
1

Model-Oriented  
Control in Intelligent 
Manufacturing 
Systems



Model-Oriented Control 
in Intelligent Manufacturing Systems

RTU Press

Riga 2022



Model-Oriented Control in Intelligent Manufacturing Systems. Riga RTU Press, 2022. ‒ 260 p.

The purpose of this e-book is to serve as a textbook for graduate and postgraduate students in the 
field of computer engineering during the study of disciplines related to software control, modeling of 
production conditions and their environment. It may also be of interest to specialists in planning and 
assessing the quality of the production process, as well as to specialists and engineers in the field of 
industrial robot manufacturing.

Language Editor Oksana Ivanova

Layout Design  Ģirts Semevics

Published by RTU Press 
  Phone: +37167089123 
  e-mail: izdevnieciba@rtu.lv

© Riga Technical University, 2022

This textbook is published under the Creative Commons Attribution License (cc-by) and is offered in an 
e-book format. The authors and users are free to share (copy and redistribute the material in any medium 
of format) and adapt (remix, transform and build upon the material for any purpose, even commercially) 
this work. The licensor cannot revoke these freedoms as long as you follow the license terms.

ISBN 978-9934-22-674-8 (pdf)



3

Acknowledgements

The textbook has been developed by the financial support of the European Union. 
The authors from Chernihiv Polytechnic National University, V.M. Glushkov Institute 
of Cybernetics of the NAS of Ukraine and Riga Technical University are responsible for 
the content of this document. This publication reflects the views only of the authors, 
and it cannot be regarded as the European Union’s official position.

The textbook has been developed in a frame of the project “ERASMUS+ Capacity-
building in the Field of Higher Education 2019.

It has been co-funded by the project “Development of Practically-Oriented 
Student-Centered Education in the Field of Modeling of Cyber-Physical Systems”, 
CybPhys (609557-EPP-1-2019-1-LV-EPPKA2-CBHE-JP – ERASMUS+ CBHE).

The textbook is intended for students of computer engineering and industrial 
automation, as well as electrical engineering specialties. It can also be useful for 
students and professionals focusing on innovation management issues. 

Key Action: KA2 – Cooperation for innovation and the exchange of good practices 
Action: Capacity Building in Higher Education 
Action Type: Joint Projects 
Deliverable: 2.3. E-book of five electronic courses by the declared directions

Under the Creative Commons Attribution license, the authors and users are free 
to share (copy and redistribute the material in any medium of format) and adapt 
(remix, transform and build upon the material for any purpose, even commercially) 
this work. The licensor cannot revoke these freedoms as long as you follow the 
license terms.



4

Annotation

The use of computer models in Intelligent Manufacturing Systems (IMSs) is 
the main distinguishing feature that ensures their development as Cyber-Physical 
Systems (CPSs). The purpose of this e-book is to serve as a textbook for graduate 
and postgraduate students in the field of computer engineering during the study 
of disciplines related to software control, modeling of production conditions and 
their environment. The e-book may also be of interest to specialists in planning and 
assessing the quality of the production process, as well as to specialists and engineers 
in the field of industrial robot manufacturing.

The e-book includes seven chapters, starting with the analysis of the features of 
the CPSs. Further chapters consider the theoretical issues related to the construction 
of models for the implementation of control algorithms based on the modification 
of Petri nets, forecasting models using one of the varieties of temporal logic and 
recovery models that provide the creation of virtual images and images of the 
control object and its environment. The tools for creating the considered models and 
their integration into the control loop are also described. Examples of the practical 
application of the Model-Oriented Control (MOC) methods in the creation of IMSs 
and planning of their activities are given.

Anotācija

Datormodeļu izmantošana viedās ražošanas sistēmās (IMS) ir noteicoša pazīme, 
kas nodrošina to kā kiberfizisko sistēmu (CPS) attīstību. Šī elektroniskā grāmata 
ir domāta kā mācību līdzeklis datortehnikas nozares maģistrantiem, apgūstot 
priekšmetus, kas saistīti ar programmatūras vadību, ražošanas apstākļu un to vides 
modelēšanu. E-grāmata var būt noderīga arī speciālistiem, kas iesaistīti ražošanas 
procesu kvalitātes plānošanā un novērtēšanā, kā arī inženieriem, kuri darbojas 
industriālo robotu ražošanas jomā.

E-grāmatā ir septiņas nodaļas. Grāmatas sākumā ir analizētas CPS iezīmes. 
Turpmākajās nodaļās aplūkoti teorētiskie jautājumi, kas saistīti ar modeļu 
konstruēšanu vadības algoritmu ieviešanai, pamatojoties uz Petri tīklu modifikācijām, 
prognozēšanas modeļiem, izmantojot kādu no laika loģikas veidiem un atkopšanas 
modeļiem, kas nodrošina kontroles objektu un to vides virtuālo attēlu izveidi. 
Aprakstīti arī rīki aplūkoto modeļu izveidei un to integrācijai vadības sistēmās. Tiek 
sniegti piemēri modeļorientētās kontroles (MOC) metožu praktiskai lietošanai IMS 
izveidē un to darbības plānošanā.
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Foreword

Intelligent manufacturing systems (IMSs), which began to emerge at the end of 
the last century, are now becoming a defining factor in technological development. 
Continuing the trends in the use of automation tools, laid down by Flexible Production 
Systems and Computer-Integrated Manufacturing, they brought their own special 
features associated with the widespread use of computer models directly to control 
not only the technological process, but also the enterprise as a whole. This became 
especially evident with the beginning of the implementation of Industry 4.0 strategy, 
which actually boiled down to the creation of Cyber-Physical Systems (CPSs). 
Namely, the CPSs externalize all basic ideas of intellectual production. Through the 
integration of the real physical world and the virtual world created with the help 
of computers, IMSs provide an incredible increase of production efficiency, their 
orientation towards the needs of society, and time reduction for introducing new 
technology achievements.

Everything that CPSs bring to the production sphere is based on the use of 
computer models, which cease to be just an element of designing new systems, 
but become separate components of the manufacturing process and, above all, in 
the field of control. This applies to both the control of technological processes and 
management at the level of planning production activities and ensuring their quality. 
Thus, the use of computer models in the context of control tasks fully justifies the 
name of CPS.

It is important to note that the use of computer modeling as an approach to 
managing manufacturing processes does not take away all the existing achievements 
of traditional methods, but make them more intelligent and smart. This is important 
from the point of view of continuity in methods and technologies which have proven 
them through long-term approbation in practice.

At the same time, the use of computer models directly in the control loop poses 
new challenges for science and practice that go beyond the already familiar model-
based approach, for example, in automatic control systems. Considering the all-
encompassing nature of the application of computer modeling in CPS, which goes far 
beyond the scope of mathematical calculation, now we can talk about a new trend in 
cybernetic science that can be named Model-Oriented Control (MOC).

The concept of MOC disclosed in this e-book covers the main components 
of the control process, including the description of control algorithms using 
implementation models, forcasting the possible development of the control process 
based on predictive models and identifying the states of the control object using 
recovery models.

However, the presented material goes beyond just a theoretical presentation of 
the basic principles and methods of MOC, but also covers the issues of the practical 
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application of this approach in modern IMSs. The striking example is the use of 
MOC in the creation of novel electron beam welding machines which, thanks to 
built-in models, acquired the features of intelligent industrial robots. Algorithm 
implementation models, which are actually executable programs, prediction of 
situations using modifications of temporal logics and virtual reality models, all of 
which in aggregate, solve the still impossible task of automatically welding highly 
complex spatial trajectories for high-tech products in the field of aviation and 
astronautics. A unique robot-welder that uses three electron guns simultaneously 
solves its problems based on the principles of multi-agent control, which is 
implemented using a set of built-in computer models. An important aspect of the 
MOC is also its application in the planning and quality management of manufacturing 
activities. Computer models of algorithms allow not only assessing in advance the 
effectiveness of planned activities taking into account the risk, but also managing the 
real process by assessing its development in dynamics.

These successes in the realization of the MOC are based on the already developed 
software and hardware, and the ideas presented in the e-book regarding the latest 
development of the MOC tools give us a reason to talk about its good prospects in the 
further use for IMSs.

Undoubtedly, this e-book will serve as a good possibility in the study of methods 
and technologies for constructing and applying CPS models by university students, 
scientists and engineers.

I would like to express my gratitude to all the participants of the “CybPhys” project 
who make their significant contribution to the training of specialists in CPS and IMS, 
in general.

 Kyiv, Ukraine, April 2021 
 Alexander Palagin 
 Academician of the National Academy of Sciences of Ukraine, 
 Deputy Director for Research of V. M. Glushkov Institute of Cybernetics 
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Introduction

The concept of Intelligent Manufacturing Systems (IMSs) was formed under the 
influence of the growing capabilities of information technology, penetrating into all 
spheres of human activity. An important stage in the development on this way was the 
emergence of Flexible Manufacturing Systems (FMSs) (Hartley, 1984) in the 1990s. 
Further development of works in this direction led to the formation of Computer-
Integrated Manufacturing (CIM) (Buffa, 1984). At this stage of development, a number 
of fundamental ideas, principles and technologies arose and were partially tested. In 
particular, Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) 
automated systems were created (Berg, 1985). The exchange of geometric data in 
electronic form between CAD and CAM systems was one of the first real examples of 
informational process integration.

However, the idea of building a modern enterprise was most developed during the 
implementation of the international program “Intelligent Manufacturing Systems” 
(Gaines and Norrie, 1995), deployed by the world’s leading industrial powers at 
the turn of the century. Within the framework of the IMS program, more than 50 
international projects have been developed, as a result of which the latest production 
technologies have already been developed or will be created, forming the concept of 
a modern production system.

The analysis of the stages of development of production systems shows that the 
main element that forms their essence is the Computer-Controlled System (CCS) 
(Astrom and Wittenmark, 1996). IMSs do not cancel or replace the principles of 
building production systems, formed in the process of development of FMSs and 
CIM, but make them more intelligent, flexible and progressive due to the wide use of 
advanced information technologies at all management levels, including automated 
technological control systems and Enterprise Resource Planning (ERP) (Busse and 
Torsten, 1998), which together form an integrated automated production. In fact, 
IMSs bring high-quality intelligent definitions to each of the properties inherited from 
FMSs and CIM, improving the automation of technological processes and increasing 
the level of information integration of enterprises.

From the point of view of automation, IMS distinguishes the development of 
distributed SCADA (Supervisory Control and Data Acquisition) systems (Boyer and 
Stuart, 1999) to the level of implementation of Open Modular Architecture Controls 
(OMAC) (Bailo and Yen, 1997; Pritschow, 2001). In matters of information integration, 
IMSs solve the problem of not only data exchange between various kinds of computer 
programs, but also the problem of supporting the full life cycle of products, improving 
the Continuous Acquisition and Life cycle Support (CALS) (Fuhs, 1995) technology in 
the direction of creating virtual organizations (Travica, 1997).

However, the main characteristic feature of the IMSs, which actually determines 
their name and makes the management process intellectually rich, is the widespread 
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use of computer modeling at all stages of management decision-making. In IMSs, 
computers have received a completely new purpose. In addition to program control 
and integration functions, they are increasingly assigned the tasks of perception, 
recognition and display of information, as well as the formation of managerial 
decisions on appropriate behavior in various situations of development of the 
production process. Computer vision, computer graphics, simulation, human-
machine interface, synthetic environment and virtual organization are now becoming 
the most important components of the management process. The method underlying 
the functioning of these components is computer modeling.

IMS as a program of international cooperation has led to the creation of a 
new technological phase, called Industry 4.0 according to one of the 10 projects 
in Germany’s Hi-Tech state strategy under the Smart Manufacturing concept 
launched in 2011 (Kagermann et al., 2013). The goal is to make greater use of IT 
in manufacturing to increase the competitiveness of the economy. The essence of 
Industry 4.0 is that the material world today is merging with the virtual, leading to the 
creation of Cyber-Physical Systems that integrate into a common digital ecosystem. 
An important direction in the creation and enlargement of Cyber-Physical Systems 
is the development of methods and technologies for their modeling and simulation 
(Kazymyr, Shkarlet, Zabasta, 2020).

The e-book is aimed at solving an urgent problem related to the development of 
methods and technologies for the use of computer modeling in the control of IMSs, 
which are distinguished by a complex structure and behavior dynamics. The lack of a 
grounded theory that allows formulating the basic principles of using models in the 
control loop of the CCS makes this problem relevant today. Its solution will contribute 
to increasing the efficiency of high-tech production by improving methods and means 
of management, built on the basis of progressive information technologies.
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Chapter 1. Intelligent Manufacturing Systems and Industry 
4.0 Concept

1.1. Cyber-Physical Systems for Intelligent (Smart) Manufacturing Approach 

Cyber-Physical Systems (CPSs) are developed to integrate real physical processes 
and virtual computational processes. Different objects used in modern daily life 
represent CPSs. The definition of CPS from Cyber-Physical Systems Week (CPS, 2019) 
is as follows: “Cyber-physical systems are complex engineering systems that rely on 
the integration of physical, computation, and communication processes to function”.

CPSs, which integrate computing and physical processes, involve more physical 
components than the pure embedded systems. In embedded systems, the key focus 
is on the computing element, but in cyber-physical systems, it is on the link between 
computational and physical elements (Sultanovs, Skorobogatjko, and Romаnovs, 
2016). Cyber-Physical System parts exchange information with each other; therefore, 
the third component – communication (see Fig. 1.1) is added there. That is why, 
Cyber-Physical System is denoted by the symbol C3 (Computation, Communication 
and Control).

Cyber-Physical Systems are developed to integrate real physical processes 
and virtual computational processes. Concept of CPS is complicated, but it can be 
illustrated with a concept map (see Fig. 1.2). The concept map depicts different views 
and approaches to CPS, such as spheres of application, requirements to modeling and 
design, cyber security concerns, the main features of CPS, etc.

Nowadays, it is recognized that flexibility, modularity, and reconfgurability are the 
main challenges in the design of manufacturing systems. Intelligent manufacturing 
applies embedded software and hardware technologies to optimize productivity 
in the manufacture of goods or delivery of services. This is resulted in developing 
a flexible, modular and distributed control architecture for automated warehouse 
systems using Function Blocks and CPS perspective (Gunes et al., 2014; Basile et 
al., 2015). An introduction to the Cyber-Physical Product-Service Systems (CPSSs) 
and their application in an industrial case are provided in Wiesner et al. (2017). 

Fig. 1.1. Three main components of Cyber-Physical System (Wu and Li, 2011).
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They emphasize the multidisciplinary requirement engineering for the hardware, 
software, and service components as a key aspect for the successful and dynamic 
changes to CPSSs in industry. The majority of studies concerning CPS are focused on 
modeling, conceptualization, and utilization plans rather than on realization (Kang 
et al., 2016). 

CPS perspective on the future industrial revolution will improve safety, 
productivity, and efficiency by connecting embedded system production technologies 
to pave the way to highly flexible workflow and efficient collaboration (Gunes et al., 
2014).

It is pointed out that CPS can potentially revolutionize interaction with many 
complex systems, which the physical world critically depends on. According to Kim 
and Kumar (2013), CPS applications need to be designed considering the cutting-
edge technologies, necessary system-level requirements, and overall impact on the 
real world. The goal of research is increasing reliability and safety, reducing resource 

See authors and contributors.
http://CyberPhysicalSystems.org

Fig. 1.2. A concept map of Cyber-Physical Systems (Berkeley, 2020).
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consumption, or improving the overall performance of industrial processes.

Many modern cyber-physical applications demand guaranteed high performance, 
ultra-low energy consumption, high dependability, safety and security. It means 
that security and privacy, efficiency, and interoperability must be an integral part 
of the CPS. On the other hand, CPS is vulnerable to failures and attacks on both the 
physical and cyber sides, due to its scalability, complexity, and dynamic nature. 
Making use of a large-scale network (such as the Internet), insecure communication 
protocols, continious usage of legacy systems, application of commercial off-the-
shelf technologies, are the other factors, which cause CPS vulnerability (Gunes et al., 
2014). In addition, many of the applications of CPS are large-scale systems. It is not 
easy to integrate seamlessly heterogeneous systems, since each field of CPS has a 
self-contained set of models, languages and methods.

The Industry 4.0 project has been created as a strategic initiative, which represents 
a major opportunity for manufacturing the future. It refers to the deep integration 
of next generation information technologies (such as CPS) into industrial scenarios, 
solutions and procedures. By integrating with production, logistics and services in 
the current industrial practices, CPS will transform today’s factories into an Industry 
4.0 factory with significant economic potential. CPS will be able to transform existent 
factories into Industry 4.0 manufacturing with significant economic potential, by 
integrating production, logistics and services using the best industrial practices, and 
by integrating sensor data with enterprise information systems (Zhou et al., 2015). 
The millions of devices, not all-time smart, are interconnected, providing and 
consuming information available on the network. They will be able to exchange 
capabilities collaborating to reach common goals thanks to such an environment. 
Due to application of CPS, the production facilities, smart machineries, warehousing 
systems, business processes will be capable of autonomously exchanging information, 
triggering actions and controlling each other autonomously and independently 
(Lanting and Lionetto, 2015). 

Furthermore, robotics for service is identified as one of the six disruptive civil 
technologies with potential impacts on the U.S. interests out to 2025 (Nic, 2008). 
The integration of humans and smart robots is essential to enable all actors of CPS to 
achieve better cooperation, collaboration, and organization to implement multiplex 
tasks (Chibani et al., 2013).

The review of literature shows that CPS is tightly integrated to some latest 
technologies, such as cloud, IoT, big data, M2M, and Wireless Sensor Networks 
(WSNs). These technologies affect each other in application; thus, future research 
should pay more attention to their interoperability and technological development.
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1.2. Industry 4.0 Impact on Development of Smart Manufacturing

The Industry 4.0 methodology is recognized as a current driving force of 
the industry development, and represents the implementation of large-scale 
changes in the contemporary industry. These changes include digitization, 
automation, mechatronization and ICT integration at all levels of process control and 
services (Bassi, 2015).

Industry 4.0 represents the fourth industrial revolution in manufacturing industry 
(see Fig. 1.3).

According to Lee (2007), Lee, Bagheri, and Kao (2015), the Fourth Industrial 
Revolution is based on the following paradigms:

•	 Interoperability enables the integration and cooperation of intelligent machines, 
methods and human beings to interact through Internet of Things (IoT), Industrial 
Internet of Things (IIoT) and Internet of Services (IoS).

•	 Virtualization provides an opportunity to develop  virtual model (or copy) of an 
intelligent factory. Such a model applies real data obtained from a plant and applied 
to the intelligent factory model for control of operations.

•	 Decentralization provides an opportunity for a device or a machine to carry out 
operations and decentralized (autonomous) control. Therefore, maximum qualified 
intelligent decisions on each subprocess for optimizing process production would 
be made.

Fig. 1.3. Structure of technologies for manufacturing industrial processes 
included in Industry 4.0.
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•	 Real-time (RT) data collection and analysis. Thanks to collected information, 
the real-time intelligent control and decision-making methods can be applied 
for optimization and reconfiguration, as well as can take into account failures 
and find optimal solutions such as component and device failures, transfer of 
production, etc.

•	 Service oriented approach is implemented due to communication and 
information exchange over the Internet of Things, by providing information to 
other parties of the company’s services.

•	 Modularity	and	reconfigurability enable intelligent business to adapt flexibly 
to the production situation by changing software and hardware modules, by 
supporting the sharing, and reconfiguring processes (multi-criteria and multi-
variant optimal intelligent decisions).

The application of the IoT to the manufacturing industry is called the Industrial 
Internet of Things (IIoT). IIoT is part of a larger concept known as the Internet of 
Things (IoT). The Industrial Internet of Things (IIoT) means the use of Internet of 
Things technologies in industrial processes, e.g., manufacturing, transportation, 
energy production, etc. The IIoT incorporates machine learning, cloud computing 
and big data technology, harnessing the sensor data, machine-to-machine (M2M) 
communication and automation methods and technologies. The target of IIoT is 
the improvement of product manufacturing, enabling supply chain efficiency due 
to exchange of information, mathematical modeling, optimal control, effective 
coordination and big data (Fig. 1.4).

