , then

 and the transition is to item 2.

4. . If , then go to Step 6. The possibility of approximating the
selected trajectory segment consisting of points by an arc of a circle

 is checked. The unknown coefficients a, b, and c, which are
used to calculate the radius of the circle , are determined using the
system of equations

, (5.11)

where , , , , , ,

, , .

5. The maximum error of circular interpolation is calculated:

, (5.12)

where – the distance from the point to the interpolating circle;

 – the distance from the center of a line segment connecting two adjacent points
of the segment to the approximating circle.

148

If , where is the specified accuracy of circular interpolation, then the
starting point of the approximating circle is fixed, the error of the
corrected circular approximation is calculated by Eq. (5.12) and, if , then

 the transition is to Step 4.

6. If , then the circular interpolation is set for the segment
. If , the linear interpolation is set for this segment,

otherwise the linear interpolation obtained for the segment at . If
and , the points of the segment are connected by straight line segments,
forming a piecewise linear approximation.

7. A new segment is selected. If , then go to item 8, otherwise
go to item 2.

8. Complete the algorithm.

5.4. Summary

The main purpose of the recovery models is to provide the CCS with the missing
information that cannot be obtained from the sensors through the input data
transmission channels. There are two main options for using recovery models
(operator in the control loop and hardware in the control loop), which define two
classes of computer recovery models: virtual reality display models and image
recognition models.

Display models perform functions associated with displaying virtual three-
dimensional representations of the CO position in the surrounding space with the
ability to change the viewing angle and image scale. Taking into account the scanning
of the CO state according to the data coming from the sensors in real time, it is
possible for the operator to carry out situational control of the object, based on the
provided virtual display.

The technique for constructing virtual representations is based on the use of a
display subsystem that includes a frame generator, an image manager and a display
scheme manager as structural components. The used images of objects can be
created either on the basis of a set of typical elements, or formed using well-known
graphic systems.

Models of image recognition imply the sequential application of methods of
obtaining images, filtering the obtained images, contrasting and segmentation of
images to select target areas, as well as their refinement to restore the resulting
trajectories in the form of graphic models.

To speed up the processes of obtaining and processing images, as well as to ensure
high quality recognition, a set of methods and algorithms has been used. It includes:

149

an improved method of anisotropic filtering, taking into account the structure of
images, an improved contrasting method using dynamically created templates, and
an improved segmentation method by building up with simultaneous application of
digital morphology. These methods can be applied not only to the control loop of
EBW machines, but also to other control problems using recovery models.

Chapter 6. Software and Hardware Tools for MOC

In the process of applying model-based control, it is necessary to solve two
practical problems: the creation of CA models for their preliminary debugging and
their integration into the control loop of technological process. The main difficulties
arise in the development of technology that supports the use of implementation and
predictive models, since recovery models are based on standard instrumental and
operational environments.

6.1. Technology for Creation of Implementation Models

6.1.1. E-net Modeling System

The E-nets Modeling System (EMS) (Kazymyr et al., 2011) is a tool for creating
software implementation models which is available at http://195.69.76.84:8080/
ems-ui-vaadin-0.1-SNAPSHOT/. The main difference of EMS is that it combines
the power of simulation with the ease of creating software models of CA. The JAVA
language has been chosen as the basic programming language, which is not only an
object-oriented language corresponding to the chosen formal approach, but also
provides cross-platform program execution.

E-networks in combination with an aggregate approach are used as the formal
apparatus involved in EMS. Thus, this system of simulation modeling fully meets the
needs of building models for the implementation of CA and can be successfully used
as a software environment for their development and preliminary research.

EMS functionality is focused on supporting the full life cycle of simulation models,
including the development of conceptual, formalized and programmatic models.
This modeling system allows you to create new models for the implementation
of CA; modify existing models and perform statistical experiments with models
at the design stage of the CA. In addition, EMS contains a graphical web-interface
with specification language that enables models to be built by a user with no prior
programming background.

The EMS architecture is shown in Fig. 6.1.

The main part of this architecture is a model. An aggregate is used to store the
structure of the model. It can contain base elements of CEN, such as transitions,
positions, variables including temporal formulas, as well as nested aggregates inside.

150

The model contains a reference only to the root aggregate; the objects of the root
aggregate are taken into account when the model is run. Thus, in essence, a model
is also an aggregate and can be used precisely as an aggregate in other structurally
more complex models. The main difference between the model and the aggregate
is that the latter cannot be launched to carry out experiments and collect statistical
data.

Variables defined by name, type, and value can be defined at both the root and
nested aggregate levels. The scope of a variable is determined by the aggregate in
which it is created and the child aggregates. The token is determined by the position
at which it is set, which allows creating several tokens in the aggregate with a
different set of attributes. Each attribute, like a variable, is characterized by a name,
type, and value.

The main window of the EMS system (Fig. 6.2) is visually divided into several
parts.

The elements of the main window of the system are the following:

• Model – a graphic editor of models;

• Components – a set of E-network components for building models;

• Aggregate – a library of aggregates (templates for creating models). This
window displays previously created aggregates that the user can reuse in other
models;

• Model components – display the internal structure of the model in the form of
a hierarchy tree, which contains all the elements of the model at all its levels;

• Console – a system console, which displays errors and other messages related

Fig. 6.1. EMS architecture.

151

to the modeling process. For example, when the system starts, the message
“System started” is displayed in the console.

• Main menu of the system for setting parameters and performing simulation;

• Quick launch toolbar.

By default, all panels of the system are active; however, if necessary, they can be
disabled/enabled using the main menu command View Model components Panel
name.

The creation of models carried out in graphical mode on the basis of the developed
components includes the following stages:

1. At the first stage of creating models, it is necessary to determine its conceptual
scheme, i.e., to determine its structure. Since in the proposed approach the model
is a set of pyramidal growing aggregates, it is, first of all, necessary to create the
aggregates of the model. There are two ways to call the unit creation window (Fig.
6.3): using the File New Aggregate main menu item or the “A” button on the quick
launch panel.

In the window that appears, the user enters the name of the unit and chooses
the method of its creation: from a “blank slate” or on the basis of previously created
units, in the latter case, the user selects the unit from the list and presses the “Choose”
button.

2. At the second stage, it is necessary to create (edit) the internal structure of

Fig. 6.2. General view of the main window of the EMS system.

152

the unit. Adding the components of the E-net to the unit is performed by sequential
clicking of the mouse first on the corresponding component in the Components
panel, and then in the model editor. As a result of these actions, a new component is
added to the unit, its image appears in the editor, and the name is entered into the list
of components of this unit in the Model Components panel. The possibility of moving
objects is provided, which makes it possible to represent the internal structure of the
unit in the most convenient and ergonomic form.

After determining the required components of the unit, it is necessary to connect
them in order to define a network that follows the logic of the conceptual model.
Components are connected using the “CONNECT” element, which is also selected on

Fig. 6.3. Model aggregate creation window.

Fig. 6.4. Formalized aggregate model.

153

the Components panel. Note that connecting a transition with a transition, as well
as a position with an E-net position, is impossible. However, it is possible to connect
an aggregate with an aggregate, which is dictated by the need to create hierarchical

Fig. 6.5. CEN model of aggregate.

Fig. 6.6. CEN model with nested aggregates.

154

aggregates; in addition, the aggregate can be directly connected to a position
and play the role of a transition in the network. It is possible to construct broken
communication lines and move them in order to improve the convenience of building
a network.

An example of a formalized model consisting of aggregates is shown in Fig. 6.4.

Another example of a formalized model of an aggregate in the form of a CEN
is shown in Fig. 6.5. One more example (Fig. 6.6) shows the possibility of building
hierarchical models that include nested aggregates that are used as CEN transitions.

3. The final stage of building a model aggregate is the task of marking the
network, determining the variables of the network, as well as setting functions on
the transitions of the network. For marking, it is necessary to select the “MARK”
component and click on the corresponding position of the E-net – the token will
be displayed in the middle of the position. Double-clicking on the token calls the
attribute editing window (Fig. 6.7).

A similar window is called for editing network variables, using the main menu
item of the system or the “V” button on the quick launch panel. The scope of a variable
is limited to the aggregate, in which it is created and is available to nested aggregates.
The top-level unit does not have access to the specified variable.

To set the values of the functions, it is necessary to select the required transition;
double clicking on it calls the function editor window (Fig. 6.8).

The transition functions are defined in the special E-nets language (EL). By
default, the delay function is zero, the permitting function also returns zero by
default, which corresponds to the first input / output position of the transition,
and the transformation function does not perform specific actions. The permitting
functions are defined only for “X” and “Y” types of transition.

Fig. 6.7. Token Attribute Editor window.

155

6.1.2. E-net Language Definition

E-net Language is a high-level interpreted language that is used in EMS to define
the CEN transition functions by the user. The interpreter converts EL constructs into
Java sentences.

The EL supports the following data types:

1) INTEGER – integers in the range from -263 to 263 -1 (0, 128, -144);

2) REAL – real numbers, the exponent can take values from -2147483648 to
2147483647 (-0.05, 32E + 2, 2E-3);

3) BOOL – Boolean data type (TRUE, FALSE);

4) STRING – text data type, the number of characters in a line is not limited
(“LINE”, “LINE”).

Language identifiers are used to specify variable names and consist of any
sequence of letters, numbers, or underscore. A digit cannot be the first character. The
names must not match the values of the keywords.

Variable declarations begin with the VAR keyword followed by the variable name.
Repeated announcements are prohibited. At the moment of declaration, the variable

Fig. 6.8. Transition function editor.

156

can be initialized by a certain value, otherwise it will take an undefined value. For
example:

VAR INIT = 4.5;

VAR UNINIT.

Using EL, the user has the opportunity to organize a full interaction with the
model. To refer to aggregates, it is necessary to use the key character A, to the root
aggregate – ROOT, to tokens – T, to positions – P, to variables – V.

To access an aggregate variable, you must refer to the required aggregate using
the key character A with the aggregate identifier or key word ROOT to access the root
aggregate and specify the variable name. For example:

VAR X = V [‘r01’];

ROOT.V [‘t02’] = TRUE;

A [8] .V [‘as’] = “STRING”.

To access the attributes of a token, you must refer to a certain position in the
aggregate. If no aggregate reference is specified, the current aggregate is accessed.
For example:

A [2]. P [11] .T [1] = 12.5;

P [2] .T [2’] = TRUE.

To check the presence of a token in position, the T key character is used. The type
of the calculated value is BOOL:

VAR isPlace1Marked = P [‘place1’]. T.

Mathematical operations are defined for the INTEGER and REAL types. In the
case of using an operand of a different type, the result of the operation will be an
undefined value (unless the operator used for this type, for example, ‘+, can be used
to concatenate strings). The resulting type is INTEGER or REAL. Allowed operators:
‘+’ – addition; ‘-’ – subtraction; ‘*’ – multiplication; ‘^’ – exponentiation; ‘-’ – sign
change; ‘!’ – sign change for BOOL variables; ‘/’ – division. Division by zero results in
an undefined value.

Comparison operations are defined for all data types. Allowed operators: >,> =,
<, <=, ==,! =.

157

Logical operations are defined for the BOOL type. If an operand of a different type
is used, the result of the operation will be an undefined value. Allowed operators:
‘&&’ – logical AND; ‘||’ – logical OR; ‘!’ – negation; ‘-’ – negation.

The concatenation operation is defined for STRING data type by using the ‘+’
operator.

Conditional operators are used to skip or execute some statements depending on
the computed values of the given constructs. Operators can be grouped into blocks
using brackets. Defining constructs are of two types:

1) Explicitly specified logical expression. Example:

VAR X = 0; IF (‘a’ == ‘b’) X = -92; ELSE X = 92; RETURN X; // = -92

2) Check for the existence of a value. Example:

IF (‘aa’) RETURN 2; ELSE RETURN -2; // = 2

Operator RETURN returns the specified value, and operator TIME returns the
current simulation time, type INTEGER value.

The following functions are defined for values of INTEGER and REAL types:

• SIN (X) – sine, result – REAL;

• COS (X) – cosine, result – REAL;

• TAN (X) – tangent, result – REAL;

• COT (X) – cotangent, result – REAL;

• ATAN (X) – arctangent, result – REAL;

• LN (X) – a natural logarithm, result – REAL. The function is defined for
argument values > 0;

• SQRT (X) – a square root, the resulting type corresponds to the type of the
argument, the function is defined with the argument values > = 0.

The following functions are defined for any value of type INTEGER and REAL:

• ABS (X) – a module, the absolute value of the argument. The resulting type
matches the type of the argument.

158

• SIGN (X) - 1 for X> 0, 0 for X = 0, -1 for X <0

• ENTIER (X) is the largest integer not exceeding X. The computed value type is
INTEGER.

Functions for obtaining random variables use the internal congruent generator
of pseudo-random numbers, which generates sequences of random numbers. Each
time before starting the interpretation, the generator is initialized with the current
time value in ms. These functions are the following:

• SEED (X) – initializes the random number generator with the INTEGER, for
example, SEED (60,000);

• POISSON (X) – generates integers distributed according to Poisson’s law with
parameter X. Type of parameter X is INTEGER or REAL, the returned value
is INTEGER; the function is defined for argument values > 0, for example,
POISSON (2.5);

• UNIFORM (A, B) – generates numbers evenly distributed over the interval [A,
B] (B > A); parameters A and B are INTEGER or REAL. The returned value type
is INTEGER. The function is defined for values B > A, for example, UNIFORM
(2, 10.9);

• EXPONENTIAL (X) – generates exponential distributed numbers with the X
parameter of INTEGER or REAL types, the returned value type is REAL, for
example, EXPONENTIAL (10.9);

• NORMAL (A, B) – generates numbers distributed according to the normal
law with expectation A and standard deviation B. Type of parameters A, B –
INTEGER or REAL, the returned value type is REAL; the function is defined for
values B > 0, for example, NORMAL (2, 10.9);

• BINOMIAL (A, B) – generates numbers distributed according to the binomial
law with the number of trials A and the probability of success B; parameter A
is INTEGER, range from 0 to 231-1 inclusive, B – INTEGER or REAL, range from
0 to 1; the type of the returned value is INTEGER; for example, BINOMIAL (2,
0.4).

In EMS, the followed operators of temporal logic DCTL are used:

• AG – the condition must be fulfilled in all ways, in all states;

• AF – the condition must be fulfilled on all paths, at least in one state;

• EG – the condition must be fulfilled in at least one way in all states;

159

• EF – the condition must be fulfilled in at least one path in at least one state.

The formula that will be checked with these operators determines the condition
that must be met and will be checked for each state of the model. The formula
can consist of several expressions that are combined by a logical operator during
determination of experiment conditions.

6.1.3. Simulation Process in EMS

EMS organizes the simulation process on three levels:

1) meta level (conceptual model) – modeling of interaction of aggregates, i.e.,
work of model as a whole;

2) macro level (mathematical model) – modeling of functioning of separate
aggregates;

3) micro level (software model) – modeling the functioning of E-network
transitions.

Execution of the simulation program at the meta level begins with the compilation
of a list of aggregates containing events scheduled for the current model time.

At the macro level, the first aggregate is activated, after which the list is adjusted
by removing this one from it. This will happen until all the aggregates planned for the
current time have elapsed, as a result of which the list of aggregates will be empty.
The activity of the aggregates depends on whether they have ready-to-operate
transitions. If a transition at the current time has to end its active phase, the related
notification in the control list is removed and the transition becomes executable.

When all the planned and ready-to-operate transitions have been completed, the
simulation program begins to check the presence of output signals in the model units
by viewing the interface matrix. If the output signals are available, the states of the
units change according to the coupling schemes, which, in turn, can lead to another
adjustment of the list of ready-to-operate units. These steps are repeated until all the
planned units have been worked out and all the external signals have been worked
out.

Model time advances on the principle to the nearest event, which leads to a
significant acceleration of the modeling process compared to the principle of a
constant step. To implement the discrete-event modeling adopted in the EMS system,
the capabilities of the basic language in terms of organizing simulation experiments
were used. Scheduled moments of transitions firing are fixed in the control list. Since
event notifications are arranged in a strict order of time, it allows simply calculating
the time of the next event, leading to a change in the model state.

160

The micro level implements the process of functioning of individual transitions
that make up the unit. Execution of any transition involves the sequential passage of
the following three phases:

a. readiness, when the transition is not in a delay and the condition of its triggering
(analysis of positions related to this transition) determined by a specific type
of transition is satisfied;

b. delays, when the time is counted until the transition is triggered; the phase
duration is determined by the transition delay time, which must be calculated
before entering the delay phase; the state of the transition positions until the
end of the delay phase does not change;

c. firing when, after the delay time has elapsed, there is an instant change in
the marking of the transition positions by moving the tokens from its input
positions to the output ones in accordance with the rules for triggering
transitions of this type; at the same time, the values of the attributes of the
tokens placed in the output positions and the model variables are changed in
accordance with the specified transition transformation procedure.

Simulation with the use of predictive models involves checking of all possible
paths in CEN model, which are formed through the use of X-Transition, which provides
the choice of alternatives, and F-Transition, which provides the branching of the path.

When the “X” type transition fires, all input positions are checked and which of
them was triggered during a specific simulation is compared. There can be only one
such position. Its name is added to the path being checked, and information about it
is added to the resulting path map.

When the transition type “F” is analyzed, the passage is analyzed in all paths. If
the output position of this transition is not the last, its name is added to the stack and
new path is added to the resulting path map. Next, a recursive method is called, which
performs a passage to the end of the path with a return to the place of branching.
Then another position is removed from the stack and the current path number is
increased for further passage. After all the starting positions are passed, there is an
exit from the recursion.

For all transitions of other types, only one position is selected, which is added to
the map of the current path.

The check of execution of the set formula of TL is carried out for each position of
each path, and results of such checking accumulate in the map of states of positions.

161

6.1.4. Processing of Statistical Information in EMS

EMS provides two types of collected statistics distinguished by their level of
definition: primary and secondary. Primary statistics characterizes the operation of
transitions and states of positions during the simulation and can be specified both for
all aggregates of the CEN model and for those selected by the user using the graphical
interface subsystem.

As a result of collecting primary statistics in the form of tables (Fig. 6.9), the
following information is displayed:

1) position (transition) number;
2) occupied coefficient calculated as the total time of occupation of a position (de-

lay for transition), which is divided by the simulation time, for queues – the
average length of the queue is given;

3) number of passed tokens through the position (transitions), for queue posi-
tions – the number of tokens that visited the queue during the simulation in-
terval;

4) average occupied time of a token staying in a position (staying in a delayed
transition state), equal to the total busy time divided by the number of fires; for
queues – the average time spent by tokens in the queue.

It is important to note that when calculating the standard numerical characteristics
displayed in the tables of primary statistics, data are accumulated for all performed
runs, while the value of the simulation interval is determined as the total time of all
performed runs. Thus, it is possible to obtain data on the operation of the E-networ
objects for the entire experiment.

Fig. 6.9. Tables with the results of primary statistics.

162

Primary statistics provide detailed information about the dynamics of the
simulation process and can be actively used at the stage of model debugging. However,
it should be remembered that collecting primary statistics is time consuming.
Therefore, when studying a model with a large number of runs, it is recommended to
disable the collection of primary statistics, which can be easily done when forming
an experiment using the graphical user interface subsystem. At the same time,
the primary statistics may be sufficient to obtain complete information about the
characteristics of the studied models of interest to the user. In addition, EMS provides
for the selection of CEN objects, for which it is necessary to collect primary statistics
during the experiment.

For a more complete presentation of the experiments carried out in EMS, the
possibility of obtaining secondary statistics is implemented. Secondary statistics
reflects the behavior of certain characteristics, which are responses of the modeled
system to the given values of its parameters, which are used as factors. It is possible
to vary the values of the factors. In this case, the resulting report will represent the
dependence of the response on the selected parameter in the form of graphs or
histograms, examples of which are shown in Figs. 6.10 and 6.11.