Fig. 1.4. Basic scheme of the interconnection between IoT and Industry 4.0.
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In literature, we can find several main principles of Industry 4.0, for example, the 
use of the Internet, production flexibility, virtualization of process, etc.

Extensive Use of the Internet

The extensive use of the Internet enables the capability to collect gigabytes of 
data per hour from millions of devices to be analyzed in real time, finding clusters 
of potential issues or problems to be used for predictive maintenance, shortening 
dramatically the loop of collecting diagnostic information in order to make a decision.

Flexibility	–	Handling	High-Mix,	Low	Volume		

One of the most attractive features of a Smart Factory is the capability to operate 
on small batches, down to batch-size-one. In comparison with previous experience, 
Industry 4.0 now is able to provide real-time, “zero-setup-time” production flexibility 
to meet the new demand of personalization and mass customization not just in a B2C 
perspective, but also in the B2B context. Industry 4.0 will be able to supply highly 
customized products (like Private Label), as well as pre-series and prototypes.

Traceability	&	Product	Identification

Today data marking and reading ability are prerequisites for a Smart Factory 
where machinery, products and systems are connected along the Value Chain. 
Industry 4.0 enables “production flexibility” by capability to assign a unique ID to 
each component and also by ensuring the real-time control, and the complete value 
chain over the entire product life cycle. A unique component ID makes every single 
component individually identifiable alongside the entire production process allowing 
for dynamic, more efficient production paths, down to batch-size-one. It makes 
possible to retrieve information regarding the origin, storage, state and location of 
materials, components and products.

Communication,	Virtualization	and	Cyber-Physical	Systems	

Industry 4.0 encourages the use of a reliable stable and powerful common 
language to drive the revolution across the globe through cloud technologies. For 
this purpose, an open source communication standard, based on the Ethernet, 
OPC-UA could aid users to share information across the entire infrastructure. Such 
communication standards provide capability for secure data overcoming software 
and hardware differences working on the client server model (OPC, 2020). Once a 
common communication framework is available, it is possible to connect details 
suppliers, assembly machines, and sensors to describe and define their functionalities 
and treat them as virtual computational entities. Therefore, it makes possible to 
create links between physical processes and their virtual representation.
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1.3. Adoption of Cyber-Physical System Paradigm in Smart Manufacturing 
Environments

The main objective of this chapter is to explore the ways for the effective adoption 
of Cyber-Physical System of System (CPSoS) paradigms in smart manufacturing 
environments to enhance the efficiency, data analytics, connectivity, multiple task 
execution, self-decision making and real-time system interaction and to describe the 
main principles that will be needed for the implementation of CPSoS.

1.3.1. System of Systems for Industrial Applications

A System of Systems is an integration of a finite number of constituent systems 
which are independent and operable, and which are networked together for a period 
of time to achieve a certain higher goal. The System of Systems concept could be 
considered software design, management and exchange of information and control 
techniques to optimize the production and management of physical processes in the 
industrial environments. According to Haber et al. (2015), the demand of real-time, optimal 
and reliability solutions is based on global information, knowledge and parametrization 
to execute reconfiguration and control actions that introduce several challenges to the 
industrial SoS ecosystems (Haber, Juanes, Toro and Beruvides, 2015).

A paradigm for digital transformation and the interconnectivity of multiple devices 
based on the Internet of Everything (IoE) and Internet of Things concepts, and the 
integration between the cyber world (e.g., algorithms, software, apps, etc.) with the 
physical world (e.g., devices, machines, automobile, buildings, etc.) have been proposed 
as prerequisites for Smart Manufacturing (Colombo, Bangemann, and Karnouskos, 2013; 
Morkevicius, Bisikirskiene, and Bleakley, 2017).

1.3.2.  Industrial Cyber-Physical Systems and RAMI 4.0

Industry 4.0 represents new paradigms of information and communication 
technologies, such as Industrial Internet of Things (IIoT), Industrial Cyber-Physical 
Systems (ICPSs), Service-Oriented Architectures (SOAs), cloud computing and big data 
implementations, as well as the introduction of innovative advances in the cybersecurity, 
distribution and decentralization of the information and computing capabilities in new 
industrial connected ecosystems (Zheng et al., 2018).

Architectural Model Industry 4.0 (RAMI 4.0) combines three core dimensions of 
product development and production in a cuboidal space, covering from product to 
connection with a global ecosystem. The RAMI 4.0 depicts multiple layer integration from 
assessments to business unit, the interconnection of the shop floor devices with condition-
bwwased monitoring, Human-Machine Interfaces, open protocols, data analytics and 
management (Flatt et al., 2016). The dimension hierarchy levels are based on the layers 
defined in IEC 62264 and IEC 61512 (Fleischmann, Brossog, Beck, and Franke, 2017).
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Manufacturing Execution Systems (MESs) and Enterprise Resource Planning 
(ERP) are still disseminated solutions to take into account visualization, planning and 
control tasks in several industrial scenarios (Iarovyi et al., 2016; Ramis and Lastra, 
2017). In the current manufactory, MES provides many functionalities in relation 
to monitoring, resource allocation, task scheduling, data acquisition, maintenance, 
performance analysis and control operations on the shop floor, with real-time access 
to key performance indices to facilitate necessary reconfiguration actions (Arica 
and Powell, 2017). On the other hand, ERP manages and tracks all the information 
and operational services at a company, covering functional areas, such as human 
resources, logistics, finance and production in order to support decision making by 
company management.

1.3.3. Approach of Cyber-Physical System of Systems for the Industry

The high-level architecture of the proposed CPSoS is depicted in Fig. 1.5. As 
cyber and physical integration, the CPSoS is composed of different subsystems 
and components from the two domains, i.e., cyber and physical. These domains 
are connected by the IoE technologies. The physical domain is usually composed 
of physical resources that are used at different systems for altering and sensing 
the environment. Examples of physical resources per CPSoS might be refrigerators 
for adjusting the humidity and temperature of premises, conveyors that supply 
components at factory shop floors, industrial vehicles etc.

The cyber domain might be composed of a set of soft applications, including digital 
twins, and usually represented by cyber models. These models facilitate the study of 
system behavior in order to monitor its performance. The cyber models are helpful 
to achieve zero-defect manufacturing, since it becomes possible to find anomalies 
and adjust the physical equipment using the virtual model (Vafeiadis et al., 2017).

Fig. 1.5. A high-level vision of the proposed CPSoS.
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1.3.4. The Main Components of the Approach

The web-services that collect data enable the devices, which belong to different 
systems, by connecting them to various types of sensors, actuators and data 
exchangers. Even human workers can also be considered resources that generate 
data, since they interact with different subsystems within the CPSoS, e.g., when they 
send notifications concerning the receipt of a package necessary for production. One 
of the main components that will support the interaction within CPSoS will be the 
IoT devices (Sheng, Mahapatra, Zhu, and Leung, 2015). Following the SOA paradigm, 
the IoT devices are often deployed at factory shop floors in order to implement both 
horizontal and vertical integration of enterprise systems. However, it should be taken 
into account that the proprietary solutions often represent an integral part of any 
CPSoS.

1.3.5. The Potential and Challenges of the Approach

In order to orchestrate isolated systems under a CPSoS, a set of qualitative 
attributes should be critical for the CPSoS:

Connectivity: Current isolated systems that affect the productivity of factories 
will be connected within IoT-based implementations for collection and exchange of 
data.

Digitalization: Systems will be digitalized in the cyber world with digital twins of 
resources in order to monitor and even control their behavior.

Modeling: Modeling techniques adopted by the CPSoS will help monitor system 
behavior,  suggest the design of systems and process execution.

Flexible reconfiguration: The analysis of huge amount of data produced by 
physical resources and their digital models will permit the anticipation of required 
changes on runtime, providing flexible reconfiguration of systems.

Versatility and reusability: The digital twin of the system makes it possible to 
analyze its performance at the operation cycle and even to assign new tasks that 
were not considered during the system design cycle. The security of isolated systems 
may cause problems related to the integration of CPSoS; however, the employment 
of standard formats and risks, and threat modeling analysis will facilitate addressing 
these technological challenges (Ferrer, Afolaranmi, and Lastr, 2017).

Heterogeneity: The problems to be resolved concerning different types of 
sources of the data:  a) data formats should be homogenized; b) to address data 
transformation, the gateways are necessary.

Integration: The integration of isolated systems will force the creation of new and 
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adaptable interfaces among systems. In addition, the integration of legacy systems 
may be problematic for retrieving/receiving signals, data and information to/from 
different interested parties.

Interoperability: Apart from the issues at the interface, systems must 
communicate within similar protocols. Mutual platforms that are agnostic to 
protocols, such as OPC-UA1, may be of use for the implementation of CPSoS.

Security: Data security is a strong challenge for the integration of sensitive 
systems in the CPSoS. The data among different systems comprising CPSoS must be 
secured; therefore, the data cannot be accessed for malicious interests or retrieved 
without permission.

1.4. Migration Approach to SOA-based Process Control and Monitoring

A long list of requirements has been set for the next generation of industrial 
processes because of involvement of many actors and new stakeholders who create a 
large challenge for technology suppliers in the future. ISA-95, standardized through 
ISA (ISA 2020), represents a standard architecture for automation systems (Scholten, 
2007). It is accompanied by a set of related standards, such as ISA-99, IEC 62443 
(Staggs, 2020), which focuss on security of the systems. Nowadays, the key technology, 
which enables the integration within and in-between different levels of the ISA-95 
architecture, is a Service-Oriented Architecture (SOA) (Erl, 2007). SOA was originally 
developed by IBM to enable data and information exchange between heterogeneous 
information systems. Nowadays, SOA is adopted as the main approach to plant 
automation due to application of a cloud technology and shared services.

1.4.1. The Proposed Architecture

The Service-Oriented Architecture enables the integration of industrial devices 
and IT systems in a cross-layer interaction mode from the shop floor to the business 
levels:

• The notation “service” is exposed as structural and behavioral properties and 
networking capabilities. 

• SOA approach implements “services” as integrated in collaborative business 
relationships with other devices and systems in the CPSoS. Figure 1.6 shows 
the proposed architecture composed of services (marked as an “S” and depicted 
in a green cube), which are wrapping via web services many different devices 
and systems in an independent way no matter of the physical location of the 
devices and systems in the enterprise architecture. 

The Internet Protocol (IP) set and web services are used in all layers and 
subsystems. Thanks to a cloud-based approach, a multi-level composition of System 
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of Systems is possible together with Services of Services (see Fig. 1.6). The integration 
and interaction between business systems, such ERP and MES, and factory floor 
systems, such as SCADA, DCS, etc. are achieved thanks to the use of the cloud-based 
architecture. This interaction between the different level systems allows the CPSoS to 
develop additional functions, which were not initially envisioned by the constituent 
systems (Karnouskos and Colombo, 2011).

Having in mind that an SOA-based system behaves asynchronously (in opposition 
to the majority of currently implemented industrial process control and monitoring 
systems), it is a complex and challenging task to seamlessly integrate a large number 
of devices and systems from different manufacturers into a single SOA ecosystem.

The first step is the identification of the right wrapping ICT technologies and 
services. Some of standardized services can be identified as “generic services” 
because they are common for all devices and systems, and the other ones are labeled 
as “infrastructure services” by SOCRADES (www.socrades.eu) and NESSI (www.
nessi-europe.com) projects. During the second step, we specify the mechanism for 
providing orchestration, choreography and composition. This mechanism has to 
include at least two main functions: to process information content of the services 
and to process the events related to the services. During the next steps, we have to 
define, specify and implement a mechanism for monitoring and control, which is 
based on an SOA approach.

Fig. 1.6. SOA-driven architecture.
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1.4.2. Migration Approach from Current Legacy to SOA-based Industrial System of 
Systems

A migration approach from current legacy to an SOA-based industrial system of 
systems (Jamshidi, 2008; Simanta et al., 2020) will follow a set of basic steps, which 
are summarized in Fig. 1.8. Current legacy industrial systems are mainly specified, 
implemented and running following the ISA95 standard (ISA 2020).

It means that migration to an SOA-based system cannot in general be performed 
at only one or some of the levels of the architecture shown on the left side of Fig. 1.8. 
This is because specifications and system characteristics at a defined level are closely 
related to specifications at other levels (e.g., control specification at Level 1 will only 
be well implemented when it considers information and actions performed at the 
neighbour levels like SCADA or MES above them). Thus, a migration strategy has to 
address how the migrated part can represent the legacy functionality and how it is 
involved in another level of the control system.

Several migrations are defined and specified for each system level. The definition 
and understanding of the differences within the legacy system is a necessary task, 
when migration of the system is planned. The other obligatory task is definition and 
understanding differences of the monitoring and control in the legacy system, which 
should migrate.

 
Fig. 1.7. Hierarchical composition of services enables abstract cross-layer 
functionality.
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1.4.3. Industrial Information Distribution and RAMI 4.0 Concept

This concept builds upon the last generation of industrial monitoring and control 
systems in order to enable a smooth level of interaction between shop-floor devices and 
high-level enterprise systems. Originated from ISA 95, the Industry 4.0 initiative has 
proposed the Reference Architectural Model for Industry (RAMI) 4.0 (Schweichhart, 
2016) and I4.0 component model (Model, 2020; Romanovs et al., 2019). The I4.0 
component model captures the notion of an administration shell that abstracts the 
digitalized equipment and products with high levels of connectivity. The RAMI 4.0 
captures a three-dimensional cube for modeling architectural solutions. It presents 
I4.0 components at different “hierarchies”, which are designed over a complete “life-
cycle” and must participate in a functional “layer”. From a layer point of view, a single 
functional “layer” cannot be confined to a single level of the “hierarchy”. Rather a 
“layer” is spread across many I4.0 components at different levels of the “hierarchy”, 
which is shown in Fig. 1.9.

The RAMI 4.0 determines that connectivity and integration of the industrial 
systems should not be considered a purely vertical approach. According to RAMI 4.0, 
the components of industrial systems could communicate with one another vertically, 
horizontally and even diagonally. The components of RAMI 4.0 can participate in the 
information layer as data producers and consumers. 

Work centers, cells, and stations achieve a particular level of autonomy and 
diminish their dependency on MES cloud in a case, when the information layer 
enables a seamless flow of data. Reducing coupling between physical work cells and 
software provides an additional advantage manifested through higher reliability of 
work centers, as malfunction in one work cell does not degradate the production of 
the whole work center.

Fig. 1.8. Migration approach from legacy to SOA-based systems.
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To enable a flexible production process, it is important that engineers and 
specialists on the shop floor get access to local data; therefore, they do not need 
involvement of IT staff, when data routing change is needed. The requirements for 
decentralized information distribution of the flexible production process can be 
defined as follows: 

• The shop machines can operate in an islanded mode: a centralized data store 
is not necessary. In a case of network performance degradation, the operations 
can be continued. 

• The specification of data flow should be recorded in readable form both for 
human personal and for machine.  

• Production process should be technology independent; therefore, the choice of 
technology should limit technical solutions.

• To enable granular access control support, industrial designers are allowed to 
make changes and restrict untrained or hostile changes.

1.4.4.  Flexible and Secure Communication in Intelligent Manufacturing Systems

The CPPS are integrated and built on many existing technologies and 
components, such as industrial production environment, including industrial 
devices equipped with sensors and actuators, IIoT components, and backend 
systems, such as cloud platforms.

Fig. 1.9. RAMI 4.0 three-perspective cube (adapted from Basile et al., 2015).
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The use case depicted in Fig. 1.10 shows an Industry 4.0 application scenario, 
when industrial devises of the CPPS communicate in a flexible and secure 
manner. In the offered use case, data are exchanged between CPPS devices via 
the network, and delivered to the cloud for continued processing and analysis. 
The industrial devices, which are depicted as M1, M2 and M3, for communication 
with gateways, and the cloud backend system apply such protocols as MQTT 
(Message Queue Telemetry Transport) and CoAP (Constrained Application 
Protocol). The IIoT gateways distribute lifetime data among CPPS devices and 
send them throughout a network to the cloud storage.

The MQTT protocol demonstrated in Fig. 1.6 is a lightweight protocol widely 
used to accommodate constrained devices with low power and bandwidth 
requirements (Zabasta et al., 2017; Zabasta et al., 2018). 

We can see that modern industrial devices M2, M3 use state-of-the-art 
protocols (MQTT and CoAP) when communicate inside of CPPS. On the other 
hand, a protocol translator is needed to translate an appropriate protocol 
of the legacy into a modern protocol. The protocol translator to be applied 
also for translation among different protocols is used in IIoT. The translation 
system solutions, e.g., Arrowhead protocol translation system, are described by 
Derhamy, Eliasson, and Delsing (2016).

The security of modern industrial devices is a crucial issue; thus, transmitted 
data must be encrypted. However, even software-based encrypted data are prone 
to attacks in order to reveal encryption tools. The work (Derhamy, Eliasson, and 
Delsing, 2016) offered to integrate special hardware called “Secure Element” in 
the protocol translator. Such secure elements will be able to protect encryption 
keys from hackers’ attacks, even in a case when physical interruption has 
happened.

Fig. 1.10. CPPS end-to-end communication use case for an Industry 4.0 application 
scenario.
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1.5. Summary

In Chapter 1 “Intelligent Manufacturing Systems and Industrial 4.0 Concept”, we 
have discussed the principal issues of development of smart manufacturing systems. 
The subchapter “Cyber-Physical Systems for Intelligent (Smart) Manufacturing 
Approach” has offered several definitions of Cyber-Physical System and provided a 
concept map of application and implication of CPS recognized by researchers in this 
field, which is followed by review of the relevant literature.

In its turn, the subchapter “Industry 4.0 Impact on Development of Smart 
Manufacturing” provides an analysis of paradigms of the Fourth Industrial 
Revolution, which reveals challenging advantages to manufacturing:  interoperability 
as interaction through IoT, IIoT and IoS; virtualization that enables creation of a 
virtual model of the factory; production decentralization; real-time data collection 
and analysis; service-oriented communication in IoT.

Further, the subchapter “Adoption of Cyber-Physical System of System Paradigm 
in Smart Manufacturing Environments” explores the ways for the effective 
adoption of Cyber-Physical System of System paradigms in smart manufacturing 
environments. We have discussed the implementation of CPSoS that comprise 
necessary components: data analytics, connectivity, multiple task execution, self-
decision making and real-time system interaction.

In subchapter “Migration Approach to SOA-based Process Control and 
Monitoring”, we have analyzed the offered architecture. We have concluded that the 
SOA-based enterprise architecture allows devices and systems from the shop floor 
to the business levels to communicate and exchange data in a cross-layer interaction 
mode. One of the discussion topics is the understanding of the approach, which will 
make it possible to migrate from current legacy to an SOA-based industrial System 
of Systems. The selected migration approach has to take into account information 
distribution in industrial systems, when migration from legacy manufacturing to 
smart manufacturing takes place under Industry 4.0 concept.

In subchapter “Flexible and Secure Communication in Intelligent Manufacturing 
Systems”, we have discussed a use case that illustrates a flexible and secure end-to-
end communication, when the CPPS components are mapped to create the meta-
model of industrial CPSoS. The use case depicts data transmission between devices 
and the private clouds for processing and analysis. The communication protocol used 
between the industrial devices and security issues have also been discussed.
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Chapter 2. The Principles of Model-Oriented Control

2.1. The Main Characteristics of the IMS in the Control Context

The evolutionary scheme of the development and formation of IMS as the 
newest and most advanced representative of the class of production systems can be 
represented in the form shown in Fig. 2.1.

Following this scheme, we can distinguish three main characteristics of Control 
System (CS) of IMS in the context of solving control problems, which are presented 
in Fig. 2.2.

2.1.1. Open Modular Architecture Controls

The Open Modular Architecture Controls (OMAC) concept was first proposed by 
General Motors in the summer of 1994 in a document containing requirements for 
controllers used in the automotive industry (Taylor, 1998).

Later it was developed by European (European Open System Architecture for 
Controls within Automation Systems – OSACA) and Japanese (Japan International 
Robotics and Factory Automation – IROFA and Japan Open System Environment for 
Controller Architecture – OSEC) organizations (Lutz, 1998; Sawada and Akira, 1997). 
A number of promising OMAC-based programs are supported by the U.S. government.

Fig. 2.1. Stages of IMS formation (Kazymyr, 2006).

Fig. 2.2. Main characteristics of IMS Control System.
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In general terms, OMAC fundamental requirements for automation systems are 
formulated as follows:

1. Open architecture that provides integration of widely used hardware and 
software in the market.

2. Modular architecture that allows you to easily change the distributed structure 
of the control system by changing the composition of its components and the 
connections between them.

3. Scaleable architecture that allows you to easily and efficiently change the 
configuration for specific needs.

4. Economical architecture providing low cost of controller equipment life cycle.

5. Maintainable architecture that can withstand harsh operating and maintenance 
conditions, thus ensuring minimal downtime.

The noted features of the open architecture can be implemented to the maximum 
extent by using PC-compatible industrial computers in control systems instead of 
the traditionally used systems based on Programmable Logic Controllers (PLCs). 
The main advantage of personal computers (PCs) in this case is associated with their 
openness and the ability to use the most modern hardware and software that meet 
international and regional standards.

2.1.2. Full Product Life Cycle Support

Analysis of the application of information technologies in the CCS shows that 
the second (after the use of open architectures) area of their development is a more 
complete coverage of all stages of the product life cycle (LC).

Despite the fact that in the instrumentation the range of tasks solved by the control 
system has significantly expanded, the issues of interaction with the customer, after-
sales support of the product and many others, which form the basis of the quality 
management system, remain unresolved.

For the first time, work on the creation of integrated systems that could support 
the product life cycle had begun in the US defense complex. The new concept was 
in demand by life as a tool to improve the management of the logistics of the US 
Army. It was assumed that the implementation of the new concept CALS (Computer 
Aided Logistic Support – computer support for the supply process) would reduce the 
cost of organizing information interaction between government agencies and private 
firms in the process of formalizing requirements, ordering, supplying and operating 
military equipment. Having proved its effectiveness, this concept has consistently 
been improved, supplemented and, keeping the existing abbreviation CALS, has 
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received a broader interpretation – Continuous Acquisition and Life Cycle Support 
(continuous delivery and information support of the product life cycle) (Fuhs, 1995).

Now, CALS has evolved into a global business strategy for the transition to 
electronic document management technology, ensuring the integration and sharing 
of information at all stages of the product life cycle. The development of the concept 
has led to the emergence of a new organizational form for the implementation of 
large-scale projects associated with the development, production and operation of 
complex products – a virtual organization (VO) (Travica, 1997).

In the conditions of the functioning of the VO, integration is carried out on 
the basis of global networks, in particular the Internet. Thanks to the use of Web-
based information systems, it is possible to combine the information resources of 
geographically distributed divisions and organize remote management based on a 
single strategy.

The conceptual model of CALS is shown in Fig. 2.3.

CALS relies on two main process control technologies that are invariant with 
respect to the object (products):

• project and task management (Project Management/Workflow Management);

• quality management.

In many developed countries, CALS is considered to be a strategy for survival in a 
market environment.

Fig. 2.3. The conceptual model of CALS.
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2.1.3. Computer Modeling 

The use of computers in control systems was characteristic of all the main stages 
of the IMS. However due to the growth of PC productivity, their role in control systems 
changed significantly. If, at the beginning of the automation period, the functions 
of computers were limited to the use of digital controllers and the maintenance of 
routine accounting and statistical tasks, then in the FMS and CIM, computers became 
the central link of the control systems. They started to provide not only control of 
CNC machines and industrial robots, but also the implementation of technological 
preparation of production.

Computers received an even more responsible appointment at the IMS. In 
addition to program control and integration functions, they began to be assigned the 
tasks of perception and recognition of information, assessing a dynamically changing 
environment and forming managerial decisions on appropriate behavior in various 
situations. The method underlying the solution of these problems is modeling because 
it is always assumed to use a model – some approximation to a real object. Modeling 
in this case is computer based, since it requires significant amounts of computations, 
the execution of which is possible only with the use of high-performance computer 
systems.

Figure 2.4 demonstrates the main types of computer modeling used in the process 
of IMS management and their distribution according to the projects of the world 
program “Intelligent Production Systems”. 

If earlier computer modeling was considered, basically, only the main method of 
analysis and synthesis of control systems, then in the IMS context it became possible 
to talk about the possibility of using computer models directly in the control loop as a 
means of developing control decisions. It determines the relevance of solving a whole 

Fig. 2.4. Distribution of IMS projects in computer modeling types.
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range of tasks related to the development and use of computer models in the process 
of managing the IMS. 

2.2. Features of IMS Control Process

The investigation of this issue is conducted in the scope of the analysis of current 
IMS control principles and CS structure, which facilitate IMS realization.

2.2.1. IMS Control Principles 

Control principles characterize the control law, which provides the answer to 
the following strategic question: “What kind of dynamics switches the system to the 
necessary condition?”

 
Fig. 2.5. IMS control principles and corresponding Control System classes.
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We consider IMS control principles to be a hierarchical structure as shown in Fig. 
2.5. This representation develops the already accepted terminology of control theory, 
provides additional structuredness of the terms used taking into consideration 
current trends in CCS development. Consequently, control principles determine the 
class of CCS, which can be implemented on the basis of these principles.

CCS control principles can be grouped into three levels, according to the level of 
impact on their structural and dynamic characteristics:

• control action development principles;

• principles of making managerial decisions;

• control organization principles.

We should point out that each subsequent level in the given hierarchy includes the 
previous one. As a result, the general concepts of CCS construction and functioning 
that facilitate its intended purpose presuppose the use of internal decision-making 
mechanisms, which are implemented directly by means of the control action 
development schemes. This way the target stability and constructive feasibility of 
the CCS are achieved.

In the scope of the objectives of the study, we are mostly interested in the 
control organization principles, which are considered to be the unifying core in the 
development of a control strategy applied to the IMS. We will discuss these principles 
in detail further.

Currently, the following control organization principles are singled out in the 
class of complex dynamic systems: situation control, adaptive control, and multi-
agent	 control. Each of these principles is based on its own methods and sets of 
mathematical models.

Situation control is based on the notion of situation, classification of situations 
and their transformation. The definition of situation is based on the fact that it is not 
always possible to accurately determine the description of an CS using an equation 
of state in either discrete or continuous form. There are systems and particularly 
complex subsystems referred to as ill-defined or semistructured (Jakobson et al., 
2007). As a rule, they are characterized by the following features: evident uniqueness 
of the Control Object (CO), absence of a clearly formulated criterion of optimality, 
high dynamism, incomplete description of the functioning process, and the presence 
of discretion.

For such systems, it is impossible to apply the traditional control method, which 
is based on any analytical model of the processes occurring in the object. On the 
other hand, CO can be studied to such an extent that it may be possible to describe 
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the situations that develop in the system. The description of a situation, in this 
case, is defined as a collection of all information about the structure of the CO at 
a given moment in time, as well as the knowledge about the technological control 
scheme, which is represented by the rules for choosing control decisions. Formally, 
an elementary act of situation control can be written using the following expression:

: ( )
( )

( ) .                                                                                                     (2.1)

The meaning of this expression is as follows. If  situation, caused by the 
state of CO, has developed in the CS, and the technological scheme allows for the use 
of control u from the control tolerance range U, then it is applied and CO goes into a 
new state .

Situation control principle presupposes the execution of the following sequence 
of steps:

• analysis of emerging situations (situation detection); 

• correlation of the identified situation with the known class of situations (situation 
recognition);

• selection of the required control solution corresponding to the given class of 
situations (making a decision regarding the control choice).

Adaptive control is the second control method, which has earned a fundamental 
position in the modern theory of complex system control. Adaptation is a method 
of control under conditions of insufficient a priori information and consists in 
improving the quality of control by changing the structure and / or parameters of the 
CCS (Astrom, 2008).

The lack of a priori information leads to the need to combine, in a sense, the study 
of an object and the control over it. Therefore, adaptation implies duality of control, 
when control u, by changing the state of the system x, also affects the characteristics 
of information about the system P. The transition to a new state can be determined 
by operators H1 and H2 in the following way:

( +1 )= 1[ ( ), ( ), ( )] ,                                                                                     (2.2)

( +1 )= 2[ ( ), ( ), ( )] .                                                                                     (2.3)

In order for information about the system to accumulate over time, it is 
necessary to explicitly choose H2 so that the description of system P(k + 1) 
would be more complete than P(k). If a certain indicator of quality control is 
associated with the state x(k + 1), then due to greater control awareness, as a 
result of adaptation, this indicator can consistently improve. In this case, the 
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sequence of transformations [H1,	H2]k, k = 0, 1, 2, ... determines the process of 
adaptive control.

The specific content of the theory of adaptive control (in particular, operators H1 

and H2) is revealed in a number of works devoted to the study of adaptive control 
systems of various classes. The most notable achievements of this line of research 
have been made in relation to non-searching adaptation methods, methods of direct 
and identification approach with adaptive control of complex systems, mainly, of the 
technological level. 

Multi-agent	control. At the present stage of IT development, in particular, due to 
the use of OMAC, the implementation of the aforementioned directions of interaction 
in the control process can be successfully carried out due to the use of intelligent 
agents (IAs). There are many definitions of IA, all of which, however, are based on the 
properties of autonomy and purposefulness. In this aspect, there are three functions 
that characteristize IA (Wooldridge, 2002): 1) perception of the dynamics of the 
environment; 2) actions that change the environment; 3) reasoning for the purpose 
of interpreting observed phenomena, solving problems and determining actions. The 
first two directly correspond to the tasks solved by control elements, in particular 
those related to the “empowerment”. The third function significantly expands the 
internal structure of control elements and creates prerequisites for their interaction.

The interaction of agents is organized within the framework of multi-agent 
systems (MASs). The questions of the MAS theory were subjected to scrutiny in 
many works. A significantly fewer number of publications are devoted to the issue of 
practical implementation of the MAS, especially in the field of manufacture control.

Still, based on the mentioned works, we can conclude that a multi-agent control 
system can be generally viewed as the following tuple:

=< , , , , >,                                                                                                            (2.4)

where  – a set of control objects;

     – a set of control agents;

     – a set of responsibility connections;

    – agent localization according to control objects;

     – information channels between the agents.

Among the many known agent architectures, InterRap architecture is considered 
the most suitable one in terms of facilitating agent interaction. It includes three levels 
of control: reactive, planned and cooperative. At the reactive and planned control 
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levels, it is logical to use object control models that belong to the agent’s area 
of responsibility. At the cooperative level, the presence of a local control object 
model may prove to be insufficient. Therefore, at this level, the agent forms 
its own CS model { } either with the help of data coming from sensors or 
through information exchange between agents. This requires certain actions and 
calculations to determine the state of control objects of the system, for example, 
sending requests to other agents via a specific information channel, receiving 
responses about the state of control objects, determining the most relevant 
information, etc. In the process of developing a common solution, one of the 
agents can take on the role of coordinator.

2.2.2. The Structure of IMS CCS 

Intelligent industrial robots (IIRs) can be considered the most notable example 
of the IMS class. Unlike conventional industrial robots, all actions of which are 
determined only by the control program without any subsequent adjustment, the 
final actions of IIR are adjusted using perception and control units. IIR should 
be able to recognize and assess the environment, analyze emerging situations 
and adapt to the environment, make informed decisions in order to prevent the 
occurrence of emergency situations, model their behavior and interact with 
external environment, including cooperating robots. The methods of situational, 
adaptive and multi-agent control are most fully and comprehensively applied to 
IIR, determining the principles of control organization.

Fig. 2.6. Structure of IMS CCS.
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Generally, IMS CCS can be attributed to the class of open-loop control systems, 
which are not covered by inverse association. They implement disturbance control, 
and in order to achieve invariance of the control system with respect to external 
conditions, it is necessary to know the exact position of the control object. This issue 
can be addressed by creating a CCS based on the principle of dual control. A distinctive 
feature of such a CCS is the dynamic nature of its behavior, which is manifested 
when the control program adapts to the external conditions of the control object 
functioning, especially by means of self-learning and self-tuning.

The structure of the IMS CCS, used to solve the aformentioned problems, is 
represented in Fig. 2.6.

This structure can be divided into three main components:

1. Control unit. It consists of an inalterable CCS core, which ensures the ex-
ecution of control programs, and situation control programs, an alterable 
part of the CS, which is dynamically modified. Depending on the emerg-
ing situation, the control process is managed by means of intentionally 
changing the current control program via the code generator. The latter 
is capable of broadcasting both single commands and complex programs.

2. Intelligent assistance unit. Its functions are aimed at ensuring the adap-
tive properties of the control system by means of making control decisions 
based on the previous experience, analyzing the predicted results of cur-
rent control scenario implementation and assessing the real situation. Un-
like the control unit, the intelligent assistance unit is capable of produc-
ing not only individual commands, but also the entire control programs, 
partially or completely updating the variable part of the control system. In 
any case, the decision to change the control process is made by the deci-
sion-making subsystem. The modeling subsystem is incorporated into the 
control loop. Its task is to assess possible options of the control process 
development in real time, supplementing the information about the state 
of control object and external environment, which is sent from the identi-
fication subsystem. The generalizing component of the intelligence assis-
tance unit is data and knowledge base, which stores and accumulates the 
necessary information about the parameters and properties of CO, CCS as 
a whole, its individual components and the results of model experiments. 
If necessary, information can be added to the data and knowledge base 
through the use of the capabilities of external, in regards to this CCS, intel-
ligence. It can be either an adjacent CCS included in a distributed intelli-
gent structure or global intelligent environments, for example, the Inter-
net. The intelligent interface should ensure the intellectual openness of 
the IMS CCS.
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3. Virtual reality unit. The main task of this unit is to affect the control sys-
tem in real time in accordance with the virtual representation of the con-
trol object state and its position in regards to its surrounding. The source 
information for this process is the data coming from display and identifica-
tion subsystems. In fact, these subsystems close the control organization 
through themselves. Control actions are sent from external control centers 
via a control channel (radio / hydroacoustic / infrared communication, re-
mote manual control devices, etc.) to the code generator for subsequent 
translation into separate control commands. The influence of external con-
trol can be also extended to the decision-making system.

The discussed structure of IMS CCS can be projected onto the traditional 
for industrial robots control levels, specifically, strategic, tactical and executive 
levels. At the strategic level, production plan is drawn up, taking into account 
the goals and objectives of the entire factory environment. The control over the 
quality of the manufactured product life cycle is also carried out at this level. At 
the tactical level, a sequence of technological operations is formed to ensure 
the implementation of the received task. The executive level facilitates the 
direct implementation of the preassigned technological operations by means of 
working mechanisms and devices. It is important to keep in mind that all the 
aforementioned control actions are performed using the CCS.

A typical example of IMS and CPS area of application is an electron-beam 
welding (EBW) machine, which is turning from an experimental type of research 
into a powerful industry based on complex industrial technologies and a high 
level of the production process organization.

2.3. The Concept of Model-Oriented Control 

2.3.1. The Method of Model-Oriented Control

Model-Oriented Control (MOC) is the essence of a system-based approach 
to control problems. In order to control the system, it is necessary to build its 
mathematical model. Only on the basis of the created model, the required control 
strategy can be developed.

However, due to a vast variety of properties of a real system, its model 
cannot be the exact copy of the system. Even the simplest production control 
situations, upon a detailed examination, appear to be far too complex. Therefore, 
the model should be able to describe reality with the highest possible accuracy, 
highlighting a limited number of variables for this purpose. Ultimately, the 
tasks of IMS modeling are to establish relationship between the input and the 
output of a system, which ensure the achievement of the set goal with a given 
accuracy, and to determine the dynamics of the system that would describe the 
real process in accordance with the previously accepted assumptions.
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In this regard, computer modeling has the following advantages (Dorf and Bishop, 
1998):

1. The behavior of the system can be observed under a variety of conditions.

2. By examining the model, it is possible to make assumptions about the way the 
system will behave in real conditions.

3. Comprehensive system tests can be performed in a relatively short period of 
time.

4. Modeling results can be obtained at much lower costs compared to a full-scale 
experiment.

5. The behavior of the system can be studied under hypothetical conditions that 
are unlikely to occur.

The aforementioned advantages make computer modeling the undisputed leader 
among other methods of system modeling, such as:

• analytical models are used at the executive level (differential equations, trans-
fer function coefficients of linear systems and structural schemes based on the 
Laplace transform, including signal graphs);

• models of operation research are used at the tactical and strategic levels.

However, the goal that we set in this study is not only to consider computer models 
only as a means of analyzing and synthesizing CCS, but also to use their capacity 
directly in the control process. In this case, knowledge of the mathematical apparatus 
alone is far from sufficient; the task is to learn how to apply it correctly in practice.

We usually start the analysis by looking at a real situation and trying to map it 
onto a certain mathematical model that allows us to find a solution to the problem we 
are facing. The result of the analysis of the chosen model is expressed in the form of a 
control solution, which is then tested for optimality using an experiment that allows 
us to evaluate the obtained control quality. If the required quality is not achieved, the 
model will be parametrically adjusted or structurally reorganized, which is a more 
complicated process. Under this approach to the use of models in control, which is 
called operational, there is no guarantee that the model used will always remain 
relevant, i.e., adequate to the real conditions of the system functioning and, which is 
just as important, providing the required control quality.

The essence of MOC, which is considered a new approach to developing a 
management strategy for IMS (Kazymyr, 2006), consists in the widespread use 
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of computer models in the control loop directly in the process of making control 
decisions in real time based on situation, adaptive and multi-agent control principles. 
Note that in this case the MBC does not determine any new principles of control 
organization, but only acts as a certain way of their implementation, which combines 
the methods and technologies for constructing and using computer models in the 
control loop. Figure 2.7 shows the role and place of MBC in the control structure of 
IMS.

The performed analysis of the existing hierarchy, principles and features of the 
structural construction of IMS CCS demonstrates that control over them is facilitated 
by three main types of models, embedded directly into the control loop:

• Implementation models, which are simulation models of the control process 
in the state space executed by control devices. They allow us to describe and to 
implement a control algorithm in the dynamics of its development, taking into 
account changes in the state of both the control device and the CO.

Fig. 2.7. The role and place of MOC in the IMS control context.

Fig. 2.8. Model-based control diagram.
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• Predictive models assess the future behavior of the control process for sat-
isfying the specified properties. Through this type of models, it is possible to 
dynamically and timely change control algorithms in order to prevent undesir-
able development of the control process or adjust it in the required direction.

• Recovery models, which solve the problem of replenishing the missing infor-
mation about the CO and, in some cases, eliminate the effect of feedback lag, 
actually closing the feedback through the model itself.

A diagram explaining the use of these models in a control loop is shown in Fig. 2.8. 

In this case, the continuity of the processes of developing and implementing 
control actions is ensured, which ultimately positively affects the effectiveness of 
control.

2.3.2. Implementation Models

There are many ways to define the notion of an implementation model. In our case, 
we will base the definition on the mathematical statements adopted in the general 
theory of systems. If  and are certain general systems, and 

 is a homomorphism that defines the set of mappings  and 
, where  is surjective, then the system  is called a model of the system  

only if the following condition is satisfied:

 .                                                                             (2.5)

This definition can be extended to dynamical systems as well. Moreover, if  is an 
isomorphism, then the systems  and  are equivalent.

An important feature of the homomorphic model is that it completely preserves the 
algebraic structures are certain  -algebras) that are of particular interest 
to us, and allow us to neglect secondary details.

Let us construct a homomorphic model of the IS, which will include the internal 
and external description of a stationary system with a set of states X, a set of control 
inputs U, and a set of outputs Y. For the internal description, we will use the following 
pair of functions:

 .                                                                                                (2.6)

For the external description, the following function is used:

.                                                                                                                             (2.7)

This function represents the set input sequences  in regards 
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to the set of outputs .

The given description implies that there are isomorphisms  and 
, which allow for the transition from internal description to external 

and vice versa. By using the property:

 ,                                                                              (2.8)

with the help of the following equation:

 ,                                                          (2.9)

it is possible to match the external description  to any state .

Now let us consider the inverse problem. For a given input-output function, it 
is required to find implementation , i.e., a system with such a state  for which, for 
example, condition (2.7) is satisfied. The equation of state is now considered not as 
given, but as an unknown property characterizing the dynamics of the system. Thus, 
the implementation problem for the input-output dependence consists in finding the 
dynamics of the system, the representation of which in the state space would provide 
the same input-output dependence.