During the simulation with the use of a predictive model, a logical result variable
is initialized, which is assigned the correct value. Then, depending on which operator
was selected, the following is performed:

1. If “AG” – a passage through all the alternative paths and checking for at least
one false value, the detection of which concludes that the resulting variable is also

Fig. 6.10. Graph of average queue length changing in time.

163

false, and further analysis does not make sense; otherwise, the result remains TRUE.

2. If “AF” – an auxiliary map is initialized to accumulate the results in every path;
the passage is performed on all paths and it is checked whether the path has true
states; the result of this check is recorded in the auxiliary folder; after passing, the
result is formed, which will be true if the auxiliary map does not contain false values,
otherwise – the result is false; the generated result is assigned to the result variable.

3. If “EG” – as in the previous case an auxiliary map is initialized to accumulate the
results in every path; the passage is performed on all paths and it is checked whether
the path has wrong conditions; the result of this check is recorded in the auxiliary
folder; after the pass, a result is formed that will be true if the auxiliary map contains
at least one true value, otherwise the result is false; the generated result is assigned
to the resulting variable.

4. If “EF” – an auxiliary map is initialized to accumulate the results in every path;
the passage is performed in all paths and the presence of at least one correct condition
is checked; the result of this check is recorded in the auxiliary folder; after the pass, a
result is formed that will be true if the auxiliary map contains at least one true value,
otherwise the result is false. The generated result is assigned to the result variable.

Fig. 6.11. Histogram of average queue length changing in time.

164

Based on the result of model checking the execution of the formulas of DCTL, the
resulting table is formed (Fig. 6.12).

Evaluation of the success of the TL formulas is given as the results during a multi-
run experiment.

6.1.5. Organization of Simulation Experiments in EMS

EMS provides both strategic and tactical planning of the experiment. With regard
to the strategic planning of the experiment, the system provides for only one-factor
experiments. In this case, the parameters of the model are assumed to be constant,
and only one of them is changed over the entire range of values. If necessary, you can
sequentially conduct an experiment for each parameter separately.

The parameter that changes during the experiment is called a factor, the values
of the parameter – the levels of the factor, the obtained values of the investigated
quantity corresponding to the levels of the factor – the responses. The number of
factor levels is not limited and is set indirectly by determining the initial and final
values of the factor, as well as the interval of its change. In a particular case, only one
point of the selected parameter can be specified, which will correspond to a single-
level experiment.

Regarding the tactical planning of the experiment, EMS provides two options for
carrying out the simulation:

1) with a predetermined number of runs to obtain each response point at fixed
values of the factor;

2) the determination of the required number of runs in accordance with the rule
of “automatic stop”.

In the second case, the assumption of independence and normal distribution of
response values is used. This assumption is based on the application of the central
theorem of probability theory. The mathematical expectation of the response is taken
as the parameter estimated using the expectation value.

Fig. 6.12. The resulting table of model checking.

165

The “automatic stop” rule is based on the confidence interval method. In this
case, let us assume the accuracy d of the mathematical expectation E. The response
y and the level of significance , which guarantees that E falls inside the intervals

 with the probability , are assumed. In this case, Y is the mean
value calculated over a sample of volume N and is an estimate of E.

EMS provides options for calculating confidence probabilities for the three most
frequently used confidence probabilities p, equal to 0.90, 0.95 and 0.99. The values
of the deviations d, characterizing the accuracy of the estimate of the mathematical
expectation E, at the specified confidence probabilities p are calculated on the basis
of two-sided statistics with a normal distribution and correspond to:

, (6.1)

, (6.2)

, (6.3)

where d – a given confidence interval;

D – variance;

N – the number of runs (sample size).

The algorithm for choosing the number of model runs to obtain an estimate with
a given accuracy includes the following steps:

1) the initial value of the sample size N is set, equal to 30, and the sample mean
and the corrected variance of the estimate are found from the sample of this size;

2) according to one of the formulas (6.1, 6.2, 6.3), selected in accordance with a given
confidence probability, the value of the achieved confidence interval is found;

3) the specified accuracy d is compared with the achieved accuracy . If the
inequality is fulfilled, the required accuracy is achieved in N runs, and the
algorithm goes to Step 5. Otherwise, Step 4 is performed;

4) one more run of the model is performed, the value of N is increased by 1 and
the transition is to Step 1;

5) the end of the experiment.

Therefore, to enable the “automatic stop” rule, at the stage of setting the
experiment parameters, the user must set the values of the confidence probability
and the required accuracy of the result – the confidence interval.

166

The experiment is started via the model menu item (Fig. 6.13).

The experiment parameters are set in a special Experiment Setting window
(Fig. 6.14).

Mandatory fields for starting an experiment are the following: experiment name,
model time, and number of model runs. To collect statistical data, you must specify
additional parameters of the experiment: select the required statistics collection
mode (or both), specify the network components for collecting primary statistics, set
the factor values and determine the response. In the case of distributed modeling, you
must also specify as parameters the name of the federation in which the modeling is
performed, as well as the IP addresses of the clients on which the models will run and
the specified statistics are collected.

Fig. 6.13. Menu to start experiments.

Fig. 6.14. Experiment Setting window.

167

Additionally, parameters for automatic stop mode can be set in the Experiment
window (Fig. 6.15).

Parameters for experiment with model checking of TL formula are set in

Experiment TL setting window (Fig. 6.15) that is opened by Start TL Experiment
item.

Required fields to run a TL experiment are the following:

• name of the experiment;

• model time;

• number of runs of the model;

• operator of temporal logic;

• formula that will be checked by this operator.

Fig. 6.15. Automatic stop setting.

168

The formula determines the condition that must be met and will be checked
for each state of the model. The formula can consist of several expressions that are
combined by a logical operator.

The EMS provides a special window with information about the progress of the
experiment, as a result of which the user receives information about the number of
runs (if a multiple experiment is specified), factor levels (if a factorial experiment is

specified) and the time remaining until the end of simulation (Fig. 6.16).

For modeling large models, the system supports the distributed simulation
capability based on the High Level Architecture (HLA) standard (HLA, 2017). In
the distributed mode, the models are executed on the simulation servers, on which
the Java Virtual Machine (JVM), the Tomcat application server and the EMS must be
preinstalled. To perform distributed modeling, it is necessary to create federation
and federates based on the developed models via HLA item of the main menu (Figs.
6.17 and 6.18).

Fig. 6.15. Experiment TL setting window.

Fig. 6.16. Experiment progress window.

169

The interaction of simulation servers in the NLA is carried out through a special
service called Run-Time Infrastructure (RTI). The EMC uses the Portico software
implementation of RTI (Portico, 2021). All data exchange between federates takes
place through RTI (Fig. 6.19).

6.1.6. Storing Models in EMS

EMS uses XML format for storing and serializing data. Petri Net Markup Language
(PNML) is an international standard (PNML, 2021) that defines the format for
storing the structure of a Petri net in XML. PNML allows you to store information
about positions, transitions, connections between them, as well as data about the
coordinates of each object, its color, signature, etc. when displaying a Petri net.

Fig. 6.17. Federation creation window.

Fig. 6.18. Federate creation window.

A Federation

Run-Time Infrastructure

Federate A Federate CFederate B

Fig. 6.19. HLA component interaction scheme.

170

To work with CEN models, the international PNML standard has been expanded
(Fig. 6.20) by adding new PNML attributes to transition and place objects, taking into
account such features of CEN as:

• the presence of transitions and queues of different types;

• the presence of nested aggregates;

• the ability to set functions at each transition;

• availability of various input / output variables;

• the presence of a token with attributes.

Fig. 6.20. CEN PNML expansion.

171

Different models may include aggregates of the same structure, but with different
parameters. The EMS introduced the concept of the type of aggregate as a set of all
aggregates with a single structure. This approach makes it possible to reuse the
developed aggregate in different models, but at the same time to save the description
of its structure only once. If necessary, it is possible to change all aggregates of the
same type in different models, if during the development of the model the user made
adjustments to its structure.

Below is an example of XML file describing the model in an extended PNML
format:

<?xml version=”1.0” encoding=”UTF-8”?>

<model xmlns=”http://www.cs.stu.cn.ua/jess/enetsdefinitions”>

 <rootAggregate type=”Root”>

 <aggregate name=”A1”>

 <transition name=”T1”>

 <transformationFunction type=”el”>

 RETURN 9 + 1;

 </transformationFunction>

 </transition>

 <aggregate name=”child”>

 <place name=”P1”>

 <initialMarking>

 <attribute name=”attr” value=”12.34” />

 </initialMarking>

 </place>

 </aggregate>

 </aggregate>

172

 <aggregate name=”A2”>

 <variables>

 <variable name=”varName” value=”34.56” />

 </variables>

 <transition name=”T1”>

 <transformationFunction type=”el”>

 RETURN rand;

 </transformationFunction>

 </transition>

 <queue name=”queueName”>

 <priorityFunction>

 RETURN 1;

 </priorityFunction>

 </queue>

 </aggregate>

 </rootAggregate>

</model>

This approach makes it possible to automate the process of constructing software
models and serialization of data based on their XML descriptions, as well as to set
standard graphic data defined by the standard for all objects of the CEN.

6.2. Technology of Embedding Models into the Control Loop

The advantage of the considered technology for the development and study of
models for implementing AC using EMC is that these models actually implement
control programs, which can then be directly executed by controllers. It means that

173

for the practical application of the control algorithms developed and programmed
in the CEN language, it is sufficient to construct a software interpreter of the
implementation models capable of executing a set of CL instructions on the chosen
hardware platform. For this purpose, it is necessary to solve two main problems:
to develop algorithms for the operation of a software interpreter and to provide a
model execution environment.

6.2.1. Model Interpreter

The main task of the model interpreter is to ensure the cyclicity inherent in
reactive systems. In this regard, it is necessary to provide for the possibility of forced
initialization of the aggregate when transferring control to it by sending a token. For
this procedure, the input boundary positions have the INIT flag, which can be set
for a position if the receipt of a token in it should cause the restoration of the initial
marking of the aggregate and the initial values of its variables, as well as the reset of
the delay time counters of all transitions.

Compliance with working cycle determines two main differences in the operation
of the interpreter of the modeling system and the controller that directly controls
the process. The first difference is the concept of time used. If in EMS the simulation
occurs in model time, which advances from event to event recorded in the control
list, then the controller monitors real time, which moves from cycle to cycle and is
compared with the time of scheduled events.

The second difference is related to signal changes. In the simulation system, it is
allowed working with signals as with ordinary variables, i.e., changing their values
using assignment operators. When executing a control program in the controller,
emulation of the values of input signals inside the transition transformation functions
is not allowed. These functions can only set the output signals.

The controller cycle structure includes four main phases, which are executed
sequentially (Fig. 6.21).

At the beginning of the cycle, the interpreter reads the values of the input signals
using calls to the runtime functions. The resulting input values are assigned to the
aggregate variables. These variables make up shared memory, the state of which is
frozen until the next cycle.

In accordance with the EMS methodology for constructing CA implementation

Fig. 6.21. Controller cycle structure.

174

models, there are three levels of operation of the software interpreter when executing
the control program code:

1. Meta level (model level) – the work of the aggregate model as a whole, including
the synchronous cyclic execution of aggregates and ensuring their interaction
by passing tokens.

2. Macro level (aggregate level) – operation of an individual aggregate in
accordance with its CEN scheme.

3. Micro level (transition level) – the work of CEN-transitions according to the
rules encapsulated in the corresponding classes.

The meta-level algorithm includes the following steps:

1. Walk through the list of aggregates. Model aggregates are sequentially activated.

2. Check the marking of the boundary positions. If no boundary position has
received a token, go to Step 4.

3. Activate the aggregate linking scheme. The marking of the input positions is
changed. Go to item 1.

4. Change the model time. The model time value is set equal to the current real
time. Go to item 1.

The work of the interpreter at the macro level includes the following steps:

1. Check the initialization sign. The marking of the input boundary positions
with the initialization sign is checked. If at least one such position is marked,
the initial state of the aggregate is set. It does not change the marking of the
boundary positions.

2. Walk through the list of transitions of the aggregate. If the transition is of type
X or Y, then it is entered into the list of pending transitions, otherwise it is
activated. If there are no transitions ready for firing, go to Step 4.

3. Pass through the list of pending transitions. If at least one transition has
worked, then go to Step 2.

4. Return the control. Go to the meta level.

At the micro level, the interpreter performs the actions caused by the activation of
the transition, which include the following steps:

175

1. Change the transition delay time. If the transition is in delay, then the remaining
delay time is calculated. Then go to Step 6.

2. Check the conditions of readiness. Calculate the decision function and
verification of the transition readiness conditions. If the conditions are not
met, then go to Step 6.

3. Check the activity of the transition. If the conditions are not met, then go to
Step 6.

4. Calculate the delay time. If the value of the delay time is calculated, then place
the transition in the list of delayed transitions and go to Step 6.

5. Fire the transition. Execute the conversion function. Change the marking of
transition positions in accordance with the triggering scheme.

6. Return the control. Go to the macro level.

At the end of the processing of the control program code, the obtained values of
the DCTL formulas in the units are checked. The formula receives the value TRUE
only if this fact is confirmed by all the aggregates in the model. Then, for each formula,
the program performs actions to change the transition functions, which consist in
changing dynamically an internal variable, which influences the control program by
changing the control parameters or control path.

The final act of the software interpreter is setting the values of the output signals.
This operation is carried out by calling special functions of the runtime environment
that provide interaction with the hardware environment.

The algorithm of the software interpreter described above is repeated when it is
used as part of the EMS modeling system. In the latter case, at the meta level, both
the plan of the experiment is additionally tracked and the end time of the simulation.
In addition, at the stage of designing models, the use of a runtime environment with
special functions for interacting with the external environment is not required. In this
case, it is possible to implement a distributed simulation. However, it should be noted
that when using models as control programs for controllers, there is no need to use a
special mechanism for synchronizing the execution of transitions. Real time, which is
involved in calculating the duration of cycles in the controller, is itself a synchronizing
factor that tracks the pace of processes in the realization models.

6.2.2. Porting of Runtime Interpreter

Algorithms for interpreting implementation models when used in real control
systems require the presence of a runtime environment in the form of the necessary
software. Regardless of the chosen programming language, the runtime environment

176

must provide:

• deterministic CA operation in real time;

• timing with high resolution;

• direct work with memory when using input-output ports;

• support for network communication using standard protocols in the case of
distributed use;

• multithreading when executing model components.

To a large extent, these requirements are covered by real-time operating systems
(RTOSs), the most famous of which are VxWorks and QNX. All these systems
are commercial; therefore, it is possible to use their own methods of organizing
computations and, most importantly, embed the runtime environment in arbitrary
processor devices.

The greatest flexibility in resolving this problem can be provided by Linux, which
is a full-blown operating system, and for which there are versions of Java virtual
machines. More importantly, Linux is freely distributed along with the source code.
This allows you to develop and modify this operating systems (OS) to the level of
Real-Time Linux (RTLinux) in order to use it as a basic runtime environment for
implementation models.

However, taking into account the need to support a distributed control scheme,
it is required to provide a porting of Linux OS to a specifically used microprocessor
hardware platform, taking into account the existing limitations on hardware.

As a target hardware platform, let us consider a RISK processor family with the
MIPS architecture, which has already become widespread among embedded systems.
For example, these processors are known to be used as a platform for a compiling
system, including mobile applications.

Among the main requirements for Linux OS ported to the RISK platform, we
define the following:

1. The use of real memory without a hardware memory manager (Memory
Management Unit –MMU). Fulfilling this requirement will provide significant
resource savings.

2. Compliance with existing standards, primarily for compliance with the
POSIX (Portable Operating System Interface) specification. Fulfillment of this
requirement will ensure compatibility of the developed programs for Linux OS

177

at the source code level.

3. The need to support a USB interface for connecting external devices and
organizing field buses, as well as accompanying microcontrollers restrictions
on available memory.

The result of solving this problem should be the creation of a Plinux OS capable
of running on an RISK processor without an MMU as an execution environment for
implementation models.

The developed Linux porting technology includes the following sequence of steps:

1) selection of the base kernel;

2) analysis of the structure of the kernel in order to determine the hardware
dependent parts of the code that require modification;

3) determination of the core limitations due to the lack of MMU;

4) determination of the organizational features of porting;

5) kernel modification.

Choosing a base Linux kernel for modification.

Among all known Linux kernel versions targeting embedded systems without
MMU, a version called uClinux (read as “you see linux”) may be considered (Ungerer,
2005). It can be considered a universal relative to the supported platform. The
advantages of this OS version include a large number of freely available versions of
the kernel without MMU, libraries and utilities, as well as the USB support needed in
the uClinux.

In the version of Plinux discussed below, uClinux was used as the base OS kernel,
which was reworked taking into account the requirements formulated above. Note
that choosing the most suitable kernel as the base is an important consideration as it
determines the overall development time.

An analysis of the internal structure of the kernel of the uClinux operating system
shows that the hardware-dependent sections of the program code that require
changes when porting Linux to another hardware platform include:

1. In the task manager:

• the function of generating a new process. It is required to set the process context
to the initial state;

178

• the function of loading the program into memory exec(). It is necessary to create
a program loader in ELF and / or other formats, the implementation of which is
largely determined by the hardware architecture of the chosen platform;

• the function for switching the context of the schedule() task;

• initialization of the null task idle(). It is required to set the process context to
the initial state;

• changing the structure of the process context, as well as the sequence of its
saving and restoration, taking into account the hardware architecture.

2. In the memory manager:

• changing the level of paging to work with real addresses (without MMU);

• changing the level of memory areas, since in real memory addressing, a memory
area should be allocated from pages that continuously follow each other;

• removal of the brk() function, since there is no way to change the size of the
memory area after its allocation (since the memory area must consist of
continuously successive pages).

3. In the subsystem of interaction between processes (Interprocess
Communication – IPC), all components are hardware-independent, except for the
functions of shared memory. They cannot be implemented due to the lack of an
MMU. Therefore, these functions should be redesigned as stubs, i.e., they should
always return an error code.

Kernel functionality limitations.

Separately, we note the limitations in the functionality of the uCLinux OS kernel
compared to the Linux kernel functionality caused by the lack of virtual addressing:

1. No memory protection – processes can address all memory types, including
kernel memory.

2. No swapping – since memory pages are located at real addresses, it is impossible
to swap pages between memory and disk.

3. The size of the memory area cannot be changed.

4. Since the fork() function is replaced by vfork(), it is impossible to create a copy
of the process with the same addresses (as with virtual addressing).

179

Features of porting to the RISK platform.

Due to changes in the kernel architecture, the following have been developed
additionally:

1. Loader of ELF files.

2. Library of the LibC programmer.

3. The interpreter of commands (shell) in a simplified version.

4. A set of command files and programs for initializing the system, which includes:

• unpacking a compressed binary image of the OS kernel into memory;

• transfer of control to the uncompressed binary kernel image;

• hardware initialization;

• system initialization;

• starting the zero (idle) and the first process (init), etc.

The Plinux process that this architecture generates is described as follows. Source
codes are compiled using MIPS processor-specific cross compilers. The object files
are then linked to the LibC programmer library. The resulting executable files in ELF
format, together with the compiled kernel, make up an image that is loaded into
ROM. Then the loader expands this image and transfers control to the initialization
program, which starts the runtime environment.

6.2.3. Hardware Platform of Hybrid Embedded Models

For the practical use of implementation models of control algorithms in the
form of CEN, a number of requirements for their hardware platform must be met
(Khropatyi, Lohinov and Kazymyr, 2020):

• the ability to update control programs and conditions for interaction with the
external environment;

• high-speed performance with support for the logical capabilities of control
programs and during their execution;

• the possibility of dynamic verification of control algorithms;

• the availability of high-speed hardware memory elements;

180

• the possibility of flexible reconfiguration of the hardware platform for specific
control tasks;

• the ability to synchronize the logical elements of the control program, which
are SDT transitions and support for time delays on them.

The previously considered solutions based on real-time operating systems are
not quite suitable for the embedded implementation models, since they do not
provide effective load balancing in terms of program execution time, fast response to
changes in external conditions. Moreover, such solutions create many problems with
the deployment of the runtime environment on microprocessors.

Therefore, a hardware architecture should support not only the methodology
for building implementation models in form of CEN specifications, but also provide
high performance, including aggregating of models. Additional possibilities include
interaction with databases, special management and configuration services.

The best way to satisfy these requirements is the use of a hybrid platform, in which
high-speed hardware blocks provide the computational functions corresponding to
CEN transition on the one level, and anoter level supports the interaction between
aggregates corresponding to the control program modules by passing input and
output signals.

A combination of ARM (Advanced RISC Machine) and FPGA architectures is the
most suitable solution. ARM, originally Acorn RISC Machine, later Advanced RISC
Machine, is a family of Reduced Instruction Set Computing (RISC) architectures
for computer processors, configured for various environments. The 32-bit ARM
architecture is supported by a large number of embedded and real-time operating
systems, including Android, Linux, FreeRTOS, VxWorks, Windows Embedded
Compact, Windows 10 IoT Core, ChibiOS/RT, DRYOS, eCos, Integrity, Nucleus PLUS,
NuttX, MicroC/OSII, PikeOS, QNX, RIOT, RTEMS, RTXC Quadros, ThreadX, MQX,
T-Kernel, OSE, OS-9 (Zlatanov, 2016).

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are based
around a matrix of configurable logic blocks (CLBs) connected via programmable
interconnects. FPGAs can be reprogrammed to the desired application or functionality
requirements after manufacturing. Due to their programmable nature, FPGAs are an
ideal fit for many different markets in particular for CPS applications (https://www.
xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html):

aerospace & defense – radiation-tolerant FPGAs along with intellectual property
for image processing, waveform generation, and partial reconfiguration;

automotive – automotive silicon and IP solutions for gateway and driver assistance
systems, comfort, convenience, and in-vehicle infotainment as Xilinx FPGA enabled

181

automotive systems;

Industrial – Xilinx FPGAs and targeted design platforms for Industrial, Scientific
and Medical (ISM) purposes enable higher degrees of flexibility, faster time-to-
market, and lower overall non-recurring engineering (NRE) costs for a wide range of
applications such as industrial imaging and surveillance, industrial automation, and
medical imaging equipment.

Actually, it is somewhat misleading to present an FPGA as a standalone component.
FPGAs are always supported by development software that carries out the complicated
process of converting a hardware design into the programming bits that determine the
behavior of interconnects and CLBs (ttps://www.allaboutcircuits.com/technical-articles/
what-is-an-fpga-introduction-to-programmable-logic-fpga-vs-microcontroller/).

The combination of FPGAs and microprocessors in one hybrid platform may be one of
the best solutions. The possible structure of a hybrid platform is shown in Fig. 6.19.

In this example, an architectural solution for the hybrid platforms is based on
microchips of the family Xilinx Zynq-7000 as it was proposed by Albert and Yao
(2010). The structural scheme in Fig. 6.22 includes additional I/O between different
components.

Combining FPGA with a high-performance ARM processor in one physical device is
the main advantage of such a decision (Kalachev, 2013). The control program, presented
in the form of CEN, is schematically divided into two components. One of them is the
program blocks associated with the operation of CEN transitions. They are implemented
by the FPGA level. All communication functions are assigned to the ARM. In fact, the

Fig. 6.22. Structure of the hybrid platform.

182

ARM performs an integrating function for linking CEN transitions. The control program
represented in the XML format is converted into a code executed by the ARM. This code
then uses predefined FPGA blocks to implement the CEN transition logic. Changing the
program, if necessary, does not require reconfiguration of the FPGA – only the sequence of
the transition calls for the execution of the prescribed logic is changed. It reduces the time
for modifying the control program depending on the operating conditions.

The choice of the ARM processor is the most important architectural decision
(Palagin and Yakovlev, 2017). However, it is important to mention the use of the AMBA
AXI (Advanced Extensible Interface) broadband interface. Thus, it will be possible to
implement data transfer from/to FPGAs at multi-gigabit speeds, simultaneously ensuring
low-power consumption.

6.2.4. Neural-like Network Platform for Recovery Model Implementation

The Hamming network (Bruck and Blaum, 1989) is designed to solve problems of
pattern recognition (images, etc.). It uses a set of templates to assign an input binary
vector or several vectors if they have the same proximity measure. The Hamming
distance is used as a maximum proximity measure.

Let be a binary alphabet and – the set of all words of length
in the alphabet that is called the complete set of words. It is obvious that . Let

, and be a cyclic shift operator with step 1,
the definition of which has the form:

.

The subset from that is closed to the shift operator , i.e., .
 will be called a cyclic Hamming code, which is a subset of words closed by Hamming

distance in the alphabet .

Let the unit word be a word consisting of units. Some chosen unit words will be
called reference words. In the case of the Hamming distance equal to 1, all words
from the set will be generated by the cyclic shift operator. These words will be
called the generating words.

Further we will consider:

 – a cyclic code of length , which has the generative word with the –
component group of cyclically adjacent “1” and –
component group of cyclically adjacent “0”;

 – a cyclic code of length , which has generative word with – component
group of “1”;

183

 – a cyclic code of length , which has the generative word with –
component group of “0” and – component group of “1”;

 – a cyclic code of length , whose parent word includes – component group
consisting of “0”.

Formulation of the problem.

Let be a set of words with length in the alphabet and (or
) be the cyclic code of length defined above. It is necessary to build a logical

structure that implements the mapping , defined as follows:

,

(respectively, .

The problem can be solved by serial connection (Palagin, Opanasenko and Kryvyi,
2013) of cyclic structures such as AND and NOR, which have inputs and outputs,
as well as an OR structure, which has inputs and one output. In the general case, the
problems of synthesis of multilevel logical structures for the classification of input
binary vectors with one and many output structures for the task at hand have an
–level organization, the –th level of which contains AND logic gates

that implement the transformation:

, (6.4)

where – a logical function of two variables;

 – the one-bit components of the input binary vector;

 – a step of cyclic shift.

All elements of the same level are configured to perform the same logical AND or
NOR function.

The cardinality of the group of cyclic adjacent “1”, based on the truth table of the
logical function AND and the structure of links , with an increase in the
level number decreases by “1”. Thus, to convert a codeword with a given value , it
is necessary to have levels.

The structures and (, the step in the operator) are selected as
logical structures. Based on the truth table of logical operations AND and NOR, as
well as the structure of links , the number of cyclically adjacent “1” with an
increase in the level number decreases by one for the AND operation, and for the
NOR operation. On the contrary, the number of “0” will increase by 1 if the word is

184

input containing cyclic contiguous “1”.

Let us consider the structures and synthesized earlier by Opanasenko and
Kryvyi (2012). If to the input of the -th level of a structure with such
connections is fed a word containing a group of cyclic adjacent “0”, then its output
will be a word containing a group of cyclically adjacent “0”. It is shown that it is
sufficient to investigate the type structure , since the type structure after the first
level turns into a type structure with an input word .

Theorem 1. a) If to the input of the first level of a computational structure with
the NOR operation is fed a word with cyclically adjacent “1”, then the output will be
a word with cyclically adjacent “0”.

b) If to the input of the -th level of the structure a word with
cyclically adjacent “0” is fed, then the output of this level will be a word with
cyclically adjacent “0”.

The substructure identifies a nibble (a 4-bit word of “0” and “1”) containing
three or four “1s”, and the substructure identifies a nibble containing one or all
“0s”. Nibbles consisting of all “0s” or all “1s” will be called singular points,
the identification of which will be discussed below.

Let us consider now the general problem of classifying input nibbles that are not
necessarily circular in structure. For this purpose, let us consider a basic structure
consisting of two similar 4-bit substructures built from substructures and , the
outputs of which are indicated by symbols , , and , , respectively (Fig. 6.23).

This structure is justified by the following lemma.

Lemma.	If	the	singular	points	do	not	take	part	in	the	classification,	then	with	the	help	of	
the	given	substructures	the	 	units	in	the	input	byte	are	identified,	where	 .

Fig. 6.23. Basic structure of cyclic code converters.

185

Substantiation. From Theorem 1 and the tables of values for the substructures
it follows that the outputs of both substructures are mutually exclusive, i.e., if the
output () gives 1, then the outputs and (and) give the value 0. The
same is true for (,).

The outputs of the substructures , give 1 if in the input of the substructures
 and the nibble has exactly one “1” or all “0s”. The outputs of the substructures
, give 1 if in the input of the substructures and the nibble has exactly three

“1s” or all “1s”. The output of the substructures and () yields “1”, if the input
nibble of the substructures contains exactly two “1s”.

It follows that the setting of both substructures for initialization in a byte of three “1s”
takes the form: . Setting for four “1s” in a byte (without
taking into account the singular point . Setting for
five “1s” per byte (excluding the special point . Setting for
six “1s” per byte (excluding singular point .

The statement is proven.

An example of a network structure for identifying three “1s” in a byte is shown in
Fig. 6.24.

Remark 1. In a general case, if a sample not from bits is fed to the input of such
a structure, for example, a sample of 11 bits, then it is divided into two nibbles, and
the remaining three bits are supplemented with one bit to a nibble, and, thus, the
problem is reduced to the previous case.

Fig. 6.24. Network structure for identifying three “1s” in a byte.

186

Identification of special points. From Statement 1 it follows that the setting
for seven and eight units per byte requires taking into account singular points, in
particular, points in the input nibbles. Since the substructure (respectively,

) identifies together with three “1s” (three “0s”) and four “1s” (four “0s”), it must be
modified so that it is possible to separate the singular points from the rest. This can be
done by simply modifying the basic structure (appropriately) by replacing the OR
output function with AND. The implementation of such structures is shown in Fig. 6.25
(structure for the singular point – , and for the singular point –).

Let us denote the outputs of these substructures and to identify
four “0s” and four “1s”, respectively.

Based on the above tables for base structures and modified ones, the output of the
modified substructure will be 1 if the input nibble value is a singular point . Similarly
to the second structure, the output will be 1 if the value of the input nibble is a
singular point .

Thus, connecting the outputs and using the AND operation, we get the output 1
only when there are four ones at the input in the nibble (singular point). Similarly,
a semi-structure is constructed for identifying a singular point on the basis of
semi-structures and . Then the above-described construction will look like as
shown in Fig. 6.26.

Justification of the properties of the given structure gives the next theorem.

Theorem 2. The general structure identifies the arbitrary content of an input
byte by setting its outputs to the number of “1” (“0”) in the byte.

Evidence. It follows from the lemma and the substructures modified above that to

 a) b)

Fig. 6.25. Structure of a cyclic code converter based on AND and NOR
operations for determining singular points: a) type structure ; b) type structure .

187

identify four “1” in a byte, the identification function will be as follows:

.

The units in the input byte can be distributed so that in the first nibble (in the
second nibble) there will be one “1” on the first substructure, and in the second
(first) nibble of the second substructure there will be three “1s”.

From the form of the first two expressions in the above expression we find: if
, then it means that the input nibble of the second substructure contains no

more than three “1s” and if , then it contains exactly three “1s”; if , then the
input nibble of the first substructure contains more than three “0s”, and if , then it
contains exactly one “1”.

Then there will be exactly four “1s” in the byte. The validity of what has been said
for the second expression follows from symmetry, while for the other two expressions
it is obvious.

Identification of five “1s” in a byte is performed by setting up the following
function:

.

Identification of eight “1s” in a byte is performed by setting to the following
function:

.

The theorem is proved.

Taking into account Remark 1, we note that the proved theorem is valid for an
arbitrary value of the Hamming distance and an arbitrary bit width of the input
vector.

Fig. 6.26. The general structure of the network taking into account special points.

188

6.3. Summary

The use of model-based control requires the solution of two practical problems:
the creation of models and their integration into the control loop. The main challenge
is the development of technologies that support implementation, predictive and
recovery models.

When choosing the means of software implementation of control E-networks,
the emphasis was placed on ensuring the possibility of building distributed systems,
including in the Internet networks. Java has been chosen as the basic programming
language, which provides cross-platform program execution. A particularly important
advantage of Java is the ability to dynamically compile transition functions. This
creates conditions for the dynamic change of the program model in the process of
its execution.

The developed simulation system is focused on supporting the full life cycle
of aggregate implementation models, including the development of conceptual,
formalized and software models. This modeling system allows creating new models
for the implementation of CA, modifying the existing models and performing
statistical experiments with models at the design stage of the CA. The modeling
system contains a graphical specification language that provides the construction
of models by a user who has no special training in programming. Implementation
of distributed properties of the simulation system based on HLA concepts helps
speed up the model design process, provides code reusability and increases the
performance.

The use of models in the control loop involves the development of a software
model interpreter, for the implementation of which it is necessary to perform the
task of porting the runtime environment to a microprocessor platform. The synthesis
of a multilevel structure on the basis of the cyclic Hamming codes converters is a
promising solution for recognizing images using a subset of binary vectors of
arbitrary width and Hamming distance as a proximity measure.

Chapter 7. Examples of MOC Applications

7.1. Model-Oriented Control of EBW Machine

7.1.1. Model-Oriented Control Problems of EBW Machine

Electron Beam Welding machines are outstanding representatives of the class
of industrial robots (Schulze, 2012), on the basis of which, at the appropriate level
of their development and application, an intelligent manufacturing system can be
formed.

At present, the most developed areas of industrial use of EBW are aerospace,

189

nuclear power, power engineering, electronics and precision electromechanics.
When designing products of complex shapes, designers are increasingly focusing
on electron beam welding. EBW is used to create aircraft engine assemblies, rocket
bodies, equipment for nuclear power plants, and many other complex products.

The appearance of the EBW machine KL118 designed for welding aerospace
structures and examples of such samples are given in Figs. 7.1 and 7.2, respectively
(Electron, 2004). This EBW machine has seven controlled coordinates, of which four
are controlled simultaneously.

The increased requirements for the quality of control of the EBW machines
are explained not only by the complexity of the tasks being solved, but also by the
peculiarities of the EBW process itself. Electronic welding, as a rule, is performed
automatically according to a predetermined program and consists in the passage of a
focused high-power electron beam exactly along the joint line. The prerequisites for
performing electronic welding are:

• constant maintenance of high vacuum (about 10-5mm Hg) in the welding
chamber;

• smooth multi-axis movement of the electron gun and product;

• stable maintenance of the beam, focusing and bombarding current parameters
specified by the program.

Fig. 7.1 The appearance of the EBW machines type of KL115 and KL118.

190

Each of the listed conditions, in view of the specifics of their implementation, is
provided by its own subsystems, which must function as synchronously as possible.
Thus, as a CO, an EBW machine is a complex structure, including:

• a vacuum chamber equipped with the necessary vacuum equipment;

• a mechanical system for moving the electron gun and sample inside the vacuum
chamber;

• a power source providing the formation of an electron beam of a given power.

During the operation of the installation, all its structural components are
influenced by many factors of both external and internal nature. These factors cause
deviations of the functioning parameters from the values set by the program.

Most of the factors are stochastic in nature. First of all, this concerns the
generated electron beam, where instability is already incorporated at the level of
physical processes occurring in the power supply and the electron gun. In addition,
during welding under the influence of high temperature, mechanical displacements
of the joint position from the programmed beam path are possible, which must be
detected and compensated for by the control system. As for the vacuum system,
it is necessary to constantly monitor its condition, preventing the development of
explosive situations associated with the operation of pumps and valves, as well as an
unauthorized drop in vacuum.

In such conditions of the welding process, it is necessary to ensure the deviation of
the beam from the joint line at the exit from the sample by no more than 0.1 mm and
to prevent interruption of the welding process due to any unforeseen situation, for
example, associated with the loss of vacuum in the welding chamber. The fulfillment
of this requirement is significantly complicated in the case of using several electron
guns as part of one EBW machine.

To the above-mentioned features of the EBW process itself, one should add the
limited possibilities of the operator to influence the preparation and performance

Fig. 7.2. Examples of samples welded in KL115 and KL118 EBW machines.

191

of welding, which are caused by isolation from the product located in the vacuum
chamber. It is possible to control the welding process only according to the indications
of measuring instruments. When using EBW machines in serial production, it is
necessary to weld several samples at once, placed inside the vacuum chamber, and
the operator cannot correct the position of the product or change the program
during the welding process. In such cases, all actions to ensure the required quality
of welding are assigned exclusively to the control system.

An important point is also adherence to the exact work schedule associated with
the need to prepare the product for welding. Usually, the edges of the joint to be
welded are pre-cleaned, the product is placed in a special tooling and then installed
on the faceplate of the working table (rotator). In a continuous production cycle, all
these works must be coordinated with the processes of evacuating air and ventilating
the vacuum chamber for product replacement in order to avoid downtime and
unexpected production delays.

After welding, the product undergoes final inspection to determine the quality
of welding. This is usually done for a prototype by cutting the product at the joint
and measuring the parameters of the resulting weld with a microscope. If the seam
meets the specified parameters, the welding program is approved for serial use. In
the future, all conditions for ensuring the required quality of the output product are
assigned to the control system and the production process, which must be strictly
adhered to in accordance with the requirements of the quality management system.

Summarizing the above features of the process of operation of EBW machines, we
can conclude that the main problem from the point of view of control is the lack of
accurate a priori information about the state of the CO and the external environment,
including work planning and compliance with the technological conditions for
their implementation. This circumstance does not allow using a simple structure of
programmed control, since in this way it is possible to track only the execution of a
given program of movement along a programmed path. However, it does not solve
the problem of exact hitting of the beam into the joint and does not guarantee the
required conditions for the welding process, which can change under the influence
of external conditions.

In turn, model-oriented control implies precisely the adaptive control of the CO
under conditions of uncertainty. In this case, the missing information about the state
of the CO is replenished by the models of implementation, forecasting and recovery
built into the control loop. Problems that can be solved by applying Model-Oriented
Control include:

• automatic situational control of the vacuum system and the power source,
carried out using built-in implementation and forecasting models;

• visual design of welding programs with multi-axis movements based on the use

192

of virtual reality display models;

• automatic adaptive control of an electron beam when tracking a joint by using
image recognition models;

• multi-agent control of the welding process when using several electron guns in
one installation.

7.1.2. Principles of Constructing a Model-Oriented CS of EBW Machines

The application of MOC of EBW machines is based on the observance of a number
of principles that should form the basis for the development of a computer control
system (Morozov, 2003):

1. The principle of the hierarchy. For different subsystems in the EBW machine, the
local control goals are clearly different: for the vacuum subsystem, the control goal is
to ensure reliable and safe operation; for the power source – to maintain the specified
currents, and for the motion control subsystem – to maintain the beam movement
at a given speed along a given trajectory. All local targets must be consistent with
the systemic control quality criterion, which is expressed in the accuracy of hitting
the focused beam at the junction. It means that there is a relationship of functional
tasks, which is expressed in the coordinated implementation of the models for the
implementation of CA.

2. The principle of dynamics, which must meet the requirements for real-time
systems. CCS must ensure the synchronous operation of all its subsystems at the rate
of change of the CO. For this purpose, all models, including recovery models, must
be coordinated in execution cycles with the duration of the interpolation cycle of the
movement subsystem of the electron gun and the product, which is usually 2 or 4
msec.