This problem is easily solved for a linear discrete system determined by the 
following equation of state:

 ,                                                                                              (2.10)

where А and В are  and  matrices, respectively. The phase trajectory 
of such a system is described by the expression:

 ,                                                                               (2.11)

where х	– the required state. If we assume that the system starts to move from 
a zero state equal to zero, i.e., , then expression (1.10) can be rewritten as 
follows:

.                                      (2.12)

Taking  into consideration, we conclude that the set of 
states, reachable from the zero state in k steps, coincides with the set of values of the 
linear transformation

.                                                                                                                          (2.13)

Based on the notion of dynamomorphism, by specifying the commutativity 
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conditions for category diagrams, solutions can be obtained for equations of state of 
not only linear, but also bilinear and fuzzy systems (Skyttner, 2001). However, when 
the equation of dynamics cannot be specified analytically and has the most general 
definition of , the task of constructing an implementation model for an 
input-output model is not trivial.

The same can be stated about the input-output models in the form of transfer 
functions that are represented as the ratio of the Laplace transform of the output 
parameter to the Laplace transform of the input parameter at zero-initial condition. 
They exist only for linear stationary systems and do not carry any information about 
the internal variables and the nature of their change. Therefore, they cannot be 
considered a general model and are used only in the design of individual elements of 
CCS, mainly regulators, both analog and digital. In addition, it should be noted that 
the control processes occurring in IMS, generally, have an algorithmic representation 
that is beyond the known analytical solutions.

2.3.3. Predictive Models 

The implementation models discussed above are used in the design of CS with 
specific properties. To solve this design problem, it is necessary to possess a complete 
set of information about the properties of the CO and external effects on the control 
system. Since there are restrictions to such information in the control process, the 
use of traditional methods becomes insufficient and a predictive control strategy is 
required. Control that uses models to predict the behavior of a certain process in the 
future is called Model Predictive Control (MPC) (Garcia et al., 1989).

The prerequisite for the establishment of this line of research is considered to 
be adaptive control with the use of models, including implementation ones, self-
organization of models using the group method of data handling and adaptive 
predictive models, which are based on the solution of Lyapunov equation.

In recent years, many variations of MPC technology have appeared, which have 
developed the following areas, uniting them in some way (Qin and Badgwell, 1997):

• Extended Prediction Self-Adaptive Control;

• Generalized Predictive Control;

• Model Algorithmic Control, etc.

The aforementioned technologies differ mainly in the type of models for 
representing the processes and the methods for solving optimization problems in the 
decision-making process, which may include certain types of restrictions. The most 
important part that unites them is the application of the Receding Horizon Strategy 
(RHS). The essence of this strategy is demonstrated in Fig. 2.9.

The past The future
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The main RHS features are as follows:

• At each given moment of time k, the process output  is predicted within 
the finite time horizon . The value of N is called the prediction horizon. 
Prediction is executed using a process model, which should be accessible. The 
projection depends on the inputs and outputs in the past, and also on the fu-
ture control scenario .

• The basic trajectory

 is used to calculate trajectory deviation 

, 

where 

, 

and  is the measured output value.

• The control sequence

Fig. 2.9.  Receding Horizon Strategy.
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is calculated on the basis of measurements in such a way that the prediction error 
could be minimized.

• The first element   of the calculated optimal control sequence 
, 

which is applied to the real process, determines the control actions only for the step 
k. All other elements of the calculated control vector can be forgotten because all sub-
sequent sampling sequences are shifted, the new output value  is measured 
and the whole process is repeated. This leads to the computation of a new control 
input , which may generally differ from the previously computed value 

.

2.3.4. Recovery Models

The challenge facing the CCS is to find the control law that brings the CO closer 
to the target or keeps it close to the target. The easiest way to do this is using the 
feedback principle, when the output of the CO serves as the input for the control 
element. The CCS scheme utilizing negative feedback is shown in Fig. 2.10.

If we represent the desired input as z, the real output as y, the control input signal 
as u, the state vector of the control element as , and the state vector of the CO as x, 
then the CS model with feedback can be written in the form of two pairs of equations:

• for control element:

,                                                                       (2.14)

;                                                                                                                   (2.15)

• for control object:

–

Fig. 2.10. CCS scheme with negative feedback.
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,                                                                                              (2.16)

.                                                                                                                       (2.17)

The function  in Eq. (1.14) establishes the type of the target 
relationship between the desired system output and its actual output. In case of 
negative feedback:

.                                                                                            (2.18)

Applying Eq. (1.15) to Eq. (1.16), we will get: 

.                                                                                         (2.19)

Subsequently, by using Eq. (1.14), we will get:

.                             (2.20)

Equation (2.20) reflects the fact that in order to calculate the state of the CO at 
step , it is required to know its state at step k, as well as the state of the control 
element, the desired and actual values   of the output at step . This means that 
in the process of determining the required control, the control element lags behind 
the current state of the CO. The larger the sample spacing becomes, the greater delay 
grows. Therefore, for discrete closed-loop systems, there is no direct transition from 

 to  in the output expression, which would allow the model to be strictly 
correct. In addition to the aforementioned fact, the drawbacks of feedback include an 
increase in the complexity of implementation and a decrease in the gain ratio.

However, the main condition for control with feedback, which is difficult to be 
observed for the objects of any complexity, is that the current values of the state 
variables or the output variable, at the time when the control action is applied to 
them, are assumed to be known. A more realistic situation is when not all of the state 
variables can be measured. In this case, the “recovery methods” are used, which are 
implemented with the help of the observers.

Generally, the role of the observer is taken by another dynamic system, which 
is able to restore the state vector of the observed system using its input and output 
values. In fact, the observer imitates the controlled system. For linear continuous 
and discrete systems, there are analytical methods for solving the recovery 
problem, which provide for rather strong restrictions imposed on the structure of 
the observer. However, for nonlinear systems, solutions become less trivial, if not 
impossible. Naturally, at some stage, it is possible to use predictive models that allow 
for obtaining some approximation of the system state. However, it should be kept in 
mind that predicive models do not add information about the current state of the 
CO; on the contrary, they need this information to improve prediction quality. In 
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this regard, there is a need to build computer recovery models that will be able to 
reproduce the state of a CO of the most complex structure, using the capabilities of 
computer modeling. In this case, the CO and its recovery model are considered to be 
a single entity.

2.4. Summary

In recent years, a class of intelligent industrial systems has been formed that brings 
high-quality intellectual definitions to each of the properties inherited from FMS as 
well as CIM, improving the automation of technological processes and enhancing 
the level of information integration for manufacturers. The use of computer models 
in the industrial system control is the main factor that determines the intellectual 
aspect of IMS.

The analysis of control principles that are applied to industrial systems has 
revealed that the basic principles for IMS CCS are the principles of situation, adaptive 
and multi-agent control, which relate to control organization and determine its 
strategy. The structure of IMS CCS is proposed as a means of implementing these 
principles; the proposed structure can be used at all control levels, including ERP and 
technological CCS. 

Instead of the traditional operational approach to the use of analytical models 
and methods of operation research, a new model-oriented approach is proposed for 
the implementation of a particular control strategy for IMS. This approach requires 
the use of computer models embedded directly into the control loop, which can 
dynamically change according to the conditions of the system functioning, while 
constantly remaining relevant from the control point of view.

At the conceptual level, computer models, used in IIS control loop, can be divided 
into three main types:

• implementation models, which simulate the control process executed by 
control devices and, at the same time, set the control algorithm taking into 
account changes in the state of both the control device and the control object;

• predictive models, which allow for assessing future behavior of the control 
process in order to satisfy the specified properties and provide timely dynamic 
changes in control algorithms for the purpose of preventing undesirable 
development of the control process;

• recovery models that solve the problem of recovering the missing information 
about the CO and eliminating the effect of feedback lag, basically, closing the 
feedback through the model itself.

The use of the aforementioned models in the control loop ensures the continuity 
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of development and implementation of control actions, which ultimately has a 
positive effect on control efficiency.

The analysis of existing formal methods, which can be used for the creation and 
use of embedded models, has revealed that they are generally based on linear models 
inherent in systems with a single control level. At the same time, actual processes 
that occur in ISS usually have an algorithmic definition and demonstrate dynamic 
and structural phenomena that require coordination of decisions at different control 
levels.

Currently, there is an issue of Model-Oriented Control over IMS, which consists 
in the development of methods, technologies and software for creating and using 
computer models in the control over CCS with a complex structure and behavior 
pattern. The defined problem presupposes the solution of the whole range of 
theoretical and practical problems, which can be grouped into several categories 
related to the use of implementation, predictive and recovery models in the IMS 
control loop.

 
Chapter 3. Implementation Models of Control Algorithms

This chapter outlines the existing methods for specifying control algorithms, 
taking into account the structure and functioning process of the IMS CS. Furthermore, 
the grounds for the choice of a general mathematical scheme for describing control 
algorithms in the form of an aggregative system are given. A class of modified 
E-networks, which are called Control E-Nets (CEN), is defined, and the structural and 
functional features of CEN are described. A study of CEN as a means of describing 
piecewise linear aggregates is carried out. At the end of the chapter, the functional 
completeness of the mathematical apparatus of CEN is analyzed in relation to the 
informal theory of sequential interacting processes.

3.1. Control Algorithms and Methods of their Description

3.1.1. Implementation Model Requirements

Control algorithms form the basis for the functioning of control devices that 
play the role of control elements in modern control systems. Generally, a control 
algorithm (CA) is defined as a clear, unambiguous rule, an instruction or an indication 
of what actions should be done and how to do them to achieve a given goal in the 
current situation. CA, also known as control law, determines the development and 
implementation of control actions.

Any algorithm implements some kind of a control process. Therefore, the more 
accurate this implementation is, the closer to the set management goals the CCS will 
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function. This is the reason behind many examples of the use of formalized schemes 
to describe algorithms that, to a certain degree, could model a control process. 
Among the most notable of them, we should single out Logical Scheme of Algorithms 
(LSA) and Matrix Scheme of Algorithms (MSA), as well as their varieties: Parallel 
LSA (PLSA), Parallel MSA (PMSA) and Parallel Graph-Scheme of Algorithms (PGSA) 
(Baranov, 1994).

It should be noted that all of the listed approaches to the description of algorithms, 
in some way, implemented in the automaton model of formalized description were 
proposed by V.M. Glushkov. Later, the automaton model was widely used in PLC when 
creating PLC programming languages, such as Instruction List (IL), Structured Text 
(ST), Ladder Diagram (LD), Functional Block Diagram (FBD), Sequential Function 
Diagram (Sequential Function Chart – SFC) (Dixon, 2018).

Similarly to other automata models, PLC languages provide an advanced apparatus 
for describing discrete systems and processes, but do not reflect cause-and-effect 
relationships at the level of internal processes. Systems with parallel functioning 
and asynchronously interacting components (which is especially important for 
distributed systems) are not adequately described in terms of classical automata 
theory. In addition, the composition of models and their hierarchical representation 
within the framework of this apparatus are significantly complicated. Furthermore, 
it should be pointed out that all PLC programming languages are deprived of the 
possibility of performing any formal analysis of described algorithms, and also do not 
allow for a dynamic change in the control program during its execution, since they 
do not trace the relationship between the mathematical basis and the specification 
language.

Therefore, it becomes necessary to use other, more powerful formal methods for 
describing control processes. When considering these methods, we will take into 
account the following requirements for CA implementation models:

4. CA implementation models must comprehensively represent the dynamics of 
control process development, taking into account parallel and asynchronous 
functioning of control elements. At the same time, mechanisms for synchroniz-
ing their work should be accounted for, if necessary.

5. The models used should provide formal description of the hierarchical rela-
tionships between control levels in IMS CCS. This means that the CA implemen-
tation models of various levels should allow for the use of information signals 
to solve the problems of coordination and interaction synchronization.

6. The used CA models are required to allow for the identification of situations 
requiring control decisions and provide operational influence of control ele-
ments by changing the values of state variables.
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7. CA implementation models must also be the specification of the control pro-
gram that can be executed by the control device. This requirement makes it 
possible to implement a continuous cycle of using the same models both at the 
design stages of CA and in the process of their application.

8. CA implementation models must be based on a formal system that allows for 
early preventive acquisition and evaluation of the process development proto-
col in order to dynamically change CA during the implementation of situational, 
adaptive and multi-agent control principles. This requirement should be based 
on the possibility of widespread use of recovery and predictive models within 
the accepted formal system for constructing CA implementation models.

3.1.2. Methods of Control Process Formalization

As mentioned in Chapter 1, due to their particular complexity, control processes 
of IIS cannot be described exclusively in the categories of functional relations be-
tween individual parameters and variables, for example, using differential or differ-
ence equations. Therefore, an algorithmic approach with greater flexibility should 
be considered the main method for constructing IIS implementation models. Within 
the framework of this approach, three main groups of methods can be distinguished: 
algebraic, network and hybrid.

Some of the earliest examples of algebraic methods are abstract formal process 
definitions in the form of a trace structure (Kaldewaij, 1986). In this approach, the 
alphabet of the process is a set of events, and the study of algebraic properties is car-
ried out using the lattice theory. This approach was not properly developed, giving 
way to formalism that more comprehensively takes into account parallelism and the 
time factor. However, the notion of traces is still used today to construct the proof for 
the properties of parallel processes.

Among other options for a formal definition of a process in terms of events, one 
should highlight the study by Janicki and Lauer (1992), in which it was attempted 
to examine the system of parallel processes using the formal apparatus COSY (Con-
current System). Although the COSY specifications are intended to describe parallel 
processes taking into account synchronizing aspects, they nevertheless ignore such 
important requirements for industrial system control algorithms as hierarchy and 
dynamic program change. However, it should be noted that it was in the above work 
that the question of program verification in the dynamics of its execution was first 
raised.

The most actively used process algebras are the Hoare calculus (communicating 
sequential processes) (Hoare, 1985) and the calculus of interacting Milner systems 
(Calculus for Communicating Systems) (Milner, 1989). Process algebras provide ad-
vanced sets of operations and syntax analysis methods. At the same time, they are not 
able to display “true parallelism”, which is the result of the partial ordering of events, 
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while the analysis of dynamic capabilities is based on operational rules being more 
difficult and inconvenient compared to network methods.

An example of the use of algebraic specifications, for the purpose of describing 
dynamic processes, is mutating algebras, or Abstract State Machines, proposed by 
Gurevich (Gurevich, 1994). There are directions for development of ideas of Gurevich 
machines, connected with object-oriented data representation (Asteziano and Zucca, 
1995) and dynamic algebra corresponding to the state of a dynamical system. How-
ever, this approach is closer to defining the semantics of programming languages 
rather than to describing control systems. Nevertheless, some of the ideas can be 
used for analyzing the dynamic properties of control processes.

The analysis of theoretical process models can be supplemented by a whole group of 
formal systems designed to describe parallel computations. This group distinguishes 
completely abstract concepts of control spaces and algebraic programming, partially 
abstract models of bulk-synchronous parallel (BSP) processes (Valiant, 1990) and 
LogP (Culler et al., 1993), models with a limited form of Bird-Meertens parallelism 
(BMF) (Bird, 1993) and pipeline computation models based on the algebrodynamic 
approach. However, the listed models are simply the effective means of increasing the 
performance of parallel programs, rather than the basis for constructing high-level 
descriptions of CA.

The	 network	 approach in the formalization of control processes deserves 
special mention. The application of network formalization methods in the field 
of industrial automation is the subject of many scientific publications. Among the 
most mathematically developed formal network models of processes are Petri Nets 
(PNs) (Reising, 1985; Brauer, 1987) and their extensions: temporal (Zuburek, 1980), 
colored (Jensen, 1981), predicate, high-level Petri nets (Kramer and Schmidt, 1991). 
PNs effectively reflect the parallelism and logic of control processes, taking into 
account asynchronous interactions. However, although PNs served, in their time, 
as a prototype for the creation of the PLC programming language, in the practice of 
describing control systems they received limited application due to the lack of the 
ability to quantitatively process data during network transitions and the difficulties 
of controlling the routing of process development.

The most powerful PN extension that removes the restrictions noted above are 
the Evaluation Nets (E-Nets) or E-networks, and their modifications (Nutt, 1972). 
Possessing all the capabilities of temporary PNs, E-networks are able to display 
not only control flows, but also data flows, giving the grounds for considering them 
as the basis for constructing CA implementation models. In addition, E-networks 
significantly surpass other network methods in the implementation of logical 
functions and form a universal algorithmic system equivalent to a Turing machine. 
Thus, E-networks not only allow describing algorithms of any complexity, but also 
have the ability to dynamically restructure them.
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There are several interpretations of PNs from the class of E-networks (Pro-
networks) (Noe, 1980), macro-E-networks (Beyaert et al., 1981), the development 
of which is associated with an increase in the descriptive power of this apparatus. 
However, due to the complexity of the analysis of E-networks directly in the field 
of CS modeling, there has been a departure from the pure theory of E-networks 
towards the use of various other PN extensions: predicate-temporal, loaded, control 
and hardware networks, which are significantly inferior in terms of structural 
expressiveness.

Network methods of formalizing control processes are not limited to the use 
of Petri nets and their extensions to describe technological processes. Suffice it 
to say that the earliest applications of network models were associated with the 
construction of network diagrams for scheduling purposes. The most advanced in 
this regard are PERT networks and GERT networks  (Phillips and Garcia-Diaz, 1990). 
However, due to the limited logical capabilities, their application excluded the use 
of decision-making elements, which are important from the point of view of control 
tasks.

Models of distributed computing, which imply the use of a certain specification 
language based on the representation of CA in the form of a graph, can also be 
considered network formalization methods. They can be divided into traditional 
(modular) and object models (Kerzner, 2003). Among the first, one should single 
out the general model, the components of which are described in the language of 
Z-scheme specifications, the system model in the form of an acyclic graph formally 
created using the compositional theory, the formal model of a modular structure that 
defines connections and relationships between modules using the specifications of 
the assembly programming theory. All these models have a clear practical orientation 
associated with the construction of distributed programs and their interfaces, but 
do not have a mathematical apparatus for analyzing the properties of the described 
processes.

Hybrid models lay the foundation for a unified mechanism for the algorithmic de-
scription of processes at the executive, tactical and strategic levels. Examples of this 
approach provide a combination of continuous and discrete components. But most 
importantly, they form a mathematical scheme that allows for combining different 
models within a generalized structural representation.

The most notable hybrid models are the aggregative approach (Buslenko, 1978), 
the continuous-discrete model based on the discrete event approach implemented 
in the continuous-discrete system (CDS) modeling system, and A. Pnueli’s transition 
system (Henzinger, 1993). It should be noted that all these models can be presented 
in terms of each other. However, we will be interested in the aggregative approach, 
since a clear mathematical basis for setting multilevel descriptions inherent in the 
structure of the CCS can be built for it. As for Pnueli’s transition system, this model, 
used in verification systems based on temporal logic, also fits into a generalized 
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aggregate scheme and is actually implemented within the framework of the CA 
formalized description method, which is developed in the book.

Analyzing the existing approaches to the description of hybrid systems, one 
cannot fail to note the emerging trend of using artificial neural networks (Gomi and 
Kawato, 1993; Hagan et al., 2002) and genetic algorithms (Tajima, 1996; Wang et al., 
2003) in solving control problems. Allowing for the implementation of a function of 
any complexity, these methods are mainly used in CS to construct control devices of 
different variants. However, neural network control devices often have unacceptably 
long training time and are still used mainly as expert systems. As for genetic 
algorithms, they, like all evolutionary methods, should be applied in cases that are 
difficult to formalize or when a rough estimate is required for making decisions in 
real time. Currently, there is a search for ways to improve the efficiency of these 
methods, in particular, fuzzy logic (Rajashekaran and Vijayalksmi, 2004).

3.1.3. The Tasks of Control Algorithm Description 

To obtain a formalized description of the CA of a distributed CCS, it is recommended 
to use the methodological concept of aggregation, which is based on the set theoretic 
interpretation of a model: a model is a set, between the elements of which certain 
relations are specified.

If we consider only two levels of CA interpretation (where macromodel is a 
structure consisting of separate control elements, and a micromodel is the processes 
of functioning of these elements), then, in the accepted concept of aggregation, the 
abstract formal model of CA can be defined as follows:

,                                                                                                                     (3.1)

where  structure represented by a graph with the set of control elements  
and the set of arcs ;

 – a finite set of control processes that are implemented by the elements ;

 – aggregative representation, which unites formal definitions  and , 
thereby specifying the distribution of functioning processes in the structure of system 
elements.

It is possible to use the theory of aggregates as a formal system providing the 
construction of macromodels, and the E-network as the basis for constructing 
micromodels that reveal the dynamics of the aggregate behavior. This way, the 
problem of developing a method for a formalized description of CA implementation 
models will include the solution to the following problems:

• modification of the mathematical apparatus of E-networks in order to use 



59

them to control industrial processes;

• development of aggregating visualization that allows using E-networks as a 
means of describing the dynamics of aggregates;

• analysis of the properties of the modified E-networks as a formal system aimed 
to describe the behavior of the IIS control elements.

3.2. Formal Definition of Control E-network

3.2.1. Control E-network Structure

A control E-net (CEN) is defined as a set of five elements:

,                                                                                                     (3.2)

where  – a finite non-empty set of places consisting of disjoint subsets 
 (simple places) and  (decisive places), ; a set of simple places can 

contain a subset of input places  and a subset of output places, which are 
called limits, and it is assumed that  and , ;

 – a finite non-empty set of transitions, which can consist of transitions of five 
types , the so-called ordinary E-networks [101], and two 
types of additional transitions-queues  and , ;

 – an incidence function;

 – a finite set of network variables consisting of disjoint subsets  
(input) and  (output) signals ;

 – a set of control mappings defining transition firing rules;

 – an initial marking function that specifies the presence or absence 
of tokens in places.

The CEN structure is equivalent to an oriented bipartite graph, where one set of 
vertices is , the other is , and the arcs between the vertices of the two named sets 
are determined by the incidence function . From the definition of the incidence 
function, it follows that CEN is an ordinary network – there are no multiple arcs be-
tween places and transitions.

Let us associate each transition  with a set of its input places 
 and a set of output places , and 

denote the entire set of places incident to the transition  as .



60

The following limitations are imposed on the CEN structure:

• for any two transitions  where ,  takes place; i.e., a cer-
tain place cannot be the output place for two or more transitions at the same 
time;

• for any two transitions  where ,  takes place; i.e., there 
is no place that can be the input place for two or more transitions at the same 
time;

• for any transition  and any place ,  and  take 
place, i.e., isolated vertices do not exist in the CEN structure;

• for any transition ,  takes place, i.e., the decisive place cannot 
be the output place of the transition and, therefore, an arc cannot be a part of it;

• for any place ,  takes place, where  is of a type  or , i.e., 
decisive places are only associated with transitions of a specific type.

Ordinary E-networks, the application of which was focused only on modeling 
problems, were, in fact, autonomous, i.e., they did not interact with their surroundings. 
In control E-networks that take on the role of CA implementation models, all actions 
performed by the network must be consistent with the current state of the CO and 
the external environment. By external environment, we will understand the CEN, 
which can interact with the given network by passing tokens through the boundary 
input  places. Interaction with CO is performed via the corresponding network 
variables . Furthermore, for discrete input signals, the designation DI is used, for 
analog input signals – AI, discrete output – DO, analog output – AO, in the way that 

 and . Discrete signals can take values from the set , 
and analog signals can take values from the set  of real numbers.

3.2.2. Dynamics of Control E-networks 

The dynamic properties of a network are determined by changing its token and 
depend on the values of the control mapping components.

As a token in a control E-network, we define a vector  
where . Place  is called free (does not contain a token) if ; 
otherwise, in case of , the place is considered occupied. For a given token , the 
set of marked places will be determined as .

For all CEN places,  is fulfilled, which translates CEN into a class of safe 
nets, which are now commonly called Condition / Event-Net (C/E-Net) Petri nets 
(Reising, 1985). Note that in ordinary E-networks, in addition to simple places 
capable of storing only one token, the existence of queue places of infinite capacity 
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is allowed reducing the security condition, which, as we will see later, turns out to be 
important from the point of view of the network functional properties.

Similarly to ordinary E-networks, each token located in the CEN place is assigned 
a descriptor, or a tuple of numeric attributes, which determines the information 
content of the token , where  is the value of the attribute 
j which belongs to token i. As tokens move across the network, their attribute values 
may change.

When the network is running, the tokens can move from input transition places to 
output ones, changing the marking of the network. Since the number of CEN places 
is finite, the number of its possible markings is also finite and equal to , including 
the initial marking .

As the CEN attainability set, we mean the finite non-empty set  of all markings 
attainable from the initial marking , including the initial marking, i.e., . An 
attainability graph of CEN is a graph  that includes attainable 
markings as vertices. The arcs , where , show that the marking   
is directly reachable from the marking .

The structural component of the control E-network, which determines its 
dynamics, is a set of control mappings , which includes five functions 
associated with network transitions:

•  – a decision transition function;

•  – a function of transition firing readiness;

•  – a transition trigger function;

• – a transition delay function;

•  – a transition transformation function.

Decision function

                                                                                                                 (3.3)

is associated with decision places that do not contain tokens and control the 
operations of associated transition types  and  by calculating the values of the so-
called decision functions . The decision function can be calculated, 
taking into account the values of the attributes of tokens and network variables, i.e., 

. The decision function value determines the direction 
of movement of the token when the transition is triggered. The limits of possible 
values of the decision functions depend on the default number of places incident to 
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the transition .

Transition readiness function is the predicate 

,                                                                                                                           (3.4)

which determines transition firing readiness: if , then the transition  
to operation is not ready; otherwise, if , then the transition  is ready to firing. 
Each transition type has its own definition of the readiness function. The value of 
predicate (3.4) depends on the marking of simple places incident to the transition, as well 
as the value of the decision place of the transition, if such a place exists, and is calculated 
each time the marking of the network is changed. Thus, , if  
for transitions, where . The markings of the input and output places, at 
which firing of transitions takes place, will be called admissible.

The trigger function is absent in the definition of transitions of an ordinary 
E-network. Its use in CEN is caused by the necessity to take into account the state 
of CO when determining the conditions for firing of the transition in addition to the 
analysis of the admissible marking. The activation function is the predicate

,                                                                                                                     (3.5)

which is calculated for each transition and determines the possibility of its triggering: 
if , then the transition  remains inactive; otherwise, if , then the 
transition  is triggered. When calculating the trigger function, the values of the 
network input signals are calculated, i.e., . By default, the trigger 
function is equal to 1, and the transition is triggered for any values of the input signals.

The delay function calculates the transition  delay time based on the token 
attribute values located in the network places, as well as the values of the network 
variables, i.e., . As a special case, the default delay time can be 
set to zero. In general, the delay function can be represented as a mapping

,                                                                                                                               (3.6)

where  – a set of network transitions;

 – a set of positive real numbers, which includes zero.

Transition transformation function

                                                                                                                                   (3.7)

specifies the sequence of operations  that are 
performed on network variables and token attributes as they are moved from input 



63

places to output places of a transition. Setting the default transform function  does 
not change the token attribute values.

Taking into consideration the control mappings, the execution of any transition 
 includes the sequential passing of the following four phases:

• readiness, when the transition is not at a delay phase and the condition of its 
firing , determined by the specific type of transition, is fulfilled;

• activity, when the readiness phase started and ;

• delay, when the countdown, until the transition firing, began; the phase dura-
tion is determined by the transition delay time  (t), which must be calculated 
before the beginning of the delay phase; the state of the transition places does 
not change until the end of the delay phase;

• firing, when, after the expiration of the delay phase, an instant change of the 
transition place marking occurs by moving the tokens from their input places 
to the output ones in accordance with the firing rules for transitions of this 
type; at the same time, the values of the token attributes placed in the output 
places are changed in accordance with the specified transition transformation 
procedure.

Dynamic properties, which are traditional for E-networks, determined by the 
ability of tokens to move between places and by transition firing rules, are expanded 
in control E-networks due to the possibility of dynamically changing the control 
functions of transitions. The decision, trigger, delay and transformation functions are 
functions of time that can change during the execution of a network.

3.2.3. Basic Set of CEN Transitions 

Control E-networks preserve the basic set of transitions of ordinary E-networks, 
which is expanded by the introduction of queue transitions that perform the func-
tions of queueing tokens with different service discipline. This makes it possible to 
use CEN in order to implement the possibilities inherent to Petri nets of the Place/
Transition-Net (P/T-Net) type.

Description of the firing schemes for all types of CEN transitions is given in Table 3.1. 

For the basic set of ordinary E-network transitions, the specifications described 
in Reising (1985) are generally preserved. Therefore, we will dwell only upon the 
characteristics of the additional types of transitions-queues introduced as an exten-
sion of the CEN basic set. There are four types of transitions-queues, which are im-
plemented within the two main types of these transitions: 
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• the QF transition implements the FIFO (first in, first out) token service order 
and priority service in ascending order;

• transition-queue QL implements the LIFO service discipline (last in, first out) 

Table 3.1 Basic Set of CEN Transitions
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and priority service in descending order.

Firing of the transitions-queues can take place in two ways: the first is when a 
token arrives at the input place , the output place is free and the second way is when 
the output place is occupied. In the first case, the transition is in the state of constant 
readiness to work, since the only condition for its firing is the presence of a token in 
the input place: . When the transition starts, the token is placed in the queue, 
while when the queue is empty and the output place is free, the token immediately 
takes the place, which means that the rule of moving tokens is executed:

,                                                         (3.8)

If, at the moment a token enters the queue, the output place is already occupied 
by one of the tokens in the queue, the rule for moving tokens will be as follows:

• the token from input place  is placed in the queue;

• the token from output place  is placed in the queue;

• a token selected in accordance with the accepted queue servicing discipline is 
placed in the output place from the queue. As a result, the sequence of opera-
tions will look like this:

; ;                                                  (3.9)

It should be noted that whenever an output place y is freed, a token from the 
queue (if there are any) is placed in it according to the service discipline selected for 
this transition.

There are the following limitations associated with the use of transition queues:

1. The transformation procedure is executed when the token is placed in the in-
put place.

9. The time delay function is not defined for transition queues.

10. For these transitions to work properly, transitions with zero delay time must 
be in the same structural bond as their output places. Otherwise, transition fir-
ing rules may be violated.

A control E-network is traditionally depicted in the form of a graph, in which cir-
cles stand for simple places, squares – for decisive places, while transitions are rep-
resented by vertical lines. Transition-queues are denoted by rectangles with a bar: 
a vertical bar placed closer to the output indicates a transition-queue of type, 
a bar put closer to the input – , transitions-queues with priorities are denoted 
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by a rectangle with a corresponding diagonal. Links between places and transitions 
are represented by directed arcs. The boundary (both input and output) places of the 
network are additionally marked with triangles associated with them. The presence 
of a token in a simple place is indicated by a dot. In the attainability graph, the verti-
ces in the form of ellipses correspond to the attainable markings of the network, and 
the arcs between them are marked with the index numbers of transitions, and as a 
result of firing of these transitions, a specific marking is achieved.

Figure 3.1 demonstrates an example of CEN and the corresponding attainability 
graph.

3.2.4. CEN Semantics 

Let us give semantic definitions to CEN components in the aspect of CA descrip-
tion. These definitions are based on the principle of situation control. Following this 
principle, it is necessary to define the concepts of the state of both CO and CA, the 
current situation in the control system, as well as the control decisions that affect the 
changes of the current situation.

Definition	3.1. The current situation taking place in a conrol system is a system of 
sets denoting the states of CO and CA at the present moment of time.

Definition	 3.2. CO state is a set of all available information 
about the CO displayed in the set of input signals of the network 

 at the present 
moment of time.

Definition	3.3. CA state is the current marking  of the control E-network 
with the corresponding token attribute values.

Consequently, the whole set of situations that can be described by a certain CEN 
is determined by the following expression:

Fig. 3.1. CEN graphical representation and its attainability graph.
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,                                                                                                      (3.10)

where  – discrete input signal space;

 – analog input signal space;

 – network markings set.

and current situation  is a vector

,                                                                                                                (3.11)

where  – a vector of input discrete signal values in  situation;

 – a vector of input analog signal values in  situation;

 – a vector of network place markings in  situation.

The aforementioned definitions (3.4–3.6) reveal the semantic meaning of CEN 
places, the marking of which sets the current state of the CA, which together 
with the input signals determines the current situation.

Next, let us discuss the semantics of CEN transitions, for the purpose of which we 
will use the situation control scheme proposed in [29]. In the interpretation of 
control E-networks, this scheme can be represented as shown in Fig. 3.2.

In the process of their firing, network transitions sequentially perform the 
following functions related to the implementation of the principle of situational 
control for the current situation:

1) Analysis function takes place in case the readiness of transitions to firing under 

' ,

Fig. 3.2. The scheme of situation control method by means of CEN.
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condition  is checked. If this condition is met, it means 
that there is a situation that requires intervention of the control system in the 
process. Otherwise, the processing of the situation does not start.

2) Classification	function is triggered when the variant is determined, according 
to which the transition is fired taking into account the values of decision func-
tions . At the same time, transitions refer the current situation to a 
certain class of decisions.

3) Correction function is executed after the delay phase, when transition firing 
takes place. During this process, the marking of the network places is changed 
and the CO is affected by setting the values of the output signals  
using the conversion procedure .

Functions ,  and  can be combined in a single operator 
, which will indicate a certain action associated with 

firing of transition . Consequently, the result of performing an elementary 
control step, implemented according to the scheme shown in Fig. 3.2, can be 
represented as follows:

.                                                                                                                     (3.12) 

In addition to the introduced semantic definitions, there are the following funda-
mental features of CEN, which are important in terms of demonstrating their func-
tionality:

1. Locality.	CEN retains the principle of locality inherent to Petri nets. This means 
that changes in place markings have only a local effect on the further behavior 
of the network, since place markings only affect the transitions directly associ-
ated with them.

11. Direct impact. CEN does not use qualifiers, such as those available in SFC, that 
implement impulse, constrained, deferred, or persistent actions. The listed 
qualifiers can be implemented in CEN by means of designing an appropriate 
network structure using transition delays. In contrast to CEN qualifiers, simi-
larly to Moore machines, output signals are a direct function of current states, 
which are represented by situations in this study.

12. 	Recurrence.	CEN is executed in a cycle, so that all conditions provided by the 
transition patterns and activation functions are relevant to the current net-
work cycle. The generated output signals are not initialized until the end of the 
cycle. This means that the resulting value of a particular output, corresponding 
to the current cycle of the network operation, will be determined by the last 
calculation of this output in the sequence of transition firing. As for the input 
signals, their values   do not change during a single network operation cycle.
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13. Lack	 of	 aftereffect. This property means that the taken control decision de-
pends only on the states of CA and CO at the current moment of time and does 
not depend in any way on the decisions made earlier. The entire history of con-
trol process development is concentrated in the current marking of the net-
work and there is no need to analyze the sequence of markings that precede it.

14. Determinism. Although the control process model itself, built in the form of a 
control E-network, can tolerate various behaviors depending on the param-
eters of the external environment, the actual implementation of the control 
system itself has to be strictly deterministic. This means that the control deci-
sion should not depend on non-determinism that is inherent to Petri nets and 
associated with the sequence of transition firing.

3.3. Control E-networks as the Functional Basis of PLA

3.3.1. Constructing Aggregate Mapping

Following the set task, we will use the aggregative approach to construct multilevel 
specifications for CA. For this purpose, however, it is necessary to solve the problem 
of constructing aggregate mapping that matches the formalism of the internal model 
in the form of CEN with the formal representation of aggregates.

An aggregate is represented as an object defined on a set of states Z, input signals 
X and output signals Y. The evolution of an aggregate is determined by the operators 
of transitions  and outputs , which are generally random. The arrival 
of an input signal to the aggregate, which is considered to be an external event, can 
cause a change in the states of the aggregate, which also affect the internal events. The 
state of an aggregate for a certain moment of time  is defined as specific 
implementation in accordance with this distribution law. The operator  determines 
the change in the states of the aggregate itself, and the operator  determines the 
rules for issuing output signals, which, in turn, can be transmitted to the output of 
other aggregates.

Among the variety of aggregates, the class of Piecewise Linear Aggregates (PLAs) 
stands out. Some specification of the general approach in this case provides the 
necessary formal basis for solving the problem. PLAs allow for modeling a wide class 
of objects and provide the ability to build multi-level aggregate systems, which can be 
considered input-output models.

The functioning of PLA is a Piecewise Linear Markov Process (PLMP) defined in 
time by the following expression:

,                                                                                                              (3.13)

where  – a certain discrete value called the ground state;
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 – a vector of complementary dimension  coordinates 
with respect to the ground state;

  – a non-negative value called the ground state rank.

PLA is characterized by a linear uniform change in the values of the vector  
coordinates:

,                                                                                                                           (3.14)

where  – a positive constant.

If we use control E-networks as formalism that specifies PLA behavior, it is 
necessary to ensure the construction of aggregate mapping in the form of PLMP.

Statement	3.1. The process of CEN functioning can be represented in the form of 
PLMP.

To prove the validity of this statement, we introduce the definition of the ground 
state.

We define the CA ground state as the marking  of the control E-network fixed 
at the end of the execution cycle. The cycle is executed until there is at least one 
transition ready to firing.

The process of CA functioning, as specified by the control E-network, consists in 
performing a finite set of operations on the network variables and token attributes, 
which can only change as a result of network transition firing. If we assume that 
the change in the transition delay time occurs only at the time of the start of a new 
cycle, then each ground state of the control unit can be assigned a certain number of 
delayed transitions, which will not change in this cycle under any circumstances. On 
the other hand, the conditions for firing transitions, including the start of the delay 
phase, depend primarily on the state of place marking associated with the transition, 
and do not depend on how this state began. This satisfies the accepted principle of 
the lack of aftereffect in relation to CEN behavior. After entering the delay state, the 
transition can exit it only after the delay time, which is calculated in the active phase.

Let us assume  is the set of CEN markings corresponding to the ground states of 
the CA. Let us suppose  is the marking of the network at the end of the cycle 
iteration i, and  – a certain subset of CEN transitions delayed at , which are 
connected by the mapping

,                                                                                                                          (3.15)

where  is the degree set . Then the sigma-algebra  of subsets selected from , 
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the elements of which determine the observed sets of delayed transitions, defines a 
measurable phase space of states . From the definition of sigma-algebra, 
it is important to note that the operations of union, intersection and taking the 
complement, performed on the elements of the class , are not derived from this 
class. It is also assumed that the class  contains each element .

Let us suppose  is a variable equal to the time until the end of the transition  
delay with marking . Then the process of firing transition, i.e., the occurrence of 
events leading to a change in the CA state, can be represented as follows:

,                                                                                              (3.16)

where  – network marking at the end of  operation cycle;

 – a vector of additional 
coordinates (transition delay times);

 – a number of transitions delayed with marking .

Let us suppose that we set the rate of change  to a negative one, i.e.,
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Fig. 3.3. Diagrams of the change in the number of delayed transitions (а) 
 and the additional coordinate vector (b).
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,                                                                                                                       (3.17)

then the process of CEN functioning will be represented by PLMP defined by 
Eq. (3.16).

The trajectory of CEN functioning process with respect to Eqs. (3.16) and (3.17) 
can be represented in the form of two diagrams shown in Fig. 3.3. 

3.3.2. PLA Concretization by Means of Control E-networks 

Since the CEN functioning under certain conditions can be narrowed down to 
PLMP, it is possible to describe the dynamics of PLA behavior. Furthermore, the 
E-network itself can be represented in the form of an aggregate system consisting of 
PLA. This example is demonstrated further.

Statement	 3.2. CEN transition can be narrowed down to a complex system 
consisting of elementary aggregates that form a PLA.

To prove this statement, it is necessary to turn to the theorem (Buslenko, 1978), 
which reveals that in case the sets of ground states, input and output signals are 
finite, the PLA can be represented as a complex system consisting of three types of 
aggregates: memory elements, delay elements, and instantaneous piecewise linear 
converters.