3. The	principle	of	reliability	and	safety.	Reliability refers to the ability to complete
a welding program satisfactorily within a given period of time, while safety refers
to the likelihood that the system will function safely. Since the EBW machine is a
potentially dangerous object, it is necessary to evaluate using forecasting models
and prevent a potential emergency development of the process before an accident
becomes inevitable.

4. The	 principle	 of	 distribution. It is an additional condition for ensuring high
control reliability. It implies distributed control of various subsystems, due to which
each of them is able to independently perform its functions. Compute-intensive
display models should not limit the performance of implementation and predictive
models.

5. The	principle	of	flexibility. It refers to the ability of the control system by the ELS

193

installation to quickly readjust to perform various welding programs. Compliance
with this principle implies the use of a flexible mechanism for creating and editing
welding programs, automatic teaching of possible joint paths of arbitrary complexity,
adaptation of ready-made programs to the actual location of the product inside the
vacuum chamber. This principle is based on recovery models built into the CCS circuit.

6.	 The	 principle	 of	 openness. The EBW machine must operate according to the
established production plan, obeying all the requirements of the quality management
system. This can be achieved by connecting the EBW machine to project and quality
management systems operating at the strategic level of enterprise management. At
the same time, using the property of openness, it is possible to implement remote
control of individual subsystems at the tactical level.

7.1.3. Hardware and Software Architecture of EBW CCS

The hardware and software architecture of the EBW CCS, which ensures the
solution of the problems of the MOC on the above principles, is shown in Fig. 7.3
(Kazymyr, 2006).

The main feature of this distributed architecture is the integrated use of PCs

Fig. 7.3. Hardware and software architecture of EBW CCS.

194

that execute control programs in conjunction with executive devices of automation
systems produced by Siemens:

• drive system Simodrive 611 U, which provides direct control of motors;

• Simatic S7-300 interface modules providing transmission and reception of
signals from controlled equipment of the vacuum subsystem and power supply;

• communication processor CP 5613, which ensures the use of the industrial bus
Profibus DP, through which interaction with actuators is carried out.

Integration of high-quality executive equipment with intelligent control based on
built-in models ensures the reliability and efficiency of the EBW machine.

The execution of models built into the control loop is as follows:

• an upper-level PC that operates under Windows NT, implements tactical-level
implementation models that coordinate the algorithms for controlling the
installation equipment with other systems and models; recovery models are
also executed on this PC, in particular virtual reality display models, which are
presented in the HMI;

• a low-level PC that operates under the QNX real-time OS (QNX, 2017) executes
implementation models and drive level prediction models that control the
motion subsystem, vacuum subsystem, and power supply;

• PC of the RASTR system, which operates under DOS control and carries out
models of seam image recognition; the image is formed by the observation
equipment according to the information coming from the secondary-emission
electron sensor installed on the electron gun;

• a remote PC, which can operate under both Windows and Linux operating
systems, executes strategic-level models that interact with tactical-level models
via the Internet / Intranet.

For the execution of implementation models in the PC of the upper and lower
levels, the interpreters of the models described in Subchapter 5.2.1 are built in. Note
that the real-time operating system QNX, like Linux, is a representative of the class of
Unix-like systems, which facilitated the implementation of the developed software.

195

7.2. Situational Control of a Vacuum Subsystem Based on the Implementation
and Predictive Models

7.2.1. General Characteristics of Vacuum Subsystem Control Process

The control task of the vacuum subsystem (VS) is to create and maintain a vacuum
of a given level in the vacuum chamber and the electron beam gun during welding,
as well as to ensure the safe operation of vacuum equipment in all modes of its use.

There are four operating modes of the vacuum subsystem: pump down,
ventilation, standby and stop. In all modes, control is carried out by checking the
status of the equipment and sending control commands through the appropriate
interface modules. The VS equipment includes:

1. Pumps for evacuating air from the vacuum chamber. Typically, an aircraft
contains one or more fore-vacuum pumps (RPs), a rotary pump (BP), and diffusion
pumps (DPs). Diffusion pumps are potentially hazardous because they explode when
air enters a heated pump.

2. Turbo-molecular pump (TMP) that provides evacuation of air from the electron
beam gun, which takes a significant amount of time to prepare for operation and
cannot be stopped instantly.

3. Remote control valves (VE, VM).

4. Vacuum level sensors – vacuum gauges (NV, VV).

Equipment characteristics that must be taken into account:

• time of valve actuation, starting and stopping of pumps;

• permissible vacuum level in the chamber and gun, at which the pumps are
turned on (off), valves are opened (closed);

• temperature of DP.

Each of the VC modes has its own set of conditions that guarantee the safe
operation of the equipment and ensure the performance of technological operations:

• maximum time for fore-vacuum pumping of air from the vacuum chamber;

• the boundary level of vacuum in the vacuum chamber and the electron gun, at
which permission is given for welding;

• the boundary vacuum level in the chamber, at which permission is given to turn

196

on the rotary pump;

• the limit vacuum level in DP, at which their heating is allowed;

• the limit temperature level in DP, at which their ventilation stops.

VS control is carried out by issuing appropriate signals to switch the states of
the vacuum equipment. If the normal operating conditions of the VS are violated,
errors and warnings are issued via the operator interface, which are analyzed by
the diagnostic system. For example, if the vacuum in the chamber falls below the
permissible limit while the pumps are running, a message is displayed about air
leakage into the chamber, after which actions are automatically performed to transfer
the aircraft to a safe state. The vacuum in the gun and DP is similarly controlled.

In the operator interface, the vacuum system is presented in the form of a
mnemonic diagram (Fig. 7.4), on which the current state of the vacuum equipment is
displayed using the corresponding color symbols.

7.2.2. Implementation Model of VS Control Algorithm

The VS control algorithm in the form of an implementation model built using the
EMS modeling system is shown in Fig. 7.5.

The control of the PUMPs is transferred from the upper-level program after the
operator selects the pumping mode in the graphical interface. In this case, the token
is placed in position P1, after which the execution of the model begins.

In the model, the transition functions have the definition given below.

Fig. 7.4. Mnemonic scheme of the vacuum system.

197

Transition	F0: initiates the pump down process.

Transition T0:

• activation function

{RP1 == 1 & RP2 == 0 & RP3 == 1;} – the transition is activated when all RP pumps
are running;

• conversion function

{VE1 = 1; VE4 = 1;} – valves are opened through which air is pumped out of the
vacuum chamber.

Transition	T1:

• conversion function

{RP1 == 1 & RP2 == 0 & RP3 == 1;} – RP pumps are started.

Transition	T2:

• activation function

{RP1 == 1 & RP2 == 1 & RP3 == 1 & VE1 == 1;} – the transition is activated when
all RP pumps are running and the valve for pumping air from DP is open;

Fig. 7.5 Implementation model of VS control program.

198

• conversion function

{VE2 = 1; VE3 = 1;} – air pumping from DP starts.

Transition	J5:

• activation function

{NV3 == 1;} – the transition is activated when the vacuum in the chamber reaches
a level sufficient to start the BP pump;

Transition	T4:

• conversion function

{BP = 1;} – the BP pump starts up.

Transition	T3:

• activation function

{VV3 == 1 & VV4 == 1;} – the vacuum in the diffusion pumps has reached the
specified limit;

• conversion function

{DP1 == 1; DP2 == 1;} – DP pumps are switched on for heating.

Transition	J2:

• activation function

{NV1 == 1;} – the vacuum in the chamber has reached the upper limit;

• conversion function

{VM3 = 1; VM4 = 1;} – DP pumps are connected to pumping air from the chamber.

Transition	T9:

• activation function

{VV3 == 0 || VV4 == 0;} – there is no vacuum in any of the DP pumps;

• conversion function

199

{DP leaking = 1;} – issuing the signal “DP leaking”.

Transition	T5:

• delay function

{TimeT12 = 1200000;} – a delay is set for the foreline pumping time of 20 minutes.

Transition	T6:

• activation function

{VV1 == 1;} – the lower vacuum limit in the chamber is reached;

Transition	X0:

• decisive function

{if (P16.M [1] == 1) return 1; else return 2; } – the choice of the direction of the
process development: 1 – the vacuum has not reached the lower limit for the given
fore-vacuum pumping time, otherwise – the fore-vacuum pumping was successful.

Transition	Y1:

• conversion function

{Chamber leaking = 1;} – issuing the signal “Leaking into the chamber”.

Transition	T7:

• conversion function

{VМ1 = 1; ТМР = 1;} – air pumping from the gun begins.

Transition	T8:

• activation function

{VV2 == 1;} – the vacuum in the gun has reached the lower limit;

• conversion function

{ready = 1; } – a signal of readiness for welding is issued.

Transition	T10:

200

• activation function

{NV2 == 1; VV2 == 0;} – the vacuum in the gun fell below the lower limit;

• delay function

{TimeT10 = 60000;} – a 1-minute delay;

• conversion function

{Gunr leaking = 1;} – issuing the signal “Leaking into the gun”.

Transition	Y2:

• conversion function

{ready = 0; } – removing the readiness for welding.

The normal operating conditions of the VS, which are checked using the predictive
models, are determined with DCTL as follows:

• AG ((RP1 and RP2 and RP3) {> 1200000} implies VV1) – always after 20
minutes of fore-vacuum pumping, the vacuum in the chamber must be above
the lower limit;

• EF ((READY and not VV2 {> 60000}) implies CHAMBER_LEAKING) – if at any
time, when ready to weld, the vacuum in the chamber remains below the upper
limit for more than 1 minute, a “Leak into chamber” signal should be generated.

7.3. Visual Design of Welding Programs Based on Recovery Models

7.3.1. Formulation of the Problem

Usually, in EBW machines, the welding program is carried out using devices such
as CNC (Computer Numerical Control). CNC programs are written in G-codes (Smid,
2007). The welding program in G-codes (Fig. 7.6) is a sequence of blocks (lines of
code), in which the coordinates of the point to which you want to move are set for
each segment of the path.

In addition to coordinates, the block specifies the speed of movement, the
method and parameters of interpolation, as well as the values of welding current
(CW), focusing current (CF) and beam deflections, set when the end point of the
programmed path segment is reached.

201

In the case of simultaneous use of several coordinates, when the final trajectory
is a complex spatial curve, the traditional procedure involves the development of a
motion program using a product drawing built by means of a CAD/CAM system. The
duration of the preparation of such a program can be, depending on the complexity
of the trajectory, from several hours to several days or even weeks.

It should also be taken into account that the operator-welder will spend
additional time to adapt the pre-designed program directly at the installation to the
real product, taking into account the inaccuracy of its manufacture and placement
at the welding position. If such an adjustment is quite simple when using only linear
coordinates (X, Y, Z), then when the trajectory is formed by simultaneous linear and
angular displacements, the adaptation becomes extremely difficult.

The use of recovery models built into the control loop eliminates the traditional
G-code welding programming and allows for visual design of multi-axis welding
programs. The developed method of visual design assumes a sequential solution of
the following tasks:

• construction of a three-dimensional virtual representation of the situation
inside the vacuum chamber;

• automatic learning of the displacement system to follow the path of the joint;

• graphical representation of the recorded butt path for drawing up a welding
program.

In the process of visual design, a synthetic EBW CCS environment is formed (Kazymyr,
2003), and then it is used by operators to control the installation.

Fig. 7.6. Fragment of a welding program in G-codes.

202

7.3.2. Virtual Representation of the Sample and Welding Path

The operator needs a virtual three-dimensional representation of the product
inside the vacuum chamber to select the key points and set the correct angular
orientation of the gun during visual trajectory design.

The developed toolkit of virtual reality display models allows, in particular:

• creating three-dimensional images of sample;

• displaying the actual location of the sample and the gun inside the vacuum
chamber;

• changing the scale and view of the generated display for its more convenient
and detailed presentation;

• displaying the location of the programmed welding path on the surface of the
sample;

• setting the permissible areas of movement of the gun and carrying out
automatic control of movements in order to prevent damage to the sample and
equipment inside the chamber;

• tracking on the surface of the product the position of the electron beam relative
to the specified trajectory during welding.

With the help of display models, models of structures of the highest complexity
level can be created (Paton, 2004).

Table 7.1 shows complex structures, when welding, which, taking into account
the need to ensure the perpendicularity of the beam to the surface of the sample,
requires at least four simultaneously controlled axes.

Figure 7.7 shows the designations of the coordinate axes of welding movements,
the combination of which allows welding such products.

Fig. 7.7. Coordinate axis system.

203

In Fig. 7.7, the following designations are adopted: X,	 Y,	 Z – linear axes of gun
movement; Q – cannon rotation axis; V – cannon tilt axis; W – rotation axis of the table
faceplate, U – table tilt axis.

Sample images are formed by the operator from a basic set of auto shapes and
displayed on the monitor in three-dimensional space . To display in the same three-
dimensional space the trajectory of the beam on the surface of the sample formed as a
result of welding movement in multidimensional space , it is necessary
to transform the seven-coordinate vectors describing the points of the trajectory into
three-dimensional vectors of spatial display.

For this purpose, to take into account the angles of rotation and tilt of the gun, we
find an additional vector

, (7.1)

where – the coordinate distance from the beam axis to the gun tilt axis;

Table 7.1 Types of Samples and Required Movements

204

 – the distance from the axis of rotation of the gun to its end;

 – the distance from the end of the gun to the surface of the product.

Next, for each point, we rotate the vector A around the axis of rotation of the gun
in the plane by an angle , and then – around the axis of inclination of the gun in
the plane by an angle . As a result, we get the coordinates of the point
relative to the center of rotation and tilt of the gun.

To take into account the angles of rotation and tilt of the table, we find an
additional vector

 , (7.2)

where – coordinates of the center of the table in the base coordinate
system;

 – the distance from the axis of inclination of the table to its surface.

We move the center of coordinates to the end of the vector and for each point
rotate the vector around the axis of rotation of the table in the plane by an
angle . Let us get a point . Then we will rotate the same vector around the
table tilt axis in the plane by an angle . Let us get a point .

Ultimately, the base coordinates of the points , according to which the points
will be displayed inside the vacuum chamber, will be recalculated according to the
following expression:

. (7.3)

Figure 7.8 shows the resulting three-dimensional image of the product and the
trajectory for different viewing angles.

Fig. 7.8. 3D sample and joint path views.

205

7.3.3. Automatic Learning of the Joint Path

The joint path, which is displayed in a 3D virtual representation of the sample,
forms the basis for constructing a welding program. First, it sets the program for
multi-axis movements of the gun and the item. Second, the program for changing the
welding currents must subsequently be linked to this trajectory.

When designing simple, for example, linear joints, the operator can specify
the path in the form of a table, identifying the coordinates of the start and end
points of movement. However, this method of programming trajectories becomes
unacceptable in the case of complex spatial joints with an arbitrary trajectory. The
problem is solved by creating a method for automatic trajectory learning based on
the use of recovery models.

To obtain an image of a joint, the complex of developed models of image recognition
is used (Kazymyr, 2006). The joint in the resulting image (Fig. 7.9) appears as a
dark line against the background of the lighter surface of the product. The red cross
indicates the location of the center of the electron beam.

At the beginning of training, the operator, manually moving the gun or the sample,
aligns the electron beam with the starting point of the joint of the edges being welded,
sets the initial direction and speed of movement, and issues a command to start the
movement. Further, the learning process occurs completely automatically.

Automatic learning is carried out in the process of joint work of recovery models
and implementation models of the executive level. The diagram of the hardware and
software complex as part of the control system, which provides automatic training of

Fig. 7.9. Image of a joint during automatic trajectory learning.

206

the joint trajectory, is shown in Fig. 7.10.

Automatic learning is performed based on the following assumptions:

• in the initial position, the beam is set in the middle of the joint;

• the initial direction of the joint search is set;

• the joint has a continuous (homogeneous) structure.

Calibration is a prerequisite for automatic trajectory learning. This operation is
performed before the start of the training procedure, and its end result is to establish
the correspondence of the sizes of one pixel to the linear dimensions of the image in
millimeters.

In the process of movement, the recognition program finds a joint in each new
image frame and determines a vector of displacement to a new trajectory point
located in the middle of the joint. The process of automatic learning of the path is
performed cyclically with stepwise linear movement to a new joint point. The choice
of the next point from the joint area is carried out on the basis of obtaining piecewise-
linear interpolation of the joint path with a possible deviation from the middle of the
joint by no more than 0.1 mm.

When moving during training, the relative position of the electron gun and the
product is constantly monitored. The coordinates of the displacement point are
recalculated according to Eqs. (7.1)–(7.3) and checked for falling into the admissible
area, which is set when forming a three-dimensional image of the product. The
learning algorithm stops if the next found point coincides with the previous point
or with the starting point of the trajectory (for a closed trajectory), or when the next

Fig. 7.10. The scheme of the hardware and software complex for automatic joint
trajectory learning.

207

point goes beyond the permissible displacement range.

7.3.4. Graphical Representation of the Joint Path

During training, the resulting seam path is displayed on a 3D virtual representation
of the product and on reference planes, as shown in Fig. 7.11.

 a) b)

As path points are found, they are connected to the previous points by straight
line segments. A piecewise-linear model of a real joint obtained in this way does
not take into account its geometric features and contains an excessive number of
points (the greater the curvatures of the joint, the more points are required for its
piecewise-linear approximation). The number of trajectory points can be reduced
by carrying out additional approximation at the command of the operator using the
trajectory reconstruction models. After approximation, the trajectory is represented
by segments of straight and circular lines, for which the corresponding parameters
are automatically calculated. In any case, the accuracy of the resulting trajectory does
not go beyond the specified criterion – 0.1 mm.

In addition to performing additional approximation, the operator can edit the
resulting trajectory manually, changing the coordinates of points, interpolation
methods (linear or circular) on selected sections of the trajectory, adding new points
to an existing trajectory or removing some points from the resulting trajectory. As
the point parameters, the operator also sets and edits all technological welding
parameters, including beam and focusing currents, the speed of welding movement
between points, etc.

Fig. 7.11. Display of joint path during automatic learning: a) representation of
the trajectory on a three-dimensional virtual representation of the sample; b)
representation of the trajectory on the base plane.

208

7.4. Adaptive Control of the Electron Beam Position in Joint Tracking

7.4.1. Formulation of the Problem

Joint tracking is performed with the aim of precisely keeping the center of the
beam in the middle of the butt during welding, when due to the emerging welding
deformations, the joint may shift away from the specified path of movement. The
beam is aligned with the joint by deflecting the beam along the X and Y axes in the
plane of the gun and by an angle calculated by the control program.

The calculation of the deflection parameters is performed in such a way as to
ensure the accuracy of keeping the beam in the middle of the joint within 0.1 mm. To
achieve the specified accuracy, the coordinates of the middle of the joint are always
determined taking into account the linear dimensions of the image pixel.

The problem is that during the welding process, a pool is formed at the location
of the beam, which melts the joint, as a result of which it is impossible to determine
the deviation of the beam from the middle of the joint at the welding location. In this
regard, the problem arises of tracking the joint at the lead-in point, which is moved
forward along the path of the joint at a given distance. In the case of arbitrary curved
joints, the calculation of the lead-in point can only be performed using restoration
models.

In this setting, we will have an adaptive control problem with a reference model,
which we will consider the joint trajectory restored in the process of automatic
learning. The management quality indicator will be determined by the expression

=
()

(2 + 2), (7.4)

where – the deviation of the middle of the joint from the position of the center
of the beam along the X axis;

 – the deviation of the middle of the joint from the position of the center of the
beam along the Y axis;

 – control (beam deflection angle) from the area of permissible deviations .

7.4.2. Recovery Models Used in Tracking

When tracking the joint, the models of the recognition subsystem and the
constructed trajectory model in the form of a graphical representation are used.
Figure 7.12 shows a view of the image of the seam during tracking.