CEN transition, the readiness function of which is equal to one, is defined as a 
tuple:

,                                                                                                                         (3.18)

where   – a set of places incident to the transition;

   – transition delay time;

   – a transition transformation procedure.

Let us describe each element in this transition definition in terms of PLA. We will 
consider a simple place as a memory element. Such an aggregate is capable of storing 
information in the form of some real number or a vector x with a countable number of 
elements. In this case, the vector elements will be the attributes of the token located 
in place. The input of the aggregate, represented by a memory element, can receive 
two types of signals:  and an empty set, while their arrival can only alternate, 
since CEN is a secure network. If a signal  is received at the input of the unit, 
i.e., a token with a vector of attributes  has been received, then, 
according to the locality principle, the state of the aggregate will be  until the arrival 
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of the next input signal. Only the 0 signal can arrive at the input of the aggregate 
afterwards (during the process of moving the token). If, at this moment, the state of 
the aggregate is , then a signal  is immediately sent to the output of the memory 
aggregate, and the internal state of the aggregate becomes zero, which means there 
is no token in place.

The delay element, also defined as an elementary aggregate, corresponds to the 
transition delay time. Such an aggregate, at any moment , has a certain state 

 in the form of a non-negative number. Furthermore,  decrements 
until it reaches zero in the next cycle. At this moment, a signal  with a fixed value 
equal to 1 is sent to the output of the delay aggregate, after which the aggregate 
remains in this state until the arrival of the next input signal.

Three types of signals can be received at the input of the described aggregate:

• , which sets the transition delay time equal to the result of calculating the 
delay function  provided that the value of the transition activation function 

;

• , which changes the value  by the amount equal to the duration of the 
previous execution cycle;

• , when for a non-delayed transition, provided that the value of the transition 
activation function , the  delay time  is set to infinity .

Consequently, for the listed input signals, the transition operator of this aggregate 
will implement the following changes in its state:

, 

;

.

The output signals generated by the delay element are implemented by the output 
operator according to the following rule:

;

;

.

As a linear converter, we will consider the transformation function defined for the 
transition. The discussed elementary aggregate is able to receive and send signals in 
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the form of vectors, respectively, for input signals  and for output 
signals . In addition, the lengths of these vectors can exceed the 
lengths of the input and output place signal vectors. In any case, the first n elements 
of this aggregate input signal vector always coincide with the output signal vector 
of the transition input place, from which the token is moved. The remaining  
elements of the vector y can be the values   of the network variables (signals). When 
the input signal x arrives at the output of the converter, signal  is immediately sent, 
where y is the conversion result of  in accordance with the given conversion 
function .

Thus, it has been proved that any CEN transition can be represented in the form 
of a PLA consisting of three aggregate types: memory elements, a delay element and 
an instantaneous converter.

The CEN transition, specified by tuple (3.18), is called an elementary PLA.

Since the union of two or more PLAs is a PLA itself, the CEN constructed from 
transitions represented in the form of elementary PLAs will also be a PLA, provided 
that it implements the PLMP. The transition operator of such an aggregate is defined 
as mapping:

,                                                                                                                              (3.19)

where   – a set of network markings, Z –  a set  of PLA states;

and the output operator  – mapping

,                                                                                                                           (3.20)

where  is the set of output PLA signals, .

The introduced concept of an elementary PLA makes it possible to define the 
rules of structural composition and decomposition of CEN of arbitrary complexity, 
consisting of separate transitions. These rules must comply with the general rules for 
constructing aggregate systems.

A signal at the output of the aggregate can be sent in case of transition firing, the 
output place of which is the boundary place of the aggregate. Similarly, the input 
signal will be received by the boundary input place of the aggregate. The aggregate 
system (AS) in this case is formed by connecting several PLAs in accordance with 
the conjugation scheme, which designates the mutual connections of the aggregates 
using pairs of sets: a set of boundary input places and a set of boundary output places 
of the aggregate. 
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The operator , which establishes links between the boundary places 
of CEN, is the conjugation operator.

The conjugation scheme is used to formalize the complex structure of a 
distributed control process defined on a set of aggregates. The internal behavior of 
each aggregate is determined using the implementation models specified in the form 
of the corresponding control E-networks.

For an unambiguous display of the dynamics of a distributed CA, we will make the 
following assumptions, which are determined by the rules for the AS composition, and 
consequently, individual transitions that include the description of the aggregates.

Assumption	1. Communication channels in a system consisting of aggregates are 
ideal, i.e., signals are transmitted instantly and without distortion.

Assumption	 2. No more than one elementary channel connecting two adjacent 
boundary places can be connected to the input boundary place of any aggregate in 
the system. Any number of elementary channels can be connected to the output place, 
provided that no more than one of the mentioned elementary channels is directed to 
one input boundary place of the same system aggregate.

Assumption	 3. If the moments of the external (associated with the arrival of 
the input signal – token) and internal (reaching the trajectories of the aggregate 
of a certain subset ) event occurence coincide, then the internal event has 
priority over the external ones, i.e., the change of state is executed first in accordance 
with the rule of internal event occurrence, and then, the actions initiated by external 
events are performed.

Aggregate systems, similarly to PLA, have an important closure property, which 
presuposes that the AS can be generally described as an aggregate; therefore, the 
union of a finite number of AS is also an AS. It creates the basis for the construction 
of complex hierarchical CCS models based on the aggregate approach. The ability to 
represent various types of CA structures in the form of AS (for the aggregate, it will 
be a system of elementary PLAs) allows performing structural transformations of 
models based on the assumptions made regarding the features of their construction 
and functioning.

3.3.3. Completeness of the CEN Formal Theory 

When describing a method for specifying CA by means of PLA, concretized by the 
control E-networks, we have considered only the formal side of the used mathematical 
apparatus, leaving aside the conceptual meaning of the displayed process. At the 
same time, the practical implementation of this method will, in a certain way, be 
associated with the features of modeling control processes. From this point of view, 
control E-networks should be considered a formal system. Therefore, it is necessary 
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to answer the question of adequacy, or completeness, of this formal system of the 
discussed subject area.

We will investigate this issue in terms of the theory developed by Hoare (Hoare, 
1985) to study interacting sequential processes. Preliminarily, it is necessary to note 
that any formal theory is determined by: 

1) the alphabet;

2) a decidable set of axioms;

3) a finite set of inference rules. 

As noted before, we will interpret the process of CEN functioning in the form of 
a finite set of transitions fired, which lead to a change in place marking. Since the 
firing of transitions is associated with the movement of tokens, each of them can be 
associated with a certain subprocess that includes events in which this token can 
be a part of. Thus, the process of E-network functioning will generally consist of 
interacting sequential subprocesses, each of which is associated with the movement 
of a certain token. To terminate such a subprocess, it is enough to destroy the token 
that is associated with it and to spawn a new process – the token should be created.

Let us suppose that a set of transitions  is the specified alphabet of the process. 
By the process protocol we define a finite sequence of symbols from the alphabet T, 
which fixates the sequence of events (transitions). Let us assume that  defines the 
set of all finite protocols consisting of the set  elements. Let us define the degree-set 
of set  as the set of all its subsets .

According to Hoare (1985), the process is uniquely determined by three sets, 
which specify its alphabet, its divergence, and its failures, which, using the introduced 
definition, can be represented as follows:

,                                                                                                                       (3.21)

where  – process alphabet;

 – relation between  and ;

 – subset , which meets the requirements for representing all divergences and 
failures of a process.

Divergences are understood as possibilities, including the possibilities of a non-
deterministic choice of the process development direction after a specific event. 
Failure, in turn, is the refusal of the process to perform further actions.
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Generally, different processes have their own finite alphabets , but 
they can only be composed of the number of transitions in the basic set 

. Thus, as given axioms of the formal 
CEN system, we can note and consider the elements of set  that includes 
the types of transitions in the basic set. Based on the set T, networks of varying 
complexity can be built using inference rules (transition composition rules inherent 
in the AS). In this case, each transition  is also an element of a set of protocols  
with alphabet , i.e., .

To prove the completeness of the formal CEN system with respect to the informal 
theory of sequential interacting processes, it is required to show that it is possible 
to represent any process divergences and failures defined in accordance with 
expression (3.21) with the help of transitions of the basic set . Figure 3.4 shows 
CEN schemes that allow displaying any variants of process development.

The conducted research gives ground to conclude that the formal theory of CEN, 
in the given interpretation, has the property of completeness in the representation of 
interacting sequential-parallel processes characteristic of a CCS.

3.4. Summary

The analysis of the existing methods of control process formalization, performed 
while taking into account the requirements for CA implementation models, demonstrates 
that the aggregate approach has the biggest advantages in this regard, within which both 
the multilevel structure of CA and their dynamic properties can be taken into account. 
E-networks, which are an extension of Petri nets, are the most suitable means to reveal 
the internal structure of aggregates, allowing for the use of operational transformation 
of information circulating in the network, simultaneously with setting a complex logical 
sequence of its processing.

Following the accepted concept of aggregation, which forms the basis of the proposed 
formal definition of CA, two interrelated tasks have been formulated and solved:

 

Fig. 2.4. CEN schemes of process development variants: 
а) divergence; b) failure.
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• the theory of E-networks has been expanded in terms of their use for describ-
ing control systems interacting with the control object by means of input and 
output signal exchange;

• aggregate mapping, ensuring the embedding of E-networks into the scheme of 
PLA operation, has been constructed.

In the course of solving these tasks, a class of control E-networks has been pro-
posed that is characterized by:

• an extended set of transitions, including transitions-queues, the use of which 
provides the network security;

• additional use of the activation function as part of the control mapping of tran-
sitions, which ensures the execution of the network consistent with the current 
state of the CO;

• the possibility to structurally change the network by dynamically changing the 
functions of the control mapping of transitions.

The semantics of control E-networks fully meets the principles of situational 
control over the IMS functioning processes, ensuring the development and 
implementation of control actions.

The given interpretation of CEN functioning process in the form of PLMP, taking 
on the role of aggregate mapping, makes it possible to consider E-networks as the 
functional basis of PLA. Based on the introduced definition of the transition, it has 
been proved that it is equivalent to the system of aggregates forming an elementary 
PLA. This circumstance has made it possible to determine the rules for the structural 
composition of control E-networks of arbitrary complexity, which must comply with 
the rules for constructing aggregate systems.

The study of CEN functional capabilities has revealed that, from a mathematical 
point of view, this apparatus can be considered a formal system that has complete-
ness with respect to the informal theory of interacting sequential-parallel processes. 
This makes it possible to apply a unified formal approach to the description of CA at 
all levels IMS control.

Chapter 4. Predictive Models and Dynamic Model Checking

The method for specifying control systems using control E-networks allows 
not only specifying a formalized description of the control element behavior, but 
also subjecting this description to analysis in order to predict the future behavior 
of the control system. The basis for the construction of predictive models should 
be the corresponding implementation of the Receding Horizon Strategy, taking into 
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account the peculiarities of CEN functioning in real time.

The problem of real-time evaluation of the dynamic properties of distributed 
control algorithms can be solved on the basis of the joint use of the mathematical 
apparatus of control E-networks and temporal logics. As a result, the initial 
description of CAs in the form of aggregate models with E-network concretization of 
aggregates is used in two qualities: as a model for the implementation of the control 
process and as a model for predicting its development.

4.1. Dynamic Properties of Control Algorithms and their Assessment

4.1.1. Control Algorithms as a Reactive System

A distinctive feature of the control algorithm specified by CEN, which is actually a 
formalized expression of the control program, is that its implementation depends not 
only on the state of the network, but also on the external environment, in particular, 
the state of the CO. For this reason, the control algorithm should be considered a 
reactive system, even a reactive control program.

In the general case, reactive systems are understood as real-time systems (Harel 
and Pnueli, 1985; Jansen and Gollmar, 2020) thar should develop a response to 
changing input information. Errors in the operation of such systems when they are 
used to control hazardous types of production (for example, this applies to control 
systems for nuclear reactors, chemical production, space technology, etc.) can lead 
to catastrophic consequences associated with large material losses and even human 
casualties. No less serious consequences can be in case of failures in the operation 
of telecommunication, information and financial systems. Therefore, extremely high 
requirements are imposed on the reliability and error-free functioning of reactive 
systems.

All informal requirements for the behavior of a reactive system are divided into 
two main classes (the classification was proposed by L. Lamport (1983)):

• the safety requirement – guarantees that a certain property is preserved in all 
states of the system;

• the requirement of liveness – guarantees that some event sometime in the 
future will necessarily occur in the system, or, in other words, some property 
will be true over some achievable state of the system.

Safety includes such properties as:

• a mutual exclusion, which guarantees that parallel processes will never 
simultaneously end up in the same critical section;
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• an absence of deadlocks (absence of interlocking), which means that at least 
one of the processes can always continue functioning;

• a partial correction, meaning that if at the beginning of the process some 
precondition is true, then at the end of the process the postcondition will be 
executed.

Liveness is represented by the following properties:

• absence of infinite waiting (guaranteed response), which means that a request 
for resource allocation is always satisfied in a finite time;

• unconditional justice, which means that the process must be performed 
infinitely often, regardless of its internal state;

• total correctness, which means that if the process begins its functioning under 
a true precondition, then it will definitely end, and the postcondition will be 
fulfilled.

There is another classification of dynamic properties proposed by Alpern and 
Scheider (1985). It contains the following classes of requirements for the hierarchical 
behavior of the system (Borell classification):

• safety – a statement that a certain property is preserved in all states of the 
process of each computation from a set of possible computations;

• liveness – a statement that the property is checked in at least one state of each 
calculation;

• intermittence – the union of the safety and liveness classes on a set of 
calculations;

•  recurrence – a statement that a certain property happens in infinitely many 
states of each computation from a set of computations (includes the safety, 
liveness, intermittence classes);

• persistence – a statement that a certain property happens in infinitely many 
states of each computation from a set of calculations, starting from a certain 
state (includes the safety, liveness, intermittence classes);

• progress – a union of the persistence and recurrence classes.

It is easy to see that the requirements in the Borell classification are covered by 
the safety and liveness requirements introduced by Lamport, and, therefore, the 
latter represents two basic informal requirements that can be put forward in relation 
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to the dynamic properties of the control system. However, the specificity of CA allows 
one to single out two additional properties that are important from the point of view 
of control theory: the ability of the CA to resume its work from the initialization 
state (Frey and Litz, 2000) and the ability of the CA to perform its functions with any 
changes in the external environment. The last property is usually called robustness.

The properties of reactive systems described above, which also apply to CA, 
have one important feature. All of them require consideration of the process in the 
dynamics of its development in time. Such time dependence of the properties of 
control processes requires the use of special methods for their specification.

4.1.2. Methods for Specifying the Dynamic Properties of Reactive Systems

The common name for these methods comes from the term “temporal”. Therefore, 
dynamic properties in this terminology are interpreted as temporal (Mordechai Ben-
Ari, 2012).

The founder of the formal temporal approach is A. Pnueli, who was the first to 
propose the temporal logic of linear time (Linear Time Logic – LTL) (Pnueli, 1986). 
Linear Time Logic, also called Propositional Linear Temporal Logic (PLTL) (Manna 
and Pnueli, 1989), is the development of modal logic and is based on propositional 
calculus. Its practical appeal lies in the use of natural linear ordering on an infinite 
sequence of states and the classic modal operators (F – “eventually” and G – “global”), 
which can be applied to elementary statements connected by Boolean connectives.

A more precise definition of PLTL logic has two basic temporal operators: X – 
“next” and U – “until”, with which the modal operators can be defined. The PLTL 
formula is determined by induction in such a way:

.                                                                                   (4.1)

Other temporal operators are expressed using these basic operators as follows:

,                                                                                                                       (4.2)

.                                                                                                                          (4.3)

The semantics of temporal logic is determined on the logical model given by the 
Kripke structure (Clarke, 2008):

,                                                                                                        (4.4)

where  – a  set of elementary statements;

 – a set of states (interpretations) of the system;
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 – an initial state;

 – a reachability relation between states;

 – an interpretation function that determines the values of propositional 
variables for each state.

However, PLTL is not very suitable for analyzing the behavior of concurrent 
processes, which are characterized by tree representation of many events. Therefore, 
for the evaluation of parallel processes, E. Clarke and E. Emerson proposed the 
Computation Tree Logic (CTL) (Clarke and Emerson, 1981). When the behavior of 
a reactive system is represented by computation trees, the liveness requirement is 
divided into two subclasses: when a state satisfying a given property is reachable 
on each branch of the computation tree of the system (“A-liveness”) and when it is 
reachable at least on one branch of the computation tree (“E-liveness”).

CTL formulas are inductively defined as follows:

,             (4.5)

where  – an elementary statement;

 – CTL formulas;

 and  – quantifiers “existence” and “always”, respectively.

Studies have shown that most of the practical properties of reactive systems can 
be expressed by CTL formulas (Ravn et al., 1993). Examples of formal definition of 
the properties of safety and liveness classes are given in Table 4.1.

Table 4.1 Determination of Some Properties of Reactive Systems by CTL Formulas
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The semantics of temporal operators when applied to the analysis of computation 
trees is defined similarly to PLTL, but the consideration of quantifiers on a set of tree 
paths is added.

The disadvantage of PLTL and CTL logics is that time is taken into account in 
them implicitly and only at the semantic level, while the practical application of this 
formal apparatus, especially in real-time control systems, requires the specification 
of actions within specific time boundaries. In order to satisfy this requirement, 
T. Henzinger developed a version of the real-time linear logic – Timed Propositional 
Temporal Logic (TPTL) (Henzinger, 1991) and P. Alure proposed a version of the real-
time computation tree logic – Timed Computation Tree Logic (TCTL) (Alur, 1991), 
which was the result of their joint work (Alur and Henzinger, 1990). 

The TCTL formula is defined as follows:

,                                        (4.6)

where ~ means one of the binary relations ( ) that limits the duration 
of the formula. 

Further developments of TCTL to the real-time domain were the Parametric 
Timed Computation Tree Logic (PTCTL) (Wang, 1996), Metric Temporal Logic 
(MTL) (Chang et al., 1994) and Parameterized Real-Time Computation Tree Logic 
(Emerson and Trefler, 1999).

Simultaneously with the development of temporal logics, another formal 
approach to the specification of the properties of reactive systems, which has a 
generalized name Duration Calculus – interval logics (Chaochen et al., 1993), took 
place. This mathematical apparatus was analyzed most fully in the ProCoS (Provably 
Correct Systems) project (Bowen, Hoare et al.,  1996). Duration Calculus takes into 
account the peculiarity of the control program in real time and the possibility of 
parallel execution of several threads. This logic extends the traditional predicate 
logic with the ability to specify time intervals with an indication of the constraints 
imposed on them, as well as the definition of sequences of input and output signals.

The semantics of the Duration Calculus is determined by a specific interpretation 
of this calculus, which, in principle, should correspond to the specifics of the 
functioning of the system. Each state is interpreted through a function of time.

Using the Duration Calculus logic security requirements for real-time control 
systems can be easily described. At the same time, it is inferior to temporal logic 
from the point of view of practical implementation of automatic verification 
algorithms, since for interval logic the problem of satisfiability is algorithmically 
unsolvable (Paulson, 1998). In this regard, it becomes necessary to combine the 
merits of each considered formalism used to describe the dynamic properties of 
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reactive systems, including CA, within the framework of a unified approach.

4.1.3. The Problem of Automatic Verification of CA Dynamic Properties

Verification is the process of certifying that a system meets specified requirements 
or has specified properties (Pritsker, 1995). As a kind of verification, validation is also 
considered, which implies checking the system for compliance with its specification. 
However, if verification answers the question “Is the system built correctly?”, then 
the purpose of validation is to verify that the “correct system” is actually built. In 
the future, we will consider the first task, namely, the task of verification, which 
should be assigned to the control system itself and should be solved in the dynamics 
of the development of the control process. In this case, we will assume that system 
validation is the prerogative of the system design stage.

It is impossible to verify reactive systems by testing, since the number of possible 
variants of their behavior can be infinitely large. Therefore, in the theory of reactive 
systems, there are several alternative approaches to the problem of verification: 
deductive methodology, evidence-based design, model approach, and runtime 
monitoring.

Deductive methodology implies that the requirements for the behavior of an 
already existing system (program) are formulated in the form of a theorem to be 
proved by means of mathematical logic. In fact, it involves formal verification of the 
informally obtained description of the algorithm. The most prominent representatives 
of deductive methods are: automated theorem proving, multiset rewriting, thread 
spaces, and belief logic (Bibel and Wolfgang, 2007). At first glance, these methods are 
preferable, since they do not require additional steps to build a model. However, they 
are at the same time more difficult to implement and impose serious restrictions on 
the range of tasks to be solved.

Evidence-based design, like deductive methods, uses declarative languages; 
however, its goal is to synthesize correct algorithms using well-formed formulas, 
with the help of which the requirements for the behavior of the system are specified. 
In classical works on the theory of reactive systems, such algorithms are called 
decision procedures (Kroening and Strichman, 2008). Examples of solutions in this 
area are the proof of the feasibility and the feasibility of the specification, as well as 
improved technologies based on the resolution method. However, the complexity of 
the existing methods for the synthesis of algorithms is such that one can hardly hope 
for their application in solving practical problems.

Another area of CA verification is the model approach. In its current form, it 
means that a model is built according to the specification of the system, which is then 
tested for satisfying the specified properties in each of its states. Although it sounds 
paradoxical, the model approaches are especially powerful precisely because they 
knowingly limit themselves, working not with a system, but with some final model. 
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This allows checking the desired property not only in the most probable situations 
(as, for example, simple testing does), but, in general, in all possible states. That is 
why model technologies are used in critical applications (for example, in Havelund 
(2001), a formal analysis of a spacecraft flight control program is described).

The main method of the model approach in automatic verification of the dynamic 
properties of programs (algorithms) is Model Checking (MC) (Clarke et al., 1999). 
The formation of the MC took place simultaneously with the development of temporal 
logics. In fact, it boiled down to the development of algorithms for checking temporal 
formulas on a logical model specified in the form of a Kripke structure, as well as 
assessing the complexity of these algorithms. In particular, it was established that 
the MC problem for temporal logic CTL was solvable in linear time with respect to the 
number of model states and the complexity of formulas. However, for TCTL logic, the 
MC complexity becomes PSPACE complete (Alur and Henzinger, 1993). 

There are several alternative approaches to solving the MC problem for various 
temporal logics. The main ones are the automaton-theoretic approach (Wardy and 
Wolper, 1994), using various modifications of the Büchi and Rabin tree automata, 
as well as symbolic computations (Khoussainov and Nerode, 2012), the μ-calculus 
(Grädel et al., 2007) based on Binary Decision Diagrams (BDDs) (Bryant, 1992). 
There are also examples of the application of temporal logics to verify the properties 
of Petri nets. For example, one of the extensions of the temporal logic TCTL proposed 
by W. Penchek (Penczek, 1990) is projected onto a model specified in the form of a 
temporary Merlin network.

Recently, verification tools based on MS have become widespread and have 
demonstrated the ability to detect rather subtle errors that occur in very unlikely 
situations. The most widespread tools are instrumental systems focused on the use 
of temporal logics, such as SMV (Carnegie Mellon University) (Gluch and Srinivasan, 
1998), VIS (University of California, Berkeley) (Brayton et al., 1996), FormalCheck 
(Hardin, 1996), Spin (Holzmann, 1997), Java PathFinder (Visser et al., 2004), 
Bandera (Hatcliff and Dwyer, 2001). The principle of operation of these systems 
consists in the selection of an automaton model corresponding to it (for example, 
a Buchi automaton) according to the program code, on which the temporal formula 
is checked. However, full verification of specifications using MS is associated with 
overcoming the state space explosion problem, and, therefore, it cannot be effective 
for real-time systems generating NP-complete problems.

Run-Time Monitoring (RTM) is a class of methods that check system properties 
directly during program execution. Unlike MS, these methods are online, i.e., 
statements about the behavior of a process are embedded directly into the program 
code. The most prominent representative of RTM systems is Temporal Rover 
(Drusinsky, 2000), which allows for real-time checking of the properties of programs 
written in Java, C, C ++, VHDL, Verilog and ADA. This is achieved by converting the 
program code with the temporal properties written in the form of comments into 
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the equivalent code that checks them. A limitation of Temporal Rover is that its state 
model cannot evaluate complex properties like “x () should never run after y ()”. 
Another prominent example of the RTM class is Java Path Explorer (JPaX) (Havelund 
and Rosu, 2001). It is able to test only linear time properties and, like Temporal Rover, 
does not allow evaluating complex properties.

Having considered the existing approaches to the problem of verification of the 
dynamic properties of CA, we can draw the following conclusions:

1. Deductive methodology, like evidence-based design, tries to formalize 
the system as a whole and then uses all the advantages of a formal description, 
instantly obtaining qualitative assessments of the processes under study. However, 
these approaches are extremely expensive, limited in application, and are not yet 
compatible with the method of AC specification we have chosen in the previous 
section using E-network implementation models.

2. The model approach is well developed, both theoretically and practically, 
as it supports the use of the mathematical apparatus of temporal logics for the 
specification of program properties and has many applications, but only at the stage 
of system design.

3. RTM is more adequate to the real process, and it is reduced simply to checking 
the feasibility of specified requirements for the current case of program execution 
without building an exhaustive state model. However, in this case, it is not possible 
to predict deviations in the behavior of the system due to the absence of its model.

Taking into account the conclusions made, let us formulate the problem of dynamic 
verification of CA as the creation of a method for assessing the dynamic properties of 
reactive programs, which would make it possible to apply the MC mechanism within 
the framework of the RTM methodology based on predictive models that implement 
the Receding Horizon Strategy. To solve the problem, it is necessary:

• to clarify the temporal properties of the E-network implementation model from 
the point of view of its application for dynamic verification of control systems;

• to develop a dialect of temporal logic focused on control processes (analysis of 
complex properties taking into account interval constraints);

• using the developed logic, to construct a predictive model that takes into account 
the specifics of the interaction of the CA with the external environment;

• to develop an algorithm for assessing CA properties in real time.

The main difference of the proposed verification method should be the use of 
the CA implementation model, which is, at the same time, its specification. On the 
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one hand, it saves time because no additional creation of automaton is required for 
the existing control program. On the other hand, it eliminates the inaccuracy of the 
model, which is always present, when it replaces the real system. In our case, we will 
have a complete coincidence of the model and the real process, the implementation 
of which is carried out according to its own model.

4.2. Temporal Model of Control E-networks

To develop and apply a formal methodology for the verification of control 
algorithms, they must be modeled by mathematical objects and the relationships 
between them. In our case, such a model is the description of the CA in the form of 
a control E-network. The E-network itself has already dynamics that characterize 
the development of the control process over time. However, to take into account the 
dynamic exertion of CEN, it is necessary to make a number of additional clarifications 
concerning three main points of its behavior:

• which time model is actually implemented using CEN;

• how the given time model is displayed on the network state;

• what is the calculation scheme provided by CEN.

4.2.1. Time Model of CEN

Time is the category around which all judgments about the dynamics of the 
behavior of the reactive system are formed.

In CEN time is entered as a function of transition delays. Although by definition 
it is considered a continuous value, in fact, in the network, time changes discretely. 
When performing CEN, the time is split into separate intervals, the duration of which 
does not have to be constant. In the future, each time interval will be called duration 
of the CEN execution cycle. This duration is measured by the CEN internal clock. We 
will assume that these clocks are started simultaneously with the start of the CA and 
are common for all network units, setting a single system time. Through execution 
cycles, the continuously changing real time, in which the control system operates, 
is coordinated with the discrete nature of the CEN operation, which is a model for 
implementing the CA.

Let us fix the moment of the beginning of the network execution cycle and 
assume that all subsequent actions related to its execution will relate precisely to the 
moment of the beginning of the execution cycle. It is clear that these actions take a 
certain amount of time. When the network finishes firing of all active transitions, and 
it comes to a static basic state, characterized by the fact that no transition can trigger 
any more in the situation that has arisen, the real time will change – it will no longer 
correspond to the fixed moment of the start of the execution cycle. The next cycle 
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will start execution exactly from this moment in time, which in the future we will 
consider the time of a new execution cycle. For CEN, the time will change abruptly, 
running sequentially through a set of values , where  
is the time of the  -th execution cycle when  for , .

From cycle to cycle, the situation can change for two reasons. First, during the 
execution cycle, the values of the input signals may change, which affect the calculation 
of the transition activation functions. As a result, some transitions can become active, 
triggered, or go into a delayed state. Second, the delay time on transitions already 
in the delay will change, which will decrease by the amount of the duration of the 
previous execution cycle. If the delay time of some transition when changing the cycle 
drops to zero, then this transition can be triggered in the current execution cycle. The 
condition for triggering the delayed transition in the current execution cycle will be 
the true value of the next predicate

,                                                                (4.7)

where  – the calculated value of the delay time at the transition when it is 
activated;

 – the value of start time of the delay at the transition;

 – the value of current time of the network execution cycle.

Let us assume that the delay time at the transition changes discretely and 
synchronously with the network execution cycles according to the rule:

 

                                                                                                                                 

               (4.8)

The change in the delay time at the transition from the moment of the beginning 
of its delay phase ( ) to triggering can be represented in the form of a 
diagram shown in Fig. 4.1.

Figure 4.1 demonstrates that, in fact, when the network is operating, a discrete 
approximation of a continuous linear change in the delay time at the transition is 
carried out.

If the condition  was satisfied for the last cycle within 
the transition delay phase, then we would have an exact discrete model of continuous 
time. However, in reality, it may turn out that the time difference between the last 
two network execution cycles will be greater than the residual delay time at the 
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transition, i.e., the condition  will be met. In this case, we 
will have a clearly expressed error of the discrete model, which is the value

,                                                          (4.9)

where  is the start time of the l-th cycle of network execution.

The shorter the duration of the real-time execution cycles, the smaller the model 
error. As for the actual duration of execution cycles, it is determined solely by the 
time spent on checking the readiness and firing active transitions. The duration of 
the execution cycles can also be affected by the additional inclusion of any other 
calculations, for example, checking the properties of the CA using the prediction 
model.

The described time model differs from the discrete time model, which assumes 
that all time instants are selected from the domain of integers, as well as from the 
fictitious clock model, in which time is measured by the number of steps taken by the 
system from one state to another. This model is closest in its meaning to the dense-
time model, which is characteristic of discrete-event systems.

How does this model of time relate to the functioning of CEN? This question is 
answered by the state model of CEN.

4.2.2. State Model of CEN

The state model of CEN must take time into account. To construct it, we use the 
well-known recurrent equation describing the dynamics of the Petri net (Murata, 
1989):

,                                                                          (4.10)

Fig. 4.1. Variation of transition delay time.
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where  – the  state (marking), which is achieved at the  -th control 
step;

 – the state (marking) at the  -th step;

 – control applied at the  -th step;

 – the matrix corresponding to the F set of arcs in the network.

Let us consider CEN, all transitions of which have zero latency. We will consider the 
execution of any network transition as a control step, as a result of which the marking 
of its places changes. If we restrict ourselves to one cycle of network operation, then 
it can include several sequentially executed steps as long as there are conditions 
for triggering transitions. This follows from the fact that a stepwise change in the 
marking of places can create conditions for the triggering of new transitions.

We will assume that the control vector , 
shows the possibility of triggering the transitions of the network at the  -th step: 
if , then the transition  at the  -th marking is triggered, if , then 
the triggering of the transition  does not occur. Each component of the vector  
corresponding to a certain transition of the network is a logical function that depends 
not only on the transition scheme, but also on its readiness and activation functions, 
which can be represented as the following product:

,                                                                        (4.11)

where  – a readiness function of transition  at the  -th step;

  – an activation function of transition  at the  -th step.

Let us introduce the transformation matrix  with dimension 
, where  is the number of network places and  is the number of network 

transitions. The elements of this matrix determine the effect that the triggering of 
transitions has on the state of the CA, indicating in which places the tokens are added 
and from which they are removed. Let (-1) mean that the token is removed from the 
place, (1) – the token is added, (0) – the marking of the place remains unchanged. 
As a result, each column of the matrix  displays how the network marking changes 
when the corresponding transition is triggered.

As an example, let us consider the CEN as shown in Fig. 4.2.

This fragment of the network includes three transitions and seven places. We will 
assume that the decision functions of both transitions of the type  have a value 
equal to 1. We will also assume that the activation functions of all transitions are 1. 
Under these conditions, all three network transitions will be sequentially triggered, 
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as a result of which the marking will change as shown in the graph reachability.

For a given CEN, we construct a transformation matrix and three control vectors 
corresponding to the given sequence of transition firing as shown in Fig. 4.3.  

By Eq. (4.10), it is easy to check that for given  and , the reachability graph is 
shown in Fig. 4.2.

Several transition firings can occur within a run loop until a token is reached where 
no transition is ready to fire under existing conditions. Moreover, the triggering of 
the same transitions can occur repeatedly under the influence of changing internal 
conditions of the network, which are recorded in the attributes of the tags. In addition, 
the values of decision procedures may change during the cycle. All this will lead to 
the modification of the matrix  from step to step. Therefore, the CEN equation of 
state for the run loop becomes:

,                                                               (4.12)

Fig. 4.2. Fragment of CEN and graph of its markings.

Fig. 4.3. Transformation matrix and three control vectors.
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where  – a transformation matrix at the  -th step of the  -th cycle;

 – a control vector at the  -th step of the  -th cycle;

– a number of execution steps during the  -th cycle.

Let us introduce the operation of component multiplication of vectors , which 
for two vectors  and  of the same dimension allows us to construct a new vector 

 whose components are calculated by the formula .

Then the vector  can be represented as follows:

,                                                                           (4.13)

where  – a vector of transition readiness functions;

 – a vector of transition activity functions.

Taking into account Eq. (4.13), Eq. (4.12) takes the form:

,                                                            (4.14)

where  – a vector of transition readiness functions at the   -th step of the   -th 
cycle;

 – a vector of transition activity functions at the -th step of the  -th 
cycle.

Since during one cycle the values of the input signals do not change, the vector  
will not change from step to step and can be written as . 

Then we finally get

.                                                            (4.15)

Now let us consider the case when the delay time is set for transitions or at least 
some of them. We will assume that the determination of the moment when the 
transition is triggered is performed according to Eq. (4.7). Moreover, the delay time 
at the transition changes discretely and synchronously with the network execution 
cycles according to rule (4.8). It is also clear that the transitions that are in the delay 
cannot in any way affect the change in the network marking, despite the fact that 
they have passed the active phase. To provide for this circumstance, we introduce an 
additional function, which we will define as follows:
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                                                                                                                              (4.16)

Then, taking into account the property of associativity of component multiplication 
of vectors, the CEN equation of state can finally be written in the following form:

,                                                (4.17)

where  – a delayed transition vector.

Comparing (4.12) and (4.17), we obtain the final expression for the control vector 
CEN at the  -th step of the  -th cycle:

.                                                             (4.18)

From Eq. (4.18) it follows that the value of the control vector is determined by the 
marking of places, the state of the input signal CEN and the state of the transition. In 
addition, this definition fully corresponds to the previously accepted representation 
of the network behavior in the form of PLMP, when the execution cycles determine 
the main states of CEN and the vector of delayed transitions.

For temporary Petri nets, the equation of state could be a sufficient basis for 
revealing the dynamic properties of the process by analyzing the reachability graph 
built on the set of net markings. However, in the case of CEN, the transformation 
matrix is not stationary during network execution. Due to the multiplicity of variants 
of the  and  types of transition firing schemes, the transformation matrix can 
vary from step to step, i.e., for CEN, no less important than changing the tokening is 
the very moment of the transition. In this regard, there is a need for a more detailed 
consideration of the process of network functioning from the point of view of the 
sequence of steps performed. This can be carried out on a computational model, 
which defines the operational semantics of CEN that ultimately determines the 
construction of a logical system for analyzing the dynamic properties of CA.

4.2.3. Computation Model of CEN

In contrast to the state model, which considers changing the markings of the network 
places, the transition firing sequences must be analyzed in the CEN computation 
model. Actions with data represented by the values of network variables and token 
attributes can only occur as a result of the transition transformation procedures. 
In this case, the conditions for performing network transitions may change. The 
resulting control action depends on how the calculations will be organized. Recall 
that in the general case, we consider distributed systems in which processes interact 
exclusively by passing messages. In our case, implementation models in the form of 
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CEN are used in the role of such descriptions, and the messages are tokens passed 
between the units. From a computational standpoint, this means that there can be 
no shared variables. Therefore, we will restrict ourselves to considering one process 
represented by an aggregate concretized by CEN. Other processes will implement 
similar computation models. 

First of all, we note that according to the time model we have adopted, all 
operational actions in the system occur instantly. The model time does not change 
during the execution of the transition transformation procedures. Only after all the 
actions planned at the time of the execution cycle have been completed, the model time 
changes by linking it to the current real-time value. This means that the calculations 
are synchronized with the moments when the CEN execution cycles change, i.e., each 
cycle corresponds to its own portion of calculations. In the same execution cycle, 
multiple transitions, which are active and have timed out, may fire. From the point of 
view of model time, all these operations should be considered parallelly executable 
actions related to one computation.

Usually, when considering parallel processes, two main types of operational 
semantics are used: interleaving and partial ordering. In interleaving semantics 
(Emerson, 1990), the parallel execution of several actions is replaced by a non-
deterministic choice of the order of their sequential execution. In partial order 
semantics (Peled and Pnualy, 1994), a partial order relation is established on the 
set of basic actions, reflecting the cause-and-effect relationships (CER) between 
events. The CER makes it possible to quite simply analyze many properties of 
computations associated with parallel execution of operations. In particular, it 
specifies the necessary conditions for ordering actions in alternating computations. 
For the specification of these properties, a new type of non-classical logics was even 
developed in due time – the logic of causality or causality logics (Alur et al., 1995).

The relationship between the semantics of interleaving and partial ordering 
for abstract parallel computation was studied by Bechet (1997), who formulated 
necessary and sufficient conditions under which the model of alternating 
computations was completely characterized by a single causal model, taking into 
account some restrictions imposed on causal relationships. This issue was studied 
separately for ordinary Petri nets. This result, however, cannot be directly extended 
to control E-networks, which, although they belong to the class of safe networks, 
have a number of functioning features that require additional rules. The difficulties 
that distinguish E-nets from ordinary Petri nets in terms of implementing parallelism 
are due to the use of type transitions and, when triggered, a check is performed for 
the absence of tokens in places (check for zero). In this case, an arbitrary (non-
deterministic) order of execution of active transitions that are in the chain of actions 
with a conditional transition can lead to the wrong choice of the variant of its 
operation and, consequently, to the wrong direction of development of the control 
process.
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Let us define a set of additional CER, which must correspond to the sequence of 
triggering of CEN transitions to ensure the deterministic execution of the parallel 
process implemented by the network. Let us denote  a countable set 
of elementary actions performed on CEN transitions during one execution cycle. In 
fact, any elementary action  will correspond to the transformation procedure 

 of some transition  of CEN. Let us introduce a marking function  that 
assigns some action  to each transition  in the network.

Let us introduce a number of definitions.

Definition 4.1. An oriented graph, each arc of which is tokened with one of the 
symbols of the set, is called a computational graph. The vertices of the graph are 
called states of computations. 

The fact that a transition marked by an action  leads from a  graph state  to a 
state  will be denoted by . We will assume that the activation functions are 
true for all CEN transitions, and the delay time is equal to zero. Under these conditions, 
we split the readiness function  of a transition  marked with an action  into 
two components: a precondition , which is a predicate that is true for an admissible 
marking of the transition input places, and a postcondition , which is a predicate 
that is true for an admissible marking of the transition output places. Recall that the 
admissible marking satisfies the transition firing scheme. In this case, the action  
connecting the states  and  can be performed under the condition  and 

. We assign predicates  and  to the states of the computational graph. In 
fact, these predicates express the generalized state of transition places. The presence 
of a path between the states  and  will be denoted by , and for each path 

 connecting a pair of states  and ,  and we 
will use  to denote  the set of actions  that token its arcs.

Definition	 4.2. Any path in the graph  outgoing from the initial state  is 
called computation, and the sequence of actions that tokens the transitions of this 
computation is called a trace. 

Definition	4.3.	A computational graph is called deterministic if no two different 
computations have identical traces. 