The frame outlines the joint search zone, which is located perpendicular to the
direction of movement at a given lead distance. The current position of the deflected

209

beam at the place of the proposed welding is marked with a red cross.

Additionally, the joint image displays:

• current position of the beam that is not deflected (current point of the trajectory)
– light cross at the location of the weld pool;

• the position of the middle of the joint at the lead distance detected by the
recognition program – a dark point;

• the estimated position of the middle of the joint at the lead distance – a light
cross next to a dark point;

• permissible beam deflection zone – middle part of the search zone.

Fig. 7.12. Joint view during tracking.

The search area is built perpendicular to the direction of the velocity vector at the
lead-in point. By the position of the cross and the point in the joint search zone, the
required deviations of the beam along the X and Y coordinates are determined to
accurately hold the beam in the middle of the joint. This calculation can be performed
only when the motion control program and the program processing the recovery
models work together synchronously. Moreover, the accuracy of the calculation
will largely be determined by the accuracy of the graphical representation of the
joint trajectory. In this regard, it is necessary to track the joint only after automatic
learning of its trajectory.

7.4.3. Tracking Algorithm

The initial premise for the tracking algorithm is the calculation of the lead-

210

in points of the joint path exactly at the moments of receiving images from the
observation equipment. With a typical operating cycle for RASTR equipment of
300 msec, the points corresponding to the anticipated position of the beam at the
moments of image acquisition should be calculated along the recorded path of the
joint, i.e., the trajectory should be divided into sections in exact accordance with the
period of operation of the RASTR equipment.

To coordinate the operation of the equipment and the motion control program,
the observation system is launched into operation at the command of the lower-level
PC at the moment the movement begins. Beforehand, the entire array of trajectory
points corresponding to the received images is transferred to the recognition
subsystem. The coordinates of the transmitted points should be projected onto the
coordinate axis of the sensor installed at the end of the gun, with the origin at the
point where the beam is located.

Taking into account the clarifications made, the tracking algorithm includes the
following steps:

A.	Stage	of	preparation

1. Divide the entire trajectory into sections with a length that equals
the duration of the observation equipment operation cycle , multiplied by the
specified travel speed . Let us get an array of seven-coordinate points

.

2. For each point , calculate the lead-in point located at a
given distance from the point .

3. Using vectors (7.1)–(7.2) and shifting the center of coordinates, project all
points onto the end of the gun. Let us get points with coordinates , assuming
that for points such coordinates are equal to zero: .

4. For each leading point determine the direction of the displacement vector
to the next point.

5. Transfer the resulting list of displacements and
directions of movement at the predicted point for processing to the recognition
subsystem.

B.	Tracking	stage	(performed	sequentially	for	each	image	frame	and	each	point	in	
the array)

1. Determine the real coordinates of the midpoint of the joint in the place of the
lead-in point .

211

2. Calculate the deviation of the calculated lead point from the middle of the joint
.

3. Make the deflection of the beam relative to the current deviation of its axis
 by an angle , where is

the working distance (the distance from the end of the gun to the surface of the
sample). The specified deviation vector should be processed by
linear increments in each interpolation cycle (IPO cycle) by the value and

, respectively, where is the duration of the IPO cycle.

Thus, as a result of executing the tracking algorithm, we get the following
implementation of adaptive control operators:

1. Operator of the main control loop:

 , (7.5)

where – the vector of deviations of the beam center at the lead-in point
at the next step;

 – the vector of deviations of the center of the beam at the lead-in point at

Fig.7.13. Operator interface screen view during trajectory learning.

212

the current step;

 – the vector of coordinates of the current position of the joint midpoint at
the lead-in point;

 – the current deflection angle of the beam.

2. Operator adaptation:

. (7.6)

Note that the information about the process contained in the vector is
formed by using reconstruction models, namely, joint recognition models that take
into account the current deflection of the beam. The control vector is
recalculated at each step of the algorithm.

Figure 7.13 shows the operator interface of the KL115 and KL118 EBW machines
during the performance of trajectory learning.

7.5. Multi-Agent Control of the Simultaneous Operation of Several Electron
Beam Guns

7.5.1. Formulation of the Problem

The unique EBW machines KL 117, designed for welding of drill bits, use three
electron beam guns, which should weld the three joints simultaneously. Guns are
permanently installed and arranged in a circle at a distance of 120 degrees from
each other, so their beams are focused on three joints. The appearance of the KL117
machine and samples of bits are shown in Figs. 7.14 and 7.15, respectively.

For obtaining a quality weld in this EBW machine, there is a need for stable
operation of the parameters of the welding current and focusing current according to
the program. These conditions provide the most efficient use of the energy capacity
of the welding machine, maintaining a safe mode of operation.

Each electron gun is controlled by its module of computerized CS, but the program
is the same for all guns. It is compiled for one base joint and includes values of beam
speed, welding current and focusing current, which are determined by the profile of
the workpiece. The problem that arises during the welding process is a discrepancy
in the physical parameters of the electron guns. This is due to uncontrollable
variations in the electrical equipment and uneven wear cathodes. For this reason,
the predetermined value of the focusing current is fulfilled in each of the guns at its
level, and the resulting welds differ in quality, which is unacceptable. The challenge
is that, using the embedded computer models of physical processes in the guns to
provide agreed job of them, it is possible to obtain the same quality of beam despite

213

the variations in the parameters of the guns.

Obtaining high quality welds with simultaneous operation of three electron guns
within a single EBW machine can be achieved by applying the method of software
control using intelligent agents.

7.5.2. Construction of Recovery Models

To get background information about a control object, there may be used

Fig. 7.14. The appearance of the KL117 machine.

Fig. 7.15. The samples of bits.

214

the model of the current density profile obtained by means of diagnostic systems
proposed by Akopyants et al. (2002). For three different guns within a single EBW
machine, a density beam profile model of the welding current can be prepared (see
Fig. 7.16).

The principle of this system is based on measuring the power distribution in the
electron beam when the focusing current is changed. It uses a special sensor that
intersects the beam at different values of the focusing current. As a result, the current
density distribution is built from cross-sections of the beam. Within each -th
section, the current density is assumed to be constant. In order to find unknown
there is built a system of linear algebraic equations of the form

Fig. 7.16. Density beam profile models of the welding current:
а) gun 1; b) gun 2; c) gun 3.

215

, (7.7)

where – the matrix of dimension with the elements proportional to cross-
sectional area;

 – -dimensional vector of the beam density values;

 – -dimensional vector of pulse amplitudes at each section.

According to the found values the current density distribution is
constructed for each cross-section of the beam. The cross-section with the highest
current density on the axis corresponds to the sharp focusing of the beam. For
each distribution, the effective beam radius is calculated on the assumption that
the current density distribution can be approximated by the normal distribution law.
Within this radius 63 % of the beam power extends. Thus, the sharp focus with the
highest current density corresponds to the smallest effective radius of the beam .

The current density distribution along the beam axis displays four areas: 10–
25 %, 25–50 %, 50–75 % and 75–100% from the maximum density. These charts are
used as recovery models of physical processes in the guns.

7.5.3. Theoretical Background of Control Method

A scheme explaining the calculation used in the control algorithm is shown in Fig.
7.17. Designations used:

Fig. 7.17. Scheme of calculation in the multi-agent control algorithm.

216

• – the beam radius in the plane of the focusing lens;

• – the smallest effective radius of the -th gun;

• – the distance to the maximum zone of density beam of -th gun;

• – the distance to the surface of the workpiece (working distance);

• – removing distance of maximum density beam gun from the surface of
-th workpiece;

• – the beam radius on the workpiece.

When there is a mismatch of it is necessary to bring it to a common measure
in order to provide the work of all the guns by the welding program, for example, in
sharp focus. For this purpose, the software will calculate the correction for the value
of the focusing current by the formula

, (7.8)

where ;

 – the coefficient that takes into account the change of focusing distance ;

 – the coefficient that takes into account the change of focusing distance during
the change of focusing current.

At the low values of the ray convergence angles, the coefficient is determined
by the formula:

. (7.9)

The coefficient for each gun is estimated by a special procedure when a
cathode is changed. It is used in the calculation as the initial parameter. It should be
noted that when the focusing current increases the value decreases, i.e., always

.

7.5.4. Implementation Model of Control Algorithm

In the described method of the current focus matching one control module for
every gun is used. It operates on the principles of intelligent agents. Each agent uses
an implementation model represented in the form of CEN. An example of such an
agent model is shown in Fig. 7.18.

1. At the cooperative level the task of information exchange between agents, which

217

control guns, is solved in order to determine the agreed level of focus distance. Input
data are received in the form of tokens from adjacent agents via the input boundary
positions P0–P3. In particular, the positions P0 and P1 receive tokens containing two
attributes , where is the number of the agent (the gun), and – a decision
accepted by the agent about the number of the leading guns (to the focus level of this
gun all other agents will lead their focusing current). Positions P2 and P3	get tokens
that contain a set of attributes , where means deviation required for a
change in the focusing current that is calculated by the agent. Calculated cooperative
knowledge is compared at transitions J0 and J1, then the results are transmitted to
the planning level of agent.

Fig. 7.18. CЕN implementation model of an agent control algorithm.

The agent model shown in Fig. 7.18 defines three levels of focusing current control
for one gun.

There are two possible options of coordination:

• all agents make the decision on the appointment of the leading gun with
middle level

;

• the gun that does not run the limits for values of focusing current is taken as
a leading gun

218

.

2. At the level of planning on the basis of the results of diagnostics of the gun (token
is in the input position and the boundary values of the current focus
defined by the welding program (token in the input position , the
following processes take place:

• checking of the possibility of working out a specified range of currents at the
focusing current (transition T1) to meet the existing restrictions on focusing
current

;

• calculation by Formula (2) on the basis of an agreed level of the required
change of focusing current (transition T3) that is on the transition X18 checked
again at the specified limit;

• output of data on the results of calculations in other agents (via the position
P43 and P44 – the signs of acceptance/rejection of the agreed solution and via
the position P45	and P46 – the calculated value are transmitted).

3. At the reactive level, the value of focusing current (enters the position P6)
set by the program using the conversion function of transition Y3 is adjusted in ac-

Fig.7.19. Operator interface screen view during trajectory learning.

219

cordance with the generated correction , and an output signal is trans-
mitted to perform in the power supply control module of the gun. Processing of the
program values of focusing current is used in the cycle as they are received from the
motion control module.

The presented implementation model of agent is created using the system
simulation EMS. After preprocessing, it is built into the control circuit of EBW machine
in a view of XML file, which is executed by the interpreter of CEN model under QNX
OS. For each electron gun there is a control module similar to the presented agent
model.

Trajectory learning is similar to the KL118 installation. Figure 7.19 shows the
operator interface of the KL117 EBW machine.

7.6. Model-Oriented Planning and Quality Assurance

7.6.1. Tasks of Model-Oriented Manufacturing Management

Model-oriented control is useful not only at the drive and operational level of the
IMS control, as it was shown in the examples described in the previous sections. We
can say that modeling is currently one of the main tools for managing production
activities at the strategic level during planning and quality assurance of the
manufacturing activities.

Almost all modern enterprise management systems of the Enterprise Resource
Planning (ERP), Manufacturing Resource Planning (MRP), or Customer Resource
Management (CRM) classes (Ganesh, 2014) include model-based planning modules.
For example, the Production Planning module of the Oracle e-Business Suite (Oracle,
2021) is a powerful system that combines planning models and forecasting methods
with a runtime environment that allows you to quickly respond to changes in
customer needs and working conditions. The same can be said about the SAP R3/
S4 (Razem, 2020). In addition to the planning module, it includes a unique solution
related to the dynamic modeling of enterprise processes (DEM – Dynamic Enterprise
Modeling), which ensures the adaptation of software, tested on world leaders, for
the business processes of a particular enterprise. The latest proposal in the field of
ERP II systems from Microsoft, called Axapta, is more versatile in terms of building
an electronic office of enterprise management (Microsoft, 2021). Focusing not only
on large, but also on smaller enterprises, Axapta uses the most modern Western
management technologies in order to optimize production activities.

If we sum up the models used in these and other enterprise management systems,
then their spectrum can be represented by four main directions:

• planning of production resources;

220

• assessment and forecasting of financial activities;

• description of business processes;

• decision-making mechanism.

Each of these directions uses its own set of well-known mathematical methods. As
a rule, these methods are focused on specific processes and have their own specific
application. When planning resources, the methods of mathematical programming
are most commonly used. At the same time, methods of statistical analysis and game
theory are more suitable for assessing financial performance. The description of
business processes is usually carried out using network methods, and in decision-
making tasks it may be necessary to build a neural network or a whole hierarchical
system of evaluating functions (Geunes, 2017).

The task of the enterprise management system is to ensure that all these methods
work for a common goal. In modern enterprise management systems (as IMS), this
task is accomplished using two basic CALS technologies that are invariant with
respect to the object (products):

• project and task management (Project Management/Workflow Management);

• quality management (Quality Management).

Although these technologies have their own models, determined by the corresponding
standards, they cannot be directly considered models for the implementation of
management at the enterprise level. First of all, it is due to the fact that the known
models of planning and quality management are not characterized by a direct impact
on the control object. As a rule, the results of their work are taken into account only
by the decision-maker that not only increases the reaction time of the CCS, but also
introduces a pronounced subjective factor into it. In addition, these models significantly
differ from models at other levels in terms of use. It creates certain difficulties in the
methodological, functional and informational coordination of management levels. At
the same time, the use of a unified approach to building implementation models at all
levels of management will not only simplify their interaction, but also provide the basis
for the complete automation of the production management process.

If we consider the planning and quality management models as models for the
implementation of the corresponding algorithms, then a clear hierarchical management
structure is built, when the higher-level models call the lower-located models in the
order prescribed by the management system. Depending on the results obtained in the
called models, management influences are formed at the next level in the hierarchy.
With the existing cyclical nature of the production process, the models used will be
called many times, forming a logical sequence of actions, covered by a feedback loop.

221

Thus, with the model-oriented method of management, the difference in
approaches to the use of models at different levels of management, which was
characteristic of the enterprise CCS at the early stages of their formation, is erased.
It means that at the strategic level the principles of building implementation models,
given in the form of CEN, must be followed. If these principles are observed, we can
talk about the continuity of technologies for building and using models at different
levels of management. However, we note that at the level of strategic management,
the participation of the operator, or manager, is still manifested more fully, which
puts forward additional requirements for the user interface.

Considering model-based management in relation to basic planning and
quality management processes, we will rely on the main CALS standard ISO / IEC
10303 (ISO 10303, 2021) – the standard for the exchange of product data models
(Standard for the Exchange of Product Model Data – STEP) and the international
quality standard ISO 9000 (ISO 9000, 2015). First of all, we will be interested in the
following requirements of these standards:

1. Project management:

• unlimited hierarchy of work in projects;

• the ability to include one work in several projects;

• association of any objects (documents, products, technological processes,
etc.) with the work of the project;

• managing the revision of project milestones;

• formation of various reports on the progress of projects.

2. Workflow management:

• automation of management of formalized enterprise processes;

• support for cyclical processes, for example, returning drawings for revision;

• automatic notification of completed and overdue works;

• support of the hierarchy of processes (product development – unit
development – part development).

3. Quality data management:

• ensuring a process approach to quality management;

222

• computer support of the quality management system;

• tracking the conformity of manufactured products to the established
requirements;

• maintenance of quality records;

• presentation of the results of control of lots and copies of products;

• quality documentation management;

• monitoring and analysis of enterprise processes.

4. Messaging:

• built-in mail subsystem allows you to exchange messages among employees.
In this case, both files and links to any database objects can be transferred
along with messages.

5. Organization of access to data:

• the ability to set access rights to any object of the system both for an
individual user and for groups of users;

• the ability to automatically assign access rights to the created objects.

7.6.2. Implementation Models of Planning Processes

Regardless of the forms of running the economy, planning has always
occupied and continues to occupy a leading place in the production activities of
enterprises. With the help of planning, it is possible to solve the issues of choosing
a development strategy, determining plans for the purchase, production and sale
of products, efficient use of enterprise resources, etc.

A particularly important role in planning is played by computer technology,
which makes it possible to automate the process of drawing up plans and monitor
their implementation. We can say that today, thanks to computers, planning is
becoming an element of management in the modern enterprise.

There are two main approaches to planning automation. The first approach,
characteristic of a market economy, was based on models and methods of
project management, aimed at solving specific practical problems. The most
famous mathematical models used to describe projects are PERT and GERT
networks (Wiest, 2011). This direction was more in line with organizational
needs, but clearly lost in the validity of decisions. The second approach, actively

223

implemented in the system of the planned economy, consisted in the creation
of automated systems for planned calculations (ASPC). It was based on the use of
computational and logical systems, which were a further development of intelligent
software packages for collective problem solving. The basis of the computational-
logical system was an aggregated model that used second-level economic and
mathematical models as modules.

The fact that the first direction prevails in today’s enterprise management
systems does not at all mean that there should be a complete rejection of the use of
calculation methods. The challenge is to make project management more meaningful,
taking into account the needs of the IMS. It can be achieved by using as models of the
dynamics of projects not simple network schemes, but more complex logical systems
capable of calling specific calculation methods and taking into account the results of
calculations in the process of making management decisions.

Following our accepted concept of CALS, which requires the use of a unified
strategy for presenting data at all levels of management, we can use control
E-networks to describe work structures. First, we will consider the PERT network as
a conceptual model. Without going into the details of the PERT method, we only note
that in PERT networks, only nodes of the “AND” type are allowed: the event indicated
by the node is performed only if all the work that preceded it has been completed.

Figure 7.20 presents the PERT network of the project, the purpose of which is to
manufacture a new industrial plant.

In Fig. 7.20, jobs are marked with letters and nodes with numbers. A description
of the jobs with an indication of the time of their execution is given in Table. 7.2.

The durations of all jobs are assumed to have a triangular distribution, which in
this case approximates the beta distribution commonly used in network analysis.
The density function of the triangular distribution is defined as follows:

Fig. 7.20. PERT-model of the industrial plant manufacturing project.

224

, (7.10)

where the mathematical expectation and variance are respectively equal

 (7.11)

and

. (7.12)

The minimum value is interpreted as an optimistic estimate, and the maximum
value is interpreted as a pessimistic estimate of the duration of work.

If we take the average values for the actual duration of the work, then the time
characteristics of the project can be calculated analytically using the critical path
method (CPM) (East, 2015). The results of such calculations are shown in Table 7.3.

In Table 7.3, the following designations are used:

• – a set of immediately preceding and immediately following jobs with
respect to the k-th job;

• – duration of the k -th work;

• – the earliest and latest completion dates of the k-th work;

Table 7.2 Description of the Jobs of the Industrial Plant Manufacturing Project

225

• – reserve time of the k-th job.

The target time is 36 days, the critical path is formed by works A-C-E-G-H. Now we
will show how a PERT network can be modeled using CEN. Using EMS, let us build a
CEN model corresponding to the PERT network of the project shown in Fig. 7.20. We
assign to each work a transition of the “T” type. In the places of branching, we add
transitions of the “F” type, and in the nodes of the merge of works – transitions of the
“J” type. The delay time at transitions of the “T” type will be calculated according to
the triangular law with the parameters given in Table 7.3. The value of the activation
functions is set equal to 1. The CEN model for this project will have the form shown
in Fig. 7.21.

Table 7.3 Calculation of the Time Characteristics of the Project by CPM

Fig. 7.21. CEN model of the industrial plant manufacturing project.

226

It is clear that for the CEN network modeling the PERT network, it is possible
to determine an analytical method for calculating both the directive time and other
characteristics of the project network schedule based on the MCP. The calculation
algorithm in this case will be as follows:

1. Based on the structure of the CEN network, we construct an incidence matrix
of transitions of the “T” type, which we denote as , where . In what
follows, we will consider only transitions . We will consider a
transition to be incidental to a transition if it is the first -transition in the firing
chain after the transition . Let us assign the value 1 to the elements of the matrix
that satisfy this condition. For example under consideration, the incidence matrix of
T-transitions can be represented in the form of Table 7.4.

Table 7.4. T-Transition Incidence Matrix

2. For each transition , we determine the set of immediately preceding transitions
 and the set of immediately following transitions .

3. In all transitions for which , let us assign .

4. In all transitions for which , let us assign .

5. We calculate the target time using the formula .

6. In all transitions for which , let us assign .

7. In all transitions for which , let us assign .

8. We calculate the time reserve for all transitions .

227

9. In all transitions for which , let us assign the sign of belonging to the
critical path.

However, the advantage of CEN is not the ability to perform an analytical solution
on the web. It is important that with the help of CEN, using the method of simulation,
it is possible to obtain statistical estimates of these characteristics, which take into
account the influence of random factors. In this case, various distribution laws can be
used to calculate the delay time during transitions. Simulation runs of the model can
be organized both in the EMS modeling system and in the model runtime built into
the project management system. For example, statistical experiments with the model
shown in Fig. 7.21, performed with EMS, gave the following results: for 50 model
runs, the mean value of the directive time was 36.2 with a variance of 12.8, which
coincided with the analytical calculations.

In addition to preliminary evaluation of the characteristics of the plan, the CEN
model can be used to organize programmatic management of the project progress.
For this purpose, it is sufficient to include in the definition of the activation functions
of T-transitions taking into account signals indicating the completion of the previous
work, and use the delay time at transitions only in forecasting models. Then the CEN
network will be transferred to the category of implementation models that initiate
the implementation of subsequent work by issuing the corresponding output signals.
Simultaneously, for dynamic estimation of the directive time in the control process,
both analytical and simulation methods of modeling can be applied. In the latter case,
the actually measured delay time is set for the work already performed. Carrying
out statistical experiments with a model that is used as a control algorithm becomes
possible due to the fact that at the strategic level (when planning and managing the
work flow), the response time requirements are not as stringent as at the drive or
operational and tactical levels. It increases the cycle time to the level required for
multiple runs of the model.

When modeling PERT networks using CEN, all the capabilities of the latter as a
means of describing control processes are not implemented. Due to their analytical
orientation, PERT networks still have significant structural limitations: they do not
allow for the use of loops and exclude probabilistic branching. Therefore, the PERT
model cannot include the feedback operations required for project management.
More preferable for CEN in terms of conceptual models are GERT networks, which
are free of the above drawbacks, although they also have their limitations for the
same reasons as PERT networks.

The best solution can be obtained by combining the capabilities of the PERT
and GERT networks by including additional “OR” nodes at the input and output
in the PERT network. With the help of the extended PERT network, it is possible
to represent not only the network diagram of the project, but also more complex
diagrams describing the workflows.

228

Let us consider the application of the extended PERT network as a conceptual
model of the semiconductor manufacturing process, which includes the works
related to checking and preparing the oven (Fig. 7.22).

Fig. 7.22. Conceptual model of the semiconductor manufacturing process.

As shown in Fig. 7.22, the process begins with the receipt of raw materials (work
A). At the same time, the oven power supply is checked (operation B). After molding
the raw material (C) and checking the furnace (D), the loaded samples (E) are fired.
Then the obtained samples go to the final control (G), and the oven is cleaned and
prepared for the next heating (F).

After inspection, the samples obtained are either recognized as good crystals and
packed for shipment (I) or sent for recycling (H).

CEN interpretation of the extended PERT network will be as follows:

• nodes with input function “OR” will be represented by transitions of type “Y”;

• nodes with an output function “OR” – transitions of the “X” type;

• conditions of probabilistic choice for the specified nodes will be determined
using decision functions;

• we assign transitions “J” to the nodes of the “I” type, and nodes without a
probabilistic choice at the output – transitions of the “F” type;

• as before, the planned works will be depicted using transitions of the “T” type;

• the execution time of work will be modeled by the delay time at the transition,
which is calculated according to a given distribution law.

For the example under consideration, the CEN model built according to these
rules will have the form shown in Fig. 7.23.

229

Fig. 7.23. CEN model of the semiconductor manufacturing process.

The formal definitions of extended PERT networks using CEN are used in the
same way as in the case of conventional PERT networks; however, analytical solutions
cannot be obtained for them. By means of statistical experiments, estimates of the
average and variance of the time of complete processing of a batch of raw materials
are calculated (see Fig. 7.23). The condition for the end of the cycle is the remaining
amount of raw materials, which is calculated each time at transition T8 and stored in
the tag attribute. At transition X0, the remainder of the raw material is checked, and
if it turns out to be less than the specified level, the mark is sent to position P15 – the
process ends.

Summarizing the consideration of planning models, we note that the use of CEN
as network diagrams of plans and workflows has several advantages over other
methods. These advantages lie in the capabilities provided by CEN:

• simulation of various options for project development, taking into account a
large number of random factors and existing risks;

• creation of aggregated models that call functional modules for calculating the
current values of production indicators;

• monitoring the progress of the project and analysis of its current state;

• dynamic evaluatation of design performance using both analytical and statistical
methods;

230

• use of estimates of design indicators when choosing the direction of project
development;

• predicting the development of the project with the existing trends in its
dynamics;

• management of the project progress by generating conditions for the start of
work.

7.6.3. Risk Assessment in Model-Oriented Planning and Management

In network planning, risk is the result of unforeseen events, which make the
work impossible to be performed on time. It leads to delays in the entire production
process or project execution time and to unforeseen losses of financial, time and
labor resources. Therefore, the implementation of any plan largely depends on its
reliability, which is determined by the probability of fulfillment of the technical and
economic indicators laid down in the plan.

Even greater demands are placed on real-time work planning. In general, the task
of real-time network planning is to ensure the implementation of the project under
the given constraints, which must be checked during the implementation of the plan.
In this case, the problem of planning is in many respects similar to the problem of
dynamic verification, in the solution of which varieties of temporal logic can be used
to formally determine the constraints on the operating conditions.

According to PMBOK (Project Management Body Of Knowledge) (PMBOK, 2017),
risk management is the process of identifying, analyzing risks and making decisions,
which include maximizing the positive and minimizing the negative consequences
of risky events. Thus, risk is an activity associated with overcoming uncertainty in a
situation of choice, in the process of which there is an opportunity to quantify and
qualitatively assess the probability of achieving the predicted result or deviation
from the goal.

According to risk management standard (ISO/IEC, 2019), risk is defined as a
consequence of the impact of uncertainty on the achievement of objectives.

The basic concepts of risk include:

• risk assessment is a process that includes risk identification, risk analysis and
comparative risk assessment;

• level of risk is a measure of risk or a combination of several types of risk char-
acterized by the consequences and their plausibility (probability).

To estimate the probability, the following resources are used:
• chronological data to identify an event or situation that occurred in the past

and extrapolate their occurrence in the future;

231

• forecasting methods, such as error tree analysis and event tree analysis;
• expert assessments in a structured probability assessment process.
In a situation where there are several options, risk assessment must be performed

for each of the alternatives.

There are the following groups of risk assessment methods:

• methods of observation (method of expert assessments);
• scenario analysis;
• functional analysis;
• statistical analysis (Markov analysis, Monte Carlo method, Bayesian analysis).

Methods of statistical analysis carry out quantitative risk assessment. For
example, according to the Bayesian method (Kruschke, 2014), even before the data
are obtained, decision maker considers the degree of their confidence in possible
models and presents the data in the form of probabilities. Once the data are obtained,
Bayes’ theorem allows us to calculate a new set of probabilities that represent new
degrees of confidence in possible models that take into account new information
from the received data.

Of the three stages of risk assessment, which include risk identification, risk
analysis and comparative risk assessment, these methods cover only the last
stage, i.e., none of the above methods of statistical analysis provides support for all
components of the risk assessment process.

Recent studies of methods for assessing the reliability and risks are the following:

• The method based on oriented graphs – the model of the project implementa-
tion process is considered in the form of a Cyclical Alternative Network Model
(CASM) (Voropayev, 2013). With the help of CASM, it is possible to take into
account the alternative nature of both the technology of production of works
and methods of allocating resources for work to carry out their optimal pur-
pose with the optimal rate of use. However, this method takes into account only
consistent work and a priori risk assessment before the experiment.

• The method of finding the optimal strategy within the Markov decision-mak-
ing process with non-Markov rewards (Thiebaux et al., 2006) includes the task
of checking the properties of the system expressed by probabilistic temporal
logic. However, this method is not suitable for solving the problem of dynamic
risk assessment and decision-making in network planning because in a general
case planning processes are non-Markov.

• The method based on the use of alternative stochastic network models in-
cludes analysis of the stochastic graph using a simulation model, and it is a
combination of Ford-Falkerson algorithm (Laube and Nebel, 2016) to find the
maximum path length, logically justified calculations, and elements of the sta-

232

tistical test method. The disadvantage of this method is that the evaluation of
the implementation goes to the beginning of the project, and in real time it
does not work.

• Cognitive map method. The essence of the method is to build cognitive maps
and implement on their basis modeling of different scenarios. It allows you to
predict the occurrence of certain events that may adversely affect the results of
project activities or activities of the enterprise.

However, these methods do not take into account the intersection of time intervals
and changes in the state in the process of work with the simultaneous analysis of
alternative paths in the work plan. This problem is solved by the method of dynamic
risk assessment in network planning and management, based on the combination of
implementation models as CEN and predictive models as CTL in simulation mode.

Let us assume that the work plan of CPS manufacturing looks like as shown in
Fig.7.24 (Kazymyr, 2017). Alternative ways to implement the work plan in Fig. 7.24
are shown by a dotted line.

With the beginning of execution of the plan of works (1) there is a division of
ways of works which will be carried out in parallel, namely: a choice and the further
works with hardware (2) and software (3). When choosing the hardware, the choice
of the tablet is between two manufacturers. The difference in choice will affect the
financial costs. This is followed by the division (13) into the parallel performance of
such tasks as: the development of the identification system (14), the choice of server
configuration (15) and the choice of network equipment (16).

When choosing software, tasks (3) should be divided into client (6) and server
(7) parts. For client software, the question is: under which platform to develop? That
is why there is a choice of alternatives (6) among the available platforms. Choosing

Fig. 7.24. Work plan of CPS manufacturing.

233

one of the options will affect the development time. This is due to the relevance,
openness, popularity, functionality of each of the platforms, which will certainly affect
the time spent searching for information, ways to solve problems, the development
and further support.

Next is the work that will be used to select the architecture (18) and programming
language (19). After selecting everything you need to develop software for the client
part, the coding time (20–23) comes next. It is reasonable to divide the tasks into
several parts for parallel programming by several programmers, which will allow you
to do the job faster than one person would do. It is important to choose a database
for the server software. Therefore, there is a choice of alternatives (7) between the
commercial and open systems (11 and 12). The choice depends on the financial
costs, as well as development time, in particular due to the openness and quality of
documentation.

Next is the stage of development of the server part. As mentioned earlier, to
optimize the development time for the available number of human resources, the
work is divided (25) among developers into the following tasks: development
of the repository layer (26), domain layer (27), service layer (28) and application
layer (29). Documentation is maintained at all levels – hardware and software (17,
24, 30). After the hardware and software development is completed, there is an
integration phase (31), a testing phase (32) where you can detect bugs and return
the system for refinement, a documentation phase (33), and the final startup phase –
implementation (34) of this system.

The implementation model of the work plan is shown in Fig. 7.25.

Let restrictions introduced on the work plan relate to the maximum value of
the cost of work – no more than 10,000 monetary units, and the maximum time of
execution of the work plan – no more than 250 units of time.

Fig. 7.25. Work plan implementation.

234

Figure 7.26 presents an editor window with certain model variables:

• COST – initialized with a value that limits the financial resources, 10000;

• PER, PER1, PER2 – auxiliary variables that are needed to determine the
alternative path after each transition type “X”.

Fig. 7.26. Model variable editor window.

The variable that limits the project execution time is not defined – it will use the
system variable TIME, which is available for all functions of the model.

In the model, transitions X0,	 X1 and X2 have alternative paths. Thus, at the
transition X0 there is a choice of tablet type (place P4 or P5), at the transition X1 – the
choice of client software platform (place P18, or P19, or P20), and at the transition
X2 – the choice of database for server software (place P26 or P27).

The transition delay function X0, defined as RETURN 1, means the transition delay
is determined by 1 unit of time. The crucial function of this transition is determined
by the entered variable PER:

V	[‘PER’]	=	UNIFORM	(0,1);

IF	(V	[‘PER’]	<0.5)	RETURN	0;

IF	(V	[‘PER’]>	=	0.5)	RETURN	1.

It means that the choice of an alternative way to continue the process of work will
be in accordance with the law.

235

The delay function of the transition X1 is defined as RETURN 1; the crucial function
of this transition is determined using the entered variable PER1:

V	[‘PER1’]	=	UNIFORM	(0,1);

IF	(V	[‘PER1’]	<0.33)	RETURN	0;

IF	(V	[‘PER1’]]	=	0.33	&&	V	[‘PER1’]	<0.66)	RETURN	1;

IF	(V	[‘PER1’]>	=	0.66)	RETURN	2.

Function of delay of transition X2 is defined as RETURN 1; the decisive function of
this transition is defined by means of the entered variable PER2:

V	[‘PER2’]	=	UNIFORM	(0,1);

IF	(V	[‘PER2’]	<0.5)	RETURN	0;

IF	(V	[‘PER2’]>	=	0.5)	RETURN	1.

Type “Y” junctions are required to join branches of alternative paths. The crucial
function of the transition Y0 is defined as follows:

VAR	isPlace2Marked	=	P	[‘P7’].	T;

IF (isPlace2Marked == TRUE) RETURN 1;

ELSE	RETURN	0.

In this case, the presence of the label in the input positions of the transition is
checked using the entered local variable of the transition isPlace2Marked.

The crucial function of the transition Y1 is defined as follows:

VAR	isPlace2Marked	=	P	[‘P23’].	T;

VAR	isPlace3Marked	=	P	[‘P25’].	T;

IF (isPlace2Marked == TRUE) RETURN 1;

IF	(isPlace3Marked	==	TRUE)	RETURN	2;

ELSE	RETURN	0.

The decision function of the transition Y2 is defined as follows:

236

VAR	isPlace2Marked	=	P	[‘P27’].	T;

IF (isPlace2Marked == TRUE) RETURN 1;

ELSE	RETURN	0.

Other functions (delays and conversions) for Y transitions are not specified.

At transitions T, the concrete work executed in the project is modeled. At the same
time, it may take some time, and possibly some resources. This is determined by the
delay and conversion functions. For example, for the transition T0	these functions are
defined as follows:

• delay function: “RETURN	8;”, which means a delay at the transition of 8 units of
time;

• conversion function: “V	 [‘	 COST	 ’]	 =	 V	 [‘	 COST	 ’]	 -	 200;”, which means the
consumption of 220 units of monetary resources on this transition.

For the transition T2, these functions are defined as follows:

• delay function: “RETURN	UNIFORM	(90,251);”, which means the delay at the
transition in the interval [90, 251] units of time, set by the uniform law;

• conversion function: “V	[‘	COST	’]	=	V	[‘	COST	’]	-	2000;”, which means the cost of
this transition 2000 units of monetary resources.

The transition functions of the other T-junctions are set similarly.

The following parameters are set for the experiment:

• 400.0 – system simulation time, it will be enough with all the delays that may
occur during the run of the model;

• 1200 – the number of runs of the model;

• AG – an operator of temporal logic;

• V [‘COST’]> = 0 && TIME <250 – a formula that checks the condition whether
the specified financial resource has been exceeded and whether the project
execution time has been exceeded by 250 units of time.

Figure 7.27 shows a table with the results of the experiment.

In the table of results, the path -> P5 -> P18 -> P27 with the lowest risk (30%)

237

to meet the constraint specified in the form of the CTL formula can be selected, the
accuracy of the experiment is defined by d= 0.02 (the deviation is at a confidence level
of 95%) and the number of alternative paths N=12. The model can be complicated by
increasing the number of alternatives (the factors on which the implementation of
the work plan depends) and setting additional constraints.

Thus, the developed simulation model allows predicting the implementation of
work plans taking into account the risks, as well as ensuring the stability of plans
under conditions of uncertainty.

7.6.4. Implementation Models of Quality Management Processes

If we proceed from the principles of building implementation models, then quality
management in its form should not differ much from project management. However,
unlike planning models, quality management models do not have such pronounced
analogues that can be used as conceptual models when constructing formalized
schemes of control algorithms using CEN. In this regard, the basic methodological
approaches that form the basis for the construction of quality management systems
should be analyzed in order to determine the role and place of MOC in these systems.

To ensure the required level of quality in international practice, two approaches
have been used: product-oriented and process-oriented. Both approaches require a
quality management system. Such a system defines the objectives of management in
relation to quality, establishes its policy and details the necessary actions.

In the first approach, the emphasis is placed on quality control by checking the
finished product. This approach is based on the assumption that the more errors are
detected and removed during the final control of the product, the higher its quality.

Fig. 7.27. Results of the experiment.

238

In the second approach, the emphasis is placed on taking measures to prevent,
promptly identify and remove product flaws by timely defining responsibilities,
provision plans, basic procedures for ensuring the quality of products, as well as
taking appropriate measures sequentially, starting from the initial stages of the life
cycle.

The process approach in our time can be considered generally accepted. It
underlies the concept of Total Quality Management (TQM) (Kiran, 2016), which
is implemented in numerous international standards, draft standards and
working materials. Internationally, specialized systems of standards are formed
by the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IES). International standards of the ISO 9000: 2015
(ISO 9000, 2015) series establish the principles of enterprise management based on
the process approach.

According to ISO 9000 standards, regardless of the product category, process-
based quality management takes into account, inter alia, the following aspects:

• description of processes according to the rule “inputs – operations – outputs”;

• identification of links between processes;

• identification of operating procedures.

As you can see, this definition exactly corresponds to our approach to building
implementation models. It remains only to clarify the concepts of the control object
for these processes, the list of processes and the details of their operational content.

As a CO for the processes of the quality management system, documents are
considered that can be located on any data carrier: paper, diskette, disk, etc. Quality
management documentation is divided into three levels. The first level documents
include “Quality Manual” and “Quality Policy”. These documents are fundamental,
defining the structure of the processes. Within processes, they can be used as links,
although in some cases they can be controlled objects, in particular when making
changes.

Second level documents are methodologies and instructions that describe
procedures for fulfilling the requirements of the standards. They set the content of
the processes tied to the specific conditions of the enterprise.

Finally, the third level documents include work instructions, test procedures and
quality records. They also include documents accompanying input and output data,
as well as internal documents that ensure the implementation of work procedures.

The main processes that form quality at the stages of the full life cycle of products

239

defined by the ISO 9001: 2015 (ISO 9001, 2015) standard include:

• requirements management (requirements);

• development and planning of the project (developing);

• control (testing);

• support (maintenance);

• changes (changing);

• inspection (inspection).

Fig. 7.28. Requirements management process algorithm.

240

Each of these processes can be described using flowcharts. As an example, let us
consider the requirements management process, the algorithm diagram of which is
shown in Fig. 7.28. Requirements management aims at achieving and maintaining
an agreement with the customer on the requirements for a development project.
A customer can mean a marketing group, an internal organization, or an external
customer. This agreement is referred to as the “System Requirements” set for the
project and covers both technical and non-technical requirements (e.g., lead times).
The agreement forms the basis for costing, planning, executing and tracking project
work throughout the entire product life cycle.

System requirements for a product, equipment, and other system components,
such as people, can be enforced by a team of analysts, and developers do not have
to directly control this distribution. The development team also takes appropriate
steps to ensure that requirements are under control that fall under the responsibility
of the developers. To ensure this control, the development team reviews the original
and revised system requirements and tries to resolve possible issues before the
requirements are introduced into the development project. Any change in system
requirements is accompanied by changes in the broken development plans in order
to align them with the updated requirements.

A formalized model of the requirements management process developed using
EMS is shown in Fig. 7.29.

Transitions are modeled by the following procedures:

Fig. 7.29. CEN model of the requirements management process.

241

• Y0 – receiving a change request;
• F0 – sending requests to groups;
• T0 – requirements development by the project manager;
• T1 – formulation of requirements by the support team;
• T2 – formulation of requirements by a group of analysts;
• J0 – a summary of the drawn up requirements;
• T4 – review of requirements by the project manager;
• X0 – checking and agreeing on consistency requirements and
• adequacy;
• X2 – making changes to the development project;
• QF – distribution of documents in the order of the queue;
• J1 – sending documents for inspection on demand.

The decisive function of the transition X0 determines the direction of the
development of the process depending on the value of the first attribute of the label
according to the rule:

if	(P9.m	[1]	=	0)	then	R1:	=	1;	//	if	the	requirements	are	agreed;

If	(P9.m	[1]	=	1)	then	R1:	=	2;	//	if	requirements	are	not	agreed.

The aggregate states corresponding to the marked positions have the following
definitions:

• Р3 – request for the formulation of requirements;
• P4 – request processing by the project manager;
• Р5 – request processing by the support team;
• Р6 – request processing by a group of analysts;
• Р8 – documentation of requirements by the project manager;
• Р9 – documenting requirements by the support team;
• Р10 – documenting requirements by a group of analysts;
• Р11 – receipt of documents for consideration by the project manager;
• Р12 – receipt of a document for approval;
• Р14 – request for development and planning;
• P0 – request for changes.

In a similar way, other life cycle processes are modeled in form of DEVELOPING,
CHANGING, INSPECTION, MAINTENANCE and TESTING aggregates. These processes
are not self-contained.

The scheme of interaction of processes is modeled by establishing connections
between the aggregates as it is shown in Fig. 7.30. The links between the units are
established by connecting the corresponding boundary positions, through which the

242

transfer of labels (control) between the processes takes place. As a result, even the
execution of a single project occurs within the TQM quality management cycle, which
includes: planning, execution, control and corrective actions. Note that the inspection
process, as in our case, is usually outside the scope of this cycle, since it affects all
processes.

Fig. 7.30. Aggregate implementation model of product life cycle.

Implementation models make it possible to abandon expert assessment of many
characteristics of quality management processes. Using the attributes of labels and
transformation functions of transitions for the accumulation and calculation of data
characterizing the performance of certain operations, it is possible to evaluate the
following characteristics:

• quality of definition of input and output data, their sufficiency;

• quality of registration of execution of process operations;

• quality of technologies for performing process operations;

• quality of managerial decision-making by a manager (regularity of control,
analysis of reports, etc.);

• quality of documentation.

243

If we talk about the quality of forecasting the development of processes by the
leadership, then the real forecast can be compared with the results of the assessment
obtained using forecasting models based on the dynamic analysis of CEN.

Estimates of the temporal characteristics of processes can be obtained even more
simply: the duration of preparation, the duration of operations and the total time
of the process, which are mapped into the standard numerical characteristics of
transitions obtained as a result of statistical experiments. As with scheduling tasks,
these experiments can be performed in real time during the process, which will be
controlled by the implementation model.

7.7. Summary

EBW machines are outstanding representatives of the class of industrial robots,
on the basis of which an intelligent production system can be formed. The basis of
such a system is a model-oriented CS, built on the principles of a hierarchy of goals,
synchronicity, reliability, distribution, flexibility and openness, which are realized
by integrating high-quality executive equipment with intelligent control based on
embedded models.

The use of implementation models in combination with forecasting models when
controlling a vacuum system, a power source and a displacement system made it
possible to solve the problem of timely switching of CO operating modes in order to
prevent the development of dangerous situations.

The use of recovery models built into the control loop made it possible to
implement:

• a visual method of designing welding programs with multi-axis movements;

• an adaptive method of tracking the butt during welding;

• a multi-agent control of the simultaneous operation of several electron guns as
part of one ELS installation.

The use of model-based control methods for EBW machines makes it possible
to significantly improve the quality of products and the efficiency of the production
process as a whole, which is confirmed by the given technical characteristics of the
CS and the experience of operating these installations at enterprises of the aerospace
and metallurgical industries.

Implementation and predictive models are one of the main tools for organizational
management of production activities at the level of the automated control system,
where planning and quality management processes prevail. These models can serve
as the basis for building management modules that provide financial activities,

244

decision support and organizational management of the enterprise.

To manage planning processes, it is proposed to use implementation models
built on the basis of conceptual models in the form of extended PERT networks. In
this case, both methods of analytical calculation of the main parameters of the plan
and simulation experiments with built-in models can be applied. The complex of
developed basic models of quality management processes provides support for the
full life cycle of products.

245

References

Akopyants K. S., Nazarenko O. K., Gumovsky V. V., Chernyakin V. P. (2002) Diagnostic system of an
electron beam in electron beam welding machines// Automatic welding. No. 10. pp. 30–33.

Albert W., Yao L. (2010) A petri nets-based process planning system for wastewater
treatment, Asian Journal of Control.

Alpern B., Scheider F. B. (1985) Defining liveness. Information Processing Letters. Vol. 21,
No. 4. pp. 181–185.

Alur R. (1991) Techniques for automatic verification of Real-Time systems. PhD thesis,
Stanford University, 275 p.

Alur R., Henzinger T. A. (1990) Real-time logics: complexity and expressiveness. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science, IEEE Computer
Society Press, pp. 390–401.

Alur R., Henzinger T. A. (1993) Real-time logics: complexity and expressiveness. Information
and Computation. No. 104(1), pp. 35–77.

Alur R., Peled D., Penczek W. (1995) Model Checking of Causality Properties. In Proc. 11th
IEEE Conf. Logic in Computer Science, pp. 90–100.

Arica E. and Powell D. (2017) Status and future of manufacturing execution systems//
In Industrial Engineering and Engineering Management (IEEM), 2017 IEEE International
Conference, pp. 2000–2004.

Asteziano E., Zucca E. (1995) D-oids: a Model for Dynamic Data Types. Mathematical
Structures in Computer Science. Vol. 5, No. 2, pp. 257–282.

Astrom K, Wittenmark B. (1996) Computer-Controlled Systems, Theory and Design,
Prentice Hall.

Astrom K. (2008). Adaptive control. Dover, 2008. pp. 25–26.

Bailo Clark P. Yen C. J. (1997). Open modular architecture controls at GM Powertrain:
technology and implementation Proceedings of the SPIE, Vol. 2912, pp. 52–63.

Baranov S. Logic Synthesis for Control Automata. Springer, (1994)393 p.

Basile, F., Chiacchio P., Coppola J., Gerbasio D. (2015). Automated warehouse systems: A
cyber-physical system perspective. In 2015 IEEE 20th Conf. Emerging Technologies & Factory
Automation (ETFA), pp. 1–4.

246

Bassi L. (2017) Industry 4.0: hope, hype or revolution? Conference: IEEE 3rd International
Forum on Research and Technologies for Society and Industry - Innovation to Shape the Future
for Society and Industry (RTSI), pp.1-5. DOI:10.1109/RTSI.2017.8065927.

Bechet, D., De Groote, P., Retoré, C. (1997), “A complete axiomatisation for the inclusion
of series-parallel partial orders”, Rewriting Techniques and Applications, Lecture Notes in
Computer Science,1232, Springer-Verlag, 1997. pp. 230–240.

Beyaert B., Florin G., Long P., Matkin S. (1981) Evaluation of Computer Systems
dependability using stochastic Petri Nets // FTCS–11: The Eleventh Annual Int. Symp. Foult –
Tolerant Computing, Portland, 1981. pp. 79–81.

Berg (1985). “CAD/CAM’s Pioneer Bets It All”. The New York Times.

Berkeley (2020), Electrical Engineering and Computer Sciences at UC Berkeley, https://
ptolemy.berkeley.edu/projects/cps/ [accessed in May 2020].

Bibel, Wolfgang (2007). Early History and Perspectives of Automated Deduction. KI 2007.
LNAI. Springer (4667): 2–18.

Bird R. S. (1993) Lectures on constructive functional programming // Conctructive
Methods in Computer Science. – NATO ASI Series F: Springer Verlag. –. No. 55, pp. 151–218.

Boyer, S. (1999). (1999) SCADA Supervisory Control and Data Acquisition, 2nd Edition, ISA.

Bowen J., Hoare C. A. R., Langmack H., et al. (1996) ProCoS II: A ProCoS II project final
report // Bulletin of the EATCS. – No. 59, pp. 76–99.

Brauer W., Reising W., Rozenberg G. (1987) Petri Nets: Applications and Relations to other
Models of Concurrency. Berlin: Springer, 516 p.

Brayton R. K., Hachtel G. D., Sangiovani-Vincentelli A. et al. (1996) VIS: a system for
verification and synthesis //Lecture Notes in Computer Science. – Vol. 1102, pp. 428–432.

Bruck J., Blaum M. (1989) Neural networks, error-correcting codes, and polynomials over
the binary n-cube. IEEE Transactions on information theory. Vol. 35, No. 5, pp. 976–987.

Bryant R. E. (1992) Symbolic boolean manipulation with ordered binary decision diagrams //
ACM Computing Surveys. Vol. 24, No. 3, pp. 293–318.

Buffa (1984). Meeting the Competitive Challenge: Manufacturing Strategy for U.S.
Companies. Dow Jones-Irwin. Competition, International. 190 p.

Buslenko N. P. (1978) Modelling of complex systems. Moscow.

247

Busse, T. (1998) ERP ousourcing options grow // Infoworld. 1998. Vol. 20, No. 37, 55 p.

Chang E., Pnueli A., Manna Z. (1994) Compositional Verification of Real–Time Systems //
Proc. 9’th IEEE Symp. On Logic in Computer Science. pp. 458–465.

Chaochen Z., Ravn A. P., Hoare C. A. R. (1993) An Extended Duration Calculus for Hybrid
real-Time Systems // Lecture Notes in Computer Science. Springer-Verlag,. Vol. 736, pp. 36–59.

Chibani, A., Amirat Y., Mohammed S., Matson E., Hagita N., Barreto M. (2013). Ubiquitous
robotics: Recent challenges and future trends. Robotics and Autonomous Systems, 61(11),
1162–1172.

Clarke, Edmund M. (2008) The Birth of Model Checking. In: Grumberg, Orna and Veith,
Helmut eds.: 25 Years of Model Checking, Vol. 5000: Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp.1–26.

Clarke E., Emerson E. (1981) Design and synthesis of synchronization skeletons using
Branching Time Temporol Logic. Lecture Notes in Computer Science. – Vol. 131, pp. 52–71.

Clarke E., Grumberg O., Peled D. (1999) Model Checking. MIT Press, 314 p.

Colombo A. W., Bangemann T., Karnouskos S. (2013) A system of systems view on
collaborative industrial automation. In 2013 IEEE International Conference on Industrial
Technology (ICIT), pp. 1968–1975.

CPS (2019), CPS-IoT Week 2019, http://www.cpsweek.org/, [accessed in May 2019].

Culler D., Karp R., Patterson D., et al. (1993) LogP: Towards a realistic model of parallel
computation // SIGPLAN Notices. No. 7, pp. 1–12.

Delaney B. (2017) Virtual Reality 1.0 -- The 90’s: The Birth of VR, in the Pages of CyberEdge
Journal Paperback, 2017. 439 pages.

Dixon M. (2018). What are the most popular plc programming languages? https://
realpars.com/plc-programming-languages/

Derhamy H., Eliasson E., and Delsing J. (2016) Iot interoperability-on-demand and low
latency transparent multi-protocol translator. IEEE Internet of Things Journal.

Dorf R., Bishop R. (1998) Modern control systems. Addison-Wesley, 1998.

Drusinsky D. (2000) The Temporal Rover and ATG Rover. Proc. Spin2000 Workshop,
Lecture Notes in Computer Science. Springer-Verlag, Vol. 1885. pp. 323–329.

East W. Critical Path Method (CPM) Tutor for Construction Planning and Scheduling.

248

McGraw-Hill Education; 1st edition, 2015, 225 p.

El Mohadab M., Khalene B.B., and Saf S. (2017) Enterprise resource planning: Introductory
overview, Electrical and Information Technologies (ICEIT), 2017 International Conference, pp. 1–4.

Electron beam welding machine KL118.00.00.000. (2004) Maintenance manual. – K.:
Paton electric welding institute, 443 p.

Emerson E. A. (1990) Temporal and Modal Logic. In Handbook of Theoretical Computer
Science, Elsevier Publishers, pp. 1–24.

Emerson E., Trefler R. (1999) Parametric quantitative temporal reasoning. In Logic. In
Computer Science, pp. 336–343.

Erl T. (2007) SOA Principles of Service Design (The Prentice Hall Service- Oriented
Computing Series from Thomas Erl). Upper Saddle River, NJ, USA: Prentice Hall PTR.

Ferrer B. R., Afolaranmi S. O., and Lastr J. L. (2017) Principles and risk assessment of
managing distributed ontologies hosted by embedded devices for controlling industrial
systems, in IECON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society,
pp. 3498–3505.

Flatt H., Schriegel S., Jasperneite J., Trsek H., Adamczyk H. Analysis of the Cyber-Security
of industry 4.0 technologies based on RAMI 4.0 and identification of requirements. In IEEE
International Conference on Emerging Technologies and Factory Automation, ETFA.

Fleischmann H., Brossog M., Beck M., and Franke J. (2017) Automated generation of human-
machine interfaces in electric drives manufacturing, in 2017 7th International Electric Drives
Production Conference (EDPC), pp. 1–8.

Ferrer B. Ramis and Lastra J., Martinez L. (2017) Towards the encapsulation and
decentralisation of OKD-MES services within embedded devices, International Journal of
Production Research, pp. 1–13.

Frey G., Litz L. (2000) Correctness Analysis of Petri Net Based Logic Controllers // Proc.
American Control Conference, ACC 2000, Chicago (IL). pp. 3165–3166.

Fuhs H. G. (1995). Applications of the Continuous Acquisition and Life-cycle Support
(CALS) initiative to the evolved SEASAPPROW Missile program Monterey, California. Naval
Postgraduate School, 79 p.

Gaines B. R., Norrie D. H. (1995) Knowledge Systematization in the International IMS
Research Program. // Proc. of IEEE Conference on Systems, Man and Cybernetics Intelligent
Systems for 21st Century. Vol. 1. pp. 958–963.

249

Ganesh K., Mohapatra S., Anbuudayasankar S. P., Sivakumar P. (2014) Enterprise Resource
Planning: Fundamentals of Design and Implementation. Springer;182 pages.

Garcia C. E., Prett D. E. and Morari M. (1989) Model predictive control: Theory and practice
– a survey. Automatica. (25) pp. 335–348.

Gluch D., Srinivasan G. (1998) A Study of Practice Issues in Model-Based Verification Using
the Symbolic Model Verifier (SMV). Technical report. Carnegie Mellon, Software Engineering
Institute, 43 p.

Gomi H., Kawato M. (1993) Neural Network control for a closed loop system using feedback
error leaning // Neural Neyworks, Vol. 6. pp. 933–946.

Gonzalez R., Woods R. (2018) Digital Image Processing, 4th Edition. |Pearson.

Grädel E., Kolaitis P.vG., Libkin L., et al. (2007) Finite Model Theory and Its Applications.
Computer Science Theoretical Computer Science. Texts in Theoretical Computer Science. An
EATCS Series, 429 p.

Geunes J. (2017) Operations Planning Mixed Integer Optimization Models. CRC Press, 218 p.

Gunes, V., Peter S., Givargis T., and Vahid F. (2014). A survey on concepts, applications, and
challenges in cyber-physical systems. KSII Transactions on Internet and Information Systems,
8(12), 4242–4268. doi: 10.3837/tiis.2014.12.001.

Gurevich Y. (1994) Evolving Algebras 1993: Lipary Guide. Specification and Validation
Methods/ Oxford University Presspp. 9–36.

Haber R. E., Juanes C., R. del Toro, and Beruvides G. (2015) Artificial cognitive control with
self-x capabilities: A case study of a micromanufacturing process. Computers in Industry, Vol.
74, pp. 135–150.

Hagan M., Demuth H., and Orlando De Jesus (2002). An introduction to the use of neural
networks in control systems. International journal of robust and nonlinear control, pp. 959 –
985.

Hamilton K., Watkins D. (2009). Evidence-Based Design for Multiple Building Types.
Hoboken, NJ: John Wiley & Sons, Inc.

Harel D., Pnueli A. (1985) On the development of reactive system. In: Logics and Models of
Concurrent Systems. Krzysztof R. Apt. Berlin: Spring-Verlag, pp. 477–498.

Hardin R. M., Harel Z., Kurshan R. P. (1996) COSPAN. Lecture Notes in Computer Science. –
Vol. 1102, pp. 423–427.

250

Hartley J. (1984) FMS at Work., Elsevier Science Ltd. - 286 pages.

Hatcliff J., Dwyer M. (2001) Using the Bandera Tool Set to Model–check Properties of
Concurrent Java Software. Lecture Notes in Computer Science. Springer–Verlag, – Vol. 2154.
pp. 39–58.

Havelund K., Lowry M., Penix J. (2001) Formal Analysis of a Space-Craft Controller Using
SPIN. IEEE Transactions on Software Engineering. Vol. 27(8). pp. 749–765.

Havelund K., Rosu G. (2001) Monitoring Java Programs with Java PathExplorer // Proc. of
the 1st International Workshop on Runtime Verification (RV’01), Elsevier Science, Electronic
Notes in Theoretical Computer Science. No. 55(2), pp. 97–114.

Henzinger T. A. (1991) The temporal specification and verification of Real-Time Systems.
PhD thesis, Stanford University, 287 p.

Henzinger T. A., Manna Z., Pnueli A. (1993) Towards Refining Temporal Specification into
Hybrid Systems. Lecture Notes in Computer Science. Springer-Verlag, Vol. 736. pp. 60–76.

HLA (High Level Architecture), Release 3.0, AIOTI WG03 – loT Standardisation. European
Communities (2017).

Hoare C. A. R. (1985) Communicating Sequential Process. Prentice Hall. 256 p.

Holzmann G. (1997) The model checker Spin . IEEE Trans. on Software Engineering. Vol.
23, No. 5. pp. 279–295.

Iarovyi S., Mohammed W. M., Lobov A., Ferrer B. R., and Lastra J. L. M. (2016) Cyber-Physical
Systems for Open-Knowledge-Driven Manufacturing Execution Systems,” Proceedings of the
IEEE, Vol. 104, No. 5, pp. 1142–1154.

ISA (2020). The International Society of Automation (ISA). Available: https://www.isa.org.
Accessed on September 2020.

ISA95, International Society of Automation, Enterprise-Control System Integration.
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/
isa95 (Accessed on September 2020).

ISO 10303-1:2021(en). Industrial automation systems and integration — Product data
representation and exchange — Part 1: Overview and fundamental principles, https://www.
iso.org/obp/ui/#iso:std:iso:10303:-1:ed-2:v1:en (Accessed in 2021).

ISO 9000:2015 Quality management systems – Fundamentals and vocabulary, https://
www.iso.org/standard/45481.html. Accessed in 2021.

251

ISO 9001:2015 Quality management systems – Requirements. https://www.iso.org/
standard/ 62085.html. Accessed in 2021.

ISO/IEC 31010:2019. Risk management – Risk assessment techniques, https://www.iso.
org/standard/72140.html (Accessed in 2021).

Jakobson G., Buford J., Lewis L. (2007). Situation Management: Basic Concepts and
Approaches // Information Fusion and Geographic Information Systems. Lecture Notes in
Geoinformation and Cartography book series (LNGC), pp 18–33.

Jamshidi M., Ed. (2008) Systems of Systems Engineering, CRC Press, November.

Janicki R., Lauer P. (1992) Specification and Analysis of Concurrent Systems. The COSY
Approach. Monographs in Theoretical Computer Science. An EATCS Series.

Jansen G., Gollmar P. (2020) Reactive Systems Explained. O’Reilly Media, Inc.

Jensen K. (1981) Coloured Petri Nets and the Invariant Methods. Theoretical Computer
Science. – Vol. 14, pp. 317–336.

Kagermann, H., Wahlster W., and J. Helbig, eds., (2013): Recommendations for implementing
the strategic initiative Industrie 4.0: Final report of the Industry 4.0 Working Group.

Kalachev A. (2013) Multi-core configurable computing platform Zynq-7000. Modern
electronics. No. 1, pp. 22–31.

Kaldewaij A. (1986) A Formalism for Concurrent Process. Eindhowen,168 p.

Kang, H. S, Lee J. Y., Choi S., Kim H., Park J. H., Son J. Y., Kim B. H., and Do Noh S. (2016). Smart
manufacturing: Past research, presentencing, and future directions. International Journal of
Precision Engineering and Manufacturing-Green Technology, 3(1), pp. 111–128.

Karnouskos S., Colombo A. W. (2011) Architecting the Next Generation of Service-based
SCADA/DCS System of Systems, in 37th Annual Conference of the IEEE Industrial Electronics
Society (IECON 2011), Melbourne, Australia, 7–10 Nov. 2011.

Kazymyr V. V. (2003) Simulation of a synthetic environment for reactive systems.
Mathematical modeling. No. 2 (10), pp. 24–32.

Kazymyr V. (2006) Model-Oriented Control of Intelligent Manufacturing Systems: Th.
Doctor of Sciences. Kyiv. 301 p.

Kazymyr V, Kondratenko U., Kharchenko V. (2017) University industry cooperation. Volume
4. Capacity, Building, Trainings. TEMPUS CABRIOLET “Model-oriented approach and Intelligent
Knowledge-Based System for Evolvable Academia-Industry Cooperation in Electronic and Computer

252

Engineering” (544497-TEMPUS-1-2013-1-UK-TEMPUS-JPHES), 332 p.

Kazymyr V., Prila O., Usik A., Sysa D. (2019) New Paradigm of Model-Oriented Control in
IoT / Information and Software Technologies. Part of the Communications in Computer and
Information Science book series, Springer Verlag. CCIS, Vol. 1078, pp. 605–614.

Кazymyr V. V., Sira G. A. (2011) Distributed Modeling in EMS Based on HLA. Mathematical
Machines and Systems. No. 4, pp. 125–135.

Kazymyr, V., Shkarlet, S., Zabasta, A. (2020) Practical-oriented Education in Modeling and
Simulation for Cyber-Physical Systems. 10th International Conference on Advanced Computer
Information Technologies, ACIT 2020 – Proceedings, 2020, pp. 691–694, 9208876.

Kerzner H. (2003) Project Management: A Systems Approach to Planning, Scheduling, and
Controlling (8th ed.). Wiley.

Khoussainov B., Nerode A. (2012) Automata Theory and its Applications. Springer Science
& Business Media, 432 p.

Khropatyi O., Lohinov O., Kazymyr, V. (2020) Embedded Models Realization Platform in
IoT. IDAACS-SWS 2020 – 5th IEEE International Symposium on Smart and Wireless Systems
within the International Conferences on Intelligent Data Acquisition and Advanced Computing
Systems, Proceedings, 9297061.

Kim, K. D. and Kumar P. R. (2013). An overview and some challenges in cyber-physical
systems. Journal of the Indian Institute of Science, 93(3), 341–352.

Kiran D. (2016) Total Quality Management: Key Concepts and Case Studies. Butterworth-
Heinemann; 1st edition, 580 p.

Kramer B., Schmidt H. (1991) Types and Modules for Net Specifications // In K. Jensen and
G. Rozeberg, editors, High-Level Petri Nets: Theory and Application. Springer, pp. 171–188.

Kroening D., Strichman O. (2008) Decision Procedures: An Algorithmic Point of View.
Springer Science & Business Media, 306 p.

Kruschke J. (2014) Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan.
Academic Press; 2nd edition, 776 pages.

Lamport L. (1983) Specifying concurrent program modules. ACM Trans. on Prog. Lang.
Syst. No. 5. pp. 190–222.

Lanting, C. J. and Lionetto A. (2015) Smart Systems and Cyber Physical Systems paradigms
in an IoT and Industry/ie4. 0 context. Paper presented at the 2nd International Electronic
Conference on Sensors and Applications.

253

Latecki L., Gross A. (1995) Digitization constraints that preserve topology and geometry//
In Proc. Intl. Symp. on Computer Vision. pp. 127–132.

Lee E. A. (2007) Computing foundations and practice for cyber-physical systems: a
preliminary report, Tech. Rep. UCB/EECS-2007-72, University of California, Berkeley.

Lee J., Bagheri B., Kao H. A. (2015) A Cyber-Physical Systems architecture for Industry
4.0-based manufacturing”, 3, 18–23.

Lutz P. (1998) Comparison between the OSACA and OMAC API approaches on an Open
Controller Architecture”, in: “Open Architecture Control Systems”, ITlA Series.

Manna Z., Pnueli A. (1989) The anchored version of the temporal framework. In J.W. de
Bakker, W.–P. deRoever, and G. Rozenberg, editors, Linear Time, Branching Time, and Partial
Order in Logics and Models for Concurrency, Lecture Notes in Computer Science. Springer-
Verlag,Vol. 354. pp. 201–284.

McMillan K. L. (1994) Symbolic model checking. Boston, M.A.: Kluwer Academic Publishers,
234 p.

Microsoft Dynamics AX. ERP for big companies and international organizations, https://
www.isystems-group.com/solutions/microsoft-dynamics-ax/ (Accessed in 2021).

Milner R. (1989) Communication and Concurrency, Prentice Hall, International Series in
Computer Science.

Mordechai Ben-Ari. (2012) Temporal Logic: Formulas, Models, Tableaux. Mathematical
Logic for Computer Science, pp. 231–262|.

Model (2020). Structure of the Administration Shell, Apr. 2018. [Online]. Available:
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-
the-administration-shell.pdf. (Accessed in 2020).

Morkevicius A., Bisikirskiene L., and Bleakley G. (2017) Using a systems of systems
modelling approach for developing Industrial Internet of Things applications, in 2017 12th
System of Systems Engineering Conference (SoSE), pp. 1–6.

Morozov A. A., Litvinov V. V., Kazymyr V. V. (2003) Adaptive control with models in electron
beam welding // Mathematical machines and systemsNo. 3,4, pp.170–180.

Murata T. (1989) Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, Vol. 77, No. 4, pp. 541–580.

Nan Wu and Xiangdong Li (2011). RFID Applications in Cyber-Physical System, Deploying
RFID - Challenges, Solutions, and Open Issues. InTech.

254

Nazarenko O.K., et al. (1993) Observation of the process of electron beam welding and automatic
tracking of the joint. Automatic welding. The Paton welding journal. No. 5. pp. 35–38.

Laube U., Nebel M. (2016) Maximum Likelihood Analysis of the Ford–Fulkerson Method on
Special Graphs. Algorithmica, Vol. 74, pp. 1224–1266.

Nic, N. (2008) Disruptive civil technologies: Six technologies with potential impacts on US
interests out to 2025. Technical Report.

Noe J. D. (1980) Nets in Modeling and Simulation. Brauer W. (ed.) Net Theory and
Applications. Berlin: Springer, pp. 347–368.

Nutt G. J. (1972) Evaluation Nets for Computer Systems Performance Analysis. FJCC, AFIPS
PRESS. – Vol. 41. pp. 279–286.

Olano, M., Mukherjee, S., Dorbie, A. (2001). Vertex-based anisotropic texturing. Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware. pp. 95–98.

OPC Unified Architecture Interoperability for Industry 4.0 and the Internet of Things,
https://opcfoundation.org/ (Accessed in August 2020).

Opanasenko V. N., Kryvyi S. L. (2012) Partitioning the full range of boolean functions based
on the threshold and threshold relation. Cybernetics and Systems Analysis. Springer New York
Publishers. Vol. 48, No. 3. pp. 459–468.

Oracle E-Business Suite, https://www.oracle.com/uk/applications/ebusiness/ (Accessed
in 2021).

Palagin A., Yakovlev Y. (2017) Design Features of Computer Systems on an FPGA Crystal //
Mathematical Machines and Systems, No. 2, pp. 3–14.

Palagin A., Opanasenko V., Kryvyi S. (2013) The structure of FPGA-based cyclic-code converters.
Optical Memory & Neural Networks (Information Optics). Vol. 22, No. 4. pp. 207–216.

Parker J. R. (1999) Algorithm for Image Processing and Computer Vision // Wiley Computer
Publishing. pp. 176–188.

Paton B. E., Nazarenko O. K., Nesterenkov V. M., Morozov A. A., Litvinov V. V., Kazymyr V. V.
(2004) Computer control of electron beam welding with multi-coordinate displacements of
the gun and workpiece. The Paton welding journal. No. 5. pp. 2–5.

Paulson L. C. (1998) The Inductive Approach to Verifying Cryptographic Protocols. Journal
of Computer Security. No. 6. pp. 85–128.

Peled D., Pnualy A. (1994) Proving partial order properties. Theoretical Computer Science.

255

Vol. 126, pp. 143–182.

Penczek W. (1990) A concurrent branching time temporal logic. Lecture Notes in Computer
Science. Vol. 440, pp. 337–354.

 Phillips D., Garcia-Diaz A. (1990) Fundamentals of network analysis. Publisher: Prospect
Heights, Ill.: Waveland Press.

PNML. http://www.pnml.org/ (Accessed in Marth 2021).

Pnueli A. (1986) Applications of temporal logic to the specification and verification
of reactive systems: a survey of current trends. In J. W. de Bakker, W.–P. de Roever, and G.
Rozenberg, editors, Current Trends in Concurrency, Lecture Notes in Computer Science.
Springer-Verlag, Vol. 224. pp. 510–584.

PMBOK Guide – Sixth Edition (2017), https://www.pmi.org/pmbok-guide-standards/
foundational/pmbok (Accessed in 2021).

Pollini L., Innocenti M. (2000) A Synthetic Environment for Dynamic Systems Control and
Distributed Simulation. IEEE Control Systems Magazine. –pp. 49–61.

Portico project. http://www.porticoproject.org (Accessed in Marth 2021).

 Pritsker A. (1995) Introduction to Simulation and SLAM II. Wiley; 4th edition, 839 p.

Pritschow G. (2001). Open Controller Architecture – Past, Present and Future. CIRP Annals –
Manufacturing Technology50(2), -pp. 463–470.

Qin S. J., Badgwell T. A. (1997) An overview of industrial model predictive control technology
/ In J.C. Kantor, C.E. Garcia, and B. Carnahan, editors, AIChE Symposium Series: Fifth Int. Conf. on
Chemical Process Control. Vol. 316. pp. 232–256.

QNX Software Development Platform 6.5.0: Release Notes. (2017) (Accessed http://www.
qnx.com/developers/articles/rel_4222_10.html)

Rajashekaran S., Vijayalksmi G. A. (2004) Neural Networks, Fuzzy Logic and Genetic
Algorithms. Publisher: Prentice-Hall of India Pvt. Ltd, 456 p.

Razem B. SAP R3 & SAP S/4 HANA. SAP, (2020) (Accessed https://answers.sap.com/
questions/13087191/sap-r3-sap-s4-hana.html)

Ravn A. P., Rischel H., Hansen K. M. (1993) Specifying and Verifying Requirements of Real–
Time Systems // IEEE Trans. Softw. Eng. – Vol. 19, No. 1, pp. 41–55.

Reising W. (1985) Petri Nets: An Introduction. Springer-Verlag, 161 р.

256

Romanovs, A., Pichkalov, I., Sabanovic, E., Skirelis, J. (2019). Industry 4.0: Methodologies,
Tools and Applications. In: 2019 Open Conference of Electrical, Electronic and Information
Sciences (eStream 2019): Proceedings, Lithuania, Vilnius, 25-25 April, 2019. Piscataway: IEEE,
2019, pp.7-10. Available from: doi:10.1109/eStream.2019.8732150.

 Sawada C., Akira O. (1997). Open controller architecture OSEC-II: architecture overview
and prototype systems // IEEE 6th International Conference on Emerging Technologies and
Factory Automation Proceedings, EFTA ‘97.

Scholten B. (2007) The Road to Integration: A Guide to Applying the ISA-95 Standard in
Manufacturing. ISA.

Schulze, Klaus-Rainer. (2007) Electron Beam Technologies. DVS Media, Düsseldorf.

Schweichhart K. (2018) Reference Architectural Model Industrie 4.0 (RAMI4.0), An
Introduction, [Online]. Available: https://scholar.google.lv/scholar?q=Reference+Architectu
ral+Model+Industrie+4.0&hl=en&as_sdt=0&as_vis=1&oi=scholart. Accessed on September
2020.

Schyn A., Palanque P., Nedel L.P. (2003) Formal description of a multimodal
interaction technique in an immersive virtual reality application, Proceedings of the
15th Conference on l’Interaction Homme-Machine, pp. 150–157. https://dl.acm.org/doi/
abs/10.1145/1063669.1063690.

Sheng Z., Mahapatra C., Zhu C., and Leung V. C. M. (2015) Recent Advances in Industrial
Wireless Sensor Networks Toward Efficient Management in IoT, IEEE Access, Vol. 3, pp. 622–
637.

Silbert N., Hawkins R. (2016) A tutorial on General Recognition Theory. Journal of
Mathematical Psychology. Vol. 73, – pp. 94–109.

Simanta S., Morris E., Lewis G., Smith D. (2010) Engineering Lessons for Systems of
Systems Learned from Service-Oriented Systems, in. Proc. of IEEE Systems Conference, 4th
Annual IEEE.

Skyttner L. (2001) General Systems Theory: Ideas and Applications. University of Gävle,
Sweden, 472 p.

Smid P. (2007) CNC Programming Handbook, Third Edition. Industrial Press, Inc., 600
pages.

Staggs K. and et.al., ISA 62443-4-2 security for industrial automation and control systems
technical security requirements for IACS components, https://www.isa.org. Accessed on
September 2020.

257

Sultanovs, E., Skorobogatjko, A., Romаnovs, A. (2016) Centralized Healthcare Cyber-
Physical System’s Architecture Development. In: Proceedings of the 2016 57th International
Scientific Conference on Power and Electrical Engineering of Riga Technical University, Latvia,
Riga, 13–14 October, 2016. Riga: RTU Press, pp. 153–158. Available from: doi:10.1109/
RTUCON.2016.7763155

Staggs K. et.al. ISA 62443-4-2 security for industrial automation and control systems
technical security requirements for IACS components, https://www.isa.org. Accessed on
September 2020.

Tajima K. (1996) Genetic algorithms and their practical application. FUJITSU Sci. Tech.
Journ. – Vol. 32, No. 2. pp. 271–286.

Taylor C. et al. (1998) Open, Modular Architecture Controls at GM Powertrain – Definition
of OMAC Concept in GMPTG. Control Engineering, https://www.controleng.com/articles/
open-modular-architecture-controls-at-gm-powertrain-definition-of-omac-concept-in-
gmptg/. Accessed in 2021.

Thiebaux S. et al. (2006) Decision-Theoretic Planning with non-Markovian Rewards.
Journal of Artificial Intelligence Research 25, pp. 17–74.

Travica B. (1997) The Design of the Virtual Organization: A Research Model in Gupta,
Jatinder N. D., Association for Information Systems Proceedings of the Americas Conference
on Information Systems, August 15–17, 1997, Indianapolis, IN, pp. 417–19.

Ungerer G. (2005) uClinux -- Micro-Controller Linux. https://elinux.org/images/b/bb/
Uclinux.pdf () (Accessed in Marth 2021).

Vafeiadis T., Ioannidis D., Ziazios C., Metaxa I., and Tzovaras D. (2017) Towards Robust
Early Stage Data Knowledge-based Inference Engine to Support Zero-defect Strategies in
Manufacturing Environment,” Procedia Manufacturing, Vol. 11, pp. 679–685.

Valiant L. G. (1990) A bridging model for parallel computation. Commun. ACM. – Vol. 33,
No. 8. pp. 103–111.

Visser W., Pasareanu C., Khurshid S. (2004) Test Input Generation with Java PathFinder.
Proc. ISSTA 2004: Int’l SymP. on Software Testing and Analysis. – Boston, MA, Vol. 29, No. 4.
pp. 97–107.

Voropayev V., Gelrud Y. (2013) Cyclic stochastic alternative network models for project
management. PM World Journal. Vol. II. Issue VIII, pp. 1–18.

Wang F. (1996) Parametric Timing Analysis for Real–Time Systems // Information and
Computation, 130(2): 131–150.

258

Wang Q., Spronck P., Tracht R. (2003). An overview of genetic algorithms applied to control
engineering problems // Proceedings of the Second International Conference on Machine
Learning and Cybernetics, Xi’an, 2–5 November 2003. pp. 1651–1656.

Wardy M. Y., Wolper P. (1994) Reasoning about infinite computation. Information and
Computation. No. 115. pp. 1–37.

Wiest J., Levy F. (2011) Management Guide To Pert/Cpm, A, With Gert/Pdm/Dcpm And
Other Networks. Prentice hall.

Wiesner, S., Marilungo E., and Thoben K. D. (2017). Cyber-physical product-service systems —
challenges for requirements engineering. International Journal of Automation Technology, 11(1),
17–28. doi: 10.20965/ijat.2017.p0017.

Wooldridge M. (2002). An Introduction to Multiagent Systems. John Wiley & Sons Ltd,
2002. 349 p.

Zabasta, A., Peksa, J., Kondratjevs, K., Kunicina N. (2017). MQTT Enabled Service Broker
for Implementation Arrowhead Core Systems for Automation of Control of Utility’ Systems. In:
2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering
(AIEEE’2017). Piscataway: IEEE, 2017, PP.1-6. doi:10.1109/AIEEE.2017.8270543.

Zabasta, A., Kuņicina N., Kondratjevs K., Patlins A., Ribickis L., Delsing J. (2018). MQTT
Service Broker for Enabling the Interoperability of Smart City Systems. International
Conference on Energy and Sustainability in Small Developing Economies – ES2DE18. Funchal,
Spain, 9 – 11 July 2018. Publisher: Institute of Electrical and Electronics Engineers Inc. pp.
81–87, DOI: 10.1109/ES2DE.2018.8494341.

Zheng P. et al. (2018) Smart manufacturing systems for Industry 4.0: Conceptual
framework, scenarios, and future perspectives, Frontiers of Mechanical Engineering, Review,
Vol. 13, No. 2, pp. 137–150.

Zhou, K., Liu T., and Zhou L. (2015) Industry 4.0: Towards future industrial opportunities
and challenges. In 2015 12th Int. Conf. Fuzzy Systems and Knowledge Discovery (FSKD), pp.
2147–2152, IEEE.

Zlatanov N. (2016) ARM Architecture and RISC Applications.

Zuburek W. M. (1980) Timed Petri Nets and Preliminary Performance Evaluation. Proc.
EEE 7th. Annual. Symp. On Computer Architecture, pp. 88–95.