We note right away that each computational graph can be transformed into a 
computation tree that generates the same set of traces. 

We also denote as  the set of all computations of the graph  that end in a 
state , and as  – the set of all computations starting in the state .

Definition	 4.4. A prefix  of the state  is a set of actions 
immediately preceding .
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Definition	4.5. The suffix  of the state  is the set of actions 
immediately following . 

The set of traces of all possible computations generated by graph  will be denoted 
as . This set will define the functioning of CEN in interleaving semantics. For us, 
it will be important that the implemented sequence of actions should unambiguously 
determine the achieved state, which is dictated by the principle of CEN determinism.

Definition	 4.6. Any binary relation  possessing the properties of 
antireflexivity and transitivity will be called the relation of the CER on the set of 
actions  of the marked CEN.

An action  is dependent on the action  if . Let us denote 
 a set of actions on which a given action  depends. 

A sequence of actions, or trace,  obeys  if all actions of the 
sequence are pairwise different and for any action  the condition is satisfied 

, i.e., all actions of the set , on which  depends, precede 
it in this sequence. Let us denote by using  a sequence of actions that obeys the 
CER . If the system of parallel processes is compared with the family of relations 
of the CER , then the functioning of CEN in the semantics of partial order will be 
characterized by a set . 

The functional characteristics of the computational graph and the family of 
CER relations are interconnected. We will assume that the CER approximates the 
computational graph if . For the correct disclosure of the parallelism 
contained in CEN, it is necessary that the computational graph be consistent with the 
family of relations of the CER, i.e.,  should be done. It is obvious that the 
union and intersection of any set of approximating CER  is also an approximating 
CER. 

Let us denote  the maximum ratio that approximates the 
computational graph  and  formulate in the form of axioms the laws of operation of 
CEN, which set restrictions on the structure of the computational graph.

Axiom	of	uniqueness	(A1). Each elementary action  occurs no more than once on 
any trace . 

According to the axiom of uniqueness, repeated execution of the same transition 
transformation procedure during some computation corresponds to two different 
actions. This condition eliminates the possibility of loops occurring and can be 
provided by renaming actions if you need to execute a certain transition multiple 
times in one loop. It should be borne in mind that actions that may refer to the 
same transition must differ in the values of the parameters of the transformation 
procedure. 



97

Axiom	of	commutativity	(A2). If the actions  and  are not connected by a relation  
that is a transitive closure of the incidence relation of the network , 
then the result of the calculation does not depend on the order of their sequential 
execution.

This axiom means that no action blocks another if they are not in some ordering 
relation. This situation applies to all tagged CEN transitions. 

Follow-up	axiom	(A3).	For any triple of states , such that both  and  
 are allowed, the actions  or  can be performed only after all other actions 

belonging to  and  have been performed. The succession axiom defines the 
condition for the execution of transitions of type “X”, which consists in the fact that 
before their execution all traces of actions that belong to the suffixes of the transition 
post-conditions must be checked. 

Precedence	axiom	(A4).	For any triple of states , such that both  and 
 are allowed, actions can be performed only after all other actions belonging 

to  and  have been performed.

This axiom defines a condition for the execution of transitions of type “Y”, which 
consists in the fact that before their execution, all traces of actions that belong to the 
prefixes of the transition preconditions must be checked. 

Priority	axiom	(A5).	For any states  and  that satisfy axiom A3 or A4, there is an 
order relation  that establishes the sequence of their execution. 

If axioms A1 and A2 define the general properties of the computational graph, 
then axioms A3–A5 are the CER. Moreover, each of these relations represents one of 
the variants of causality on the set of CEN actions.

Theorem	4.1. If the graph  of computations satisfies axioms A1–A5, then it is 
deterministic. 

Evidence.	 Let us suppose that some state  has been reached as a result of 
computation. It means that there is some trace  that leads from 
the initial state  to . Let us show that any other computation leading to this state 
has an equivalent trace. Let this other computation have a trace  
that differs in the sequence of the first action. If this trace does not contain actions 
on transitions of types “X” or “Y”, then, following axiom A2, actions  and  can 
be arbitrarily rearranged in a sequence of actions. As a result, we get . By 
induction, similar transformations can be performed for other actions. If the traces  
and  contain transitions of types “X” or “Y”, then according to axioms A3 and A4, all 
actions corresponding to these transitions will be located at the end of the sequences 
of traces. We will divide the trace  into two non-intersecting traces  and  so that 

 will contain all transitions except types “X” and “Y”, and  – all transition types “X” 
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and “Y”. For  the above-described permutation of actions can be applied. As for , it 
will be completely equivalent to the trace , since the mutual arrangement of actions 
inherent in the transitions types “X” and “Y” is uniquely determined by axiom A5.

Corollary 4.1. The sequence of CEN actions, built for the execution cycle 
in accordance with axioms A1–A5, uniquely determines the achieved state of 
computation, the characteristic of which coincides with the set of actions of this 
sequence. The introduced axioms A1–A5 form the basis for constructing the dynamic 
synchronization algorithm of CEN, which is described below. This algorithm ensures 
the deterministic operation of the network according to the PLMP scheme.

4.2.4.  Algorithm of CEN Dynamic Synchronization

We assume that  is a finite set of CEN transitions. Let us conditionally divide this 
set into two subsets:

1)  – a set of transitions with decisive places, which we will 
call a set of conditional transitions; 

2)   – a set, which we will call a set of simple transitions, 
. 

Since the PLMP corresponding to the operation of CEN is determined by the 
sequence of transitions for which the delay time has expired, a subset of active 
transitions can be selected from the sets  and . All transitions that are not in 
a delayed state at the moment  the marking is changed are classified as active 
transitions. In contrast, transitions that are delayed, i.e., those for which , we 
will call passive. At the moment  they do not affect the development of the process 
in any way and are not taken into account. Thus, for each moment in time at which 
the network marking is changed, subsets of active conditional and simple transitions 
can be distinguished, which we will denote  and , respectively. In the 
course of the model operation, the composition of the sets  and  will change. In 
this algorithm, we will use two auxiliary lists: the list of simple transitions, where 
active simple transitions from the set  are entered, and the list of conditional 
transitions, where active conditional transitions from the set  are entered. Items 
are listed in the order in which they are received, i.e., the first items on the list are the 
items that arrived first. When you retrieve the first item from the list, the next item 
becomes the first item in the list. When the lists are cleaned, all the elements in them 
are deleted. We will assume that the algorithm starts to work at the moment  
after the movements of the tokens in the transitions, the delay time of which expired 
at the moment , are performed.

The synchronization algorithm in each cycle of CEN execution includes the 
following steps. 
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1. Start. Selecting a set of active transitions. From the set of network transitions , 
determine the subset of active transitions  that are not in delay at 
a given moment .

2. Formation of the list of conditional jumps. From the set , select a subset 
of conditional transitions , the elements of which are added to the list of 
conditional transitions in the order they are listed.

3. Formation of a list of simple transitions. From the set , select a subset of 
active simple transitions , the elements of which are added to the list of 
simple transitions.

4. Checking the condition “The list of simple transitions is empty”. If this condition 
is met, then go to Step 10.

5. Checking the readiness for firing of the first transition in the list of simple 
transitions. Analyze the marking of the transition places and the value of the 
activation function. If they do not meet the conditions for firing the transition, 
then go to Step 8. 

6. Determination of the delay time of the first transition in the list of simple 
transitions. The transition delay time is calculated. If the delay time is zero, 
then go to Step 9. 

7. Correction of the composition of many active transitions. Transfer the first 
transition in the list of simple transitions to a delay and exclude it from the set 
of active transitions .

8. Correction of the list of simple transitions. Exclude the first transition in the list 
of simple transition from the list . Go to Step 4. 

9. Firing the transition first in the list of simple transitions. Change the marking of 
the transition places in accordance with the transition firing rules. Perform the 
transition transformation procedure. Go to Step 3. 

10. Checking the condition “The list of conditional jumps is empty”. If this 
condition is met, then go to Step 14. 

11. Checking the readiness to fire the first transition in the list of conditional 
transitions. Analyze the tokening of the entry and exit places of the transition. 
Determine the state of the decision place by calculating the value of the 
corresponding decision procedure. If the transition firing condition is not met, 
then go to Step 13. 

12. Initiating the execution of the first branch in the conditional branch list. If the 
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calculated transition delay time is equal to zero, then change the marking of its 
places in accordance with the rules for firing transitions of this type. Perform 
the transition transformation procedure. If the transition delay time is not 
zero, then convert the transition to a delay. 

13. Correction of the list of conditional branches. Exclude the first transition in 
the list of conditional transition from the list . Go to Step 3. 

14. Stop the algorithm. With the network marking created at the moment, further 
triggering of its transitions is impossible. 

Taking into account the above algorithm, we will make two remarks about the 
structure of CEN. First, among the transitions with zero delay included in the chain of 
structural links with conditional transitions, there may be transitions that also belong 
to one of the types “X” or “Y”. In this case, for the synchronization algorithm to work 
correctly, the sequence of triggering conditional transitions must be additionally 
specified. This can be done without introducing complicated specifications of jump 
priorities, by providing at the step of compiling a list of conditional jumps to include 
them in the list in accordance with the numbering that must be set when describing 
the network. If conditional transitions are separated by transitions with a non-zero 
delay so that their inclusion in one group event is excluded, this requirement may not 
be taken into account. 

Second, the operation of the algorithm implies compliance with the network 
security condition (there can be no more than one token in the place). This was made 
possible by the introduction of simple place queue transitions, which replaced the 
queue places previously used in practice.

4.3. Verification of Control Algorithm Properties Using Predictive Models

Models of time, states and computations constitute the basis on which the theory 
of formal verification of the dynamic properties of CA is built. Based on these models, 
it is possible to justify the used logical system. This clause describes a new control-
oriented CTL logic extension that is used in conjunction with the developed predictive 
models that implement the Receding Horizon Strategy.

4.3.1. DCTL Logic: Syntax and Semantics

While LTL and CTL contain expressions about the relationship of pure Boolean 
assertions, in CA it is required to consider logical assertions taking into account 
the time sequence and duration of execution, as well as the simultaneous control 
of parameter threshold values. For example, a statement of the form “Within one 
minute from the moment of event A, the value of the variable X should not change by 
more than 5 %” already needs additional definitions, even in the case of TCTL logic. 
Such a requirement combines the time dependence between the sequence of events 
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in the system with an assertion based on the temporal properties of the variable X. 
Such a need to take into account the duration of retention of some assertion is typical 
of the robustness property when it is required to evaluate the characteristics of the 
system in the dynamics of their change. 

Another example might be related to the following statement: “Within any 30 
second observation cycle, the duration of event B should not exceed 4 seconds”. This 
statement combines the requirements for two interconnected intervals, which also 
cannot be described using the known temporal real-time logics. Our goal will be to 
build an extension of the TCTL temporal logic by giving it the ability to set interval 
constraints for formulas, similar to how it is done, for example, in Duration Calculus. 

Syntax	of	Duration	Computation	Tree	Logic	(DCTL)	

The DCTL alphabet consists of:

• an infinite countable set of propositional variables  that denote 
predicates and two logical constants true and false; 

• signs of logical connectives of the propositional calculus ∧,	∨,	¬,	→; 

• signs of binary relations ;

• quantifiers of generality A (“everywhere”) and existence E (“eventually”);

• temporal operators: F (“sometimes”), G (“always”), X (“in the next cycle”), U 
(“until”);

• separators <,> and <;>;

• brackets (), [], (], [);

• interval expressions of the form , constructed using constants , 
brackets and signs of binary relations .

An elementary DCTL formula is any propositional variable or the constants true 
and false. Other DCTL formulas are defined by induction:

.             (4.19)

Temporal operators G (“always”) and F (“sometimes”) are defined in a traditional 
way for temporal logics by Eqs. (4.2) and (4.3).

In DCTL, interval expressions that limit the time domain under consideration will 
be applied not only to temporal operators  but also to propositional variables. 
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In the case of setting a restriction on the scope of the temporal operator, the absolute 
system time is always assumed, which is counted from the moment the control 
program starts. 

For example, the expression  means that there are always up to 50 units 
of time, i.e., at , the property  must be fulfilled. An interval expression 
can also be defined as a closed or open interval. For example,  means that 
sometimes in the interval  a condition  must be met.

Unlike temporal operators, the application of interval expressions to propositional 
variables always implies a relative timing and denotes the duration of the interval, 
during which a given variable continuously retains its true value. For example,  
means that the time interval is considered when the propositional variable  remains 
true for more than 5 time units. Note that temporal operators and variables without 
interval expressions are treated as constrained operators. 

Semantics	of	DCTL

Let us introduce a logical model corresponding to the temporal structure of CEN. 

Statement	4.1. Evaluation of the CEN properties should be carried out in situations 
corresponding to the basic states of the network. 

The confirmation of this statement is based on three fundamental principles that 
define three options for accounting for the values of CEN variables and tag attributes. 
The first of them is related to taking into account changes in the values of the input 

 

Fig. 4.3. Situation tree structure.
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signals. Due to the principle of periodicity or frequency, the values of the input signals 
are fixed at the start of the cycle and do not change during the entire execution cycle. 

The second option is related to the values of the output signals. Due to the 
principle of direct action, all data operations in CEN can be performed only on 
network transitions when calling transformation functions. It means that a change in 
the output signals in the future cannot occur otherwise than as a result of a change in 
marking, the final formation of which ends at the end of the execution cycle. 

The third option is due to the dynamics of changes in the values of the attributes 
of tokens. By virtue of the principle of determinism, for any particular set of values 
of the input signals, a computation trace will always be executed, leading to a single 
final marking corresponding to the basic state of the network.

Let us consider a separate loop of network execution. We will call  -state a pair 
, where  is the situation corresponding to the basic state of the 

network, and  is the vector of additional coordinates that fixes the delay time on 
network transitions in the situation . After the expiration of the delay time at any of 
the transitions marked in , regardless of the values of the input signals, a situation 
change will occur, which will lead to a new  -state .

The current situation can be inherited not by a particular situation, but by a 
whole variety of situations. This may be due to non-determinism of the control object 
behavior. In addition, the development of the situation may be affected by the receipt 
of tokens from related aggregates. Therefore, in the general case, for each specific 
situation , a whole set of subsequent situations can be determined, which we denote 

. Each situation  can also have similar 
evolution. As a result, a tree of situations will be formed. This fact can be illustrated 
using the situation tree structure shown in Fig. 4.4.

For a formal definition of a situation tree, we introduce two definitions. 

Definition	4.7. Let us call  -way an infinite sequence of situations and times  
of the form  such that . 

Further we will consider the  -path as a mapping  that satisfies the 
condition . Then  is the path from  in the moment time. 

Definition	4.8. We will call a prefix of , which we denote , a subset of  defining 
mapping from a domain  to . 

Definition	4.9.	Let us introduce the operation of concatenation of path segments, 
which we define as follows: 
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         .            (4.20)

Definition 4.10. Let us call  -tree in CEN the set of  -paths starting at . If 
 then  is the  -tree starting at .

Since  is a set of  -paths, then . 

We will also assume that the relation  has the property of closure:

.                         (4.21)

From (4.21) it follows that the behavior of the network does not depend on the 
past and depends only on the current situation. This fully complies with the CEN 
principle of no aftereffect. The property of closure asserts that the relation of total 
attainability is established on the tree of situations. 

Statement	4.2.	CEN generates Kripke’s temporal structure

,                                                                                                 (4.22)

where  – a set of propositional variables that are  elementary statements on a 
set of network variables  and a set of values of attributes of tokens  
located in places;

 – a set of situations corresponding to the main states of the network ; 

 – a tree of situations with the property of closure;

 – an initial situation, ; 

 – an interpretation function that sets the values of propositional 
variables for each situation corresponding to the CEN basic state.

We will confirm this statement by establishing correspondence between the 
components of CEN and the elements of the Kripke structure given by Eq. (4.22). 
We will assume that predicates constructed from network variables, attributes of 
tokens, functional symbols, signs of arithmetic operations and binary relations 

, as well as brackets and constants correspond to propositional variables. 
For example, a variable  can mean a predicate , where  is a network 
variable indicating the amount of deviation. A set of interpretations  is determined 
on a set of situations corresponding to the main states of the network. This means 
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that the evaluation of the values of the propositional variables will be performed 
at the end of each execution cycle, and we are only interested in the final markings 
of each execution cycle. Intermediate markings that can be achieved within the run 
cycle will not be counted. The relation  means that every situation  has at 
least one follower . The interpretation function  is determined for each situation 
by calculating predicates corresponding to propositional variables. 

Based on these calculations, the values of subformulas and formulas in general 
are determined as it is shown below.

For a structure , a state  and a formula , the satisfiability relation  
is defined as follows:

.

“In the state , the predicate  is true”;

“The negation of a false predicate is true”;

“If the formula  is not satisfied or the formula  is fulfilled, it means that the 
formula  follows the formula ”;

“The predicate is true during the time  on the state , if there is a prefix  with 
the duration  on which the predicate  is true”;

“The formula is true if on the time interval in the s-tree there is a path on which 
the formula is executed in the following situation”;

“The formula is true if on the time interval  in the -tree on all paths the formula 
 is executed in the following  situation”;

“The formula is true if in the time interval  in the -tree there is a path along 
which the formula  is executed until the formula  becomes true”;
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“The formula  is true if the formula  is executed on all paths in the -tree on 
all paths until the formula  becomes true”;

“The formula is true if there is a path in the -tree in the time interval  on which 
the formula  is ever executed”;

“The formula is true if there is a path in the -tree in the time interval  on which 
the formula  is always executed”;

“The formula  is true if the formula is ever fulfilled on the time interval  in the 

Table 3.2 Determination of CA Properties by DCTL Formulas
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 -tree on all paths”;

“The formula  is true if the formula is always fulfilled on the time interval  in 
the -tree on all paths”. 

Let us note a number of equivalences inherent in DCTL formulas: 

• ;

• ;

• ;

• .

In addition to using interval constraints for predicates in DCTL, compared to TCTL, 
the operator X (“next”) is returned, which is determined after the current situation. 
It is convenient for specifying properties that take into account the dynamics of 
changes in a certain parameter at each execution cycle. 

Examples of the description of CA properties using DCTL formulas are given in 
Table 4.2. 

4.3.2. Predictive Model

The interpretation of the CEN behavior in the form of PLMP allows determining 
the Kripke structure to substantiate the semantics of the temporal logic used, as 
well as provides the construction of a predictive model for analyzing the dynamic 
properties of the control process in the future. The forecast should consist in 
establishing a correspondence between the state of the CA and the state of the CO. 
This correspondence will be determined using the DCTL formula. We will assume 
that the state of the CA corresponds to the state of the CO if the value of the predicate 
written in the form of the DCTL formula is true. In this case, the situation arising in 
the CCS will be considered acceptable. Otherwise, an exception must be recorded 
that initiates changes to the CO.

Definition	4.10. The predictive model (PM) is called the six

,                                                                                           (4.23)

where CEN – a given formal definition of CA in the form of a control E-network; 

 – a set of DCTL logic formulas that specify the dynamic properties of the CA;
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 – mapping of the output signals of the network to its inputs; 

 – mapping of discrete inputs of the network at many points in time; 

 – mapping that sets the laws of their change in time for analog input 
signals;

 – the initial situation from which the prediction is based.

Let us consider each of the PM components in more detail.

CEN, which is the CA model, specifies all possible options for its implementation. 
Thus, CEN provides a simulation model of the control process with which 
computational experiments can be carried out. No additional steps are required to 
simulate CA. It is enough only to trace the movement of CEN in the space of ground 
states determined by the PLMP. 

The initial situation  for the prediction is determined by the marking of the 
network places and the set values of the input signals. Further, the process can 
develop from one basic state of the network to another. Moments of changing the 
main states will be determined by the specified transition delay functions. Following 
the PLMP scheme, the future development of the control process, up to the discrete 
model error, can be represented as a set of pairs  
where  is a set of transitions delayed in the -th basic state of the network, and 

 is the vector of additional 
coordinates corresponding to this ground state. Then, the predicted time of the main 
state change will be calculated by the formula

,                                                                                            (4.24)

where  is the time to reach the -th basic state of the network. 

Taking into account the time delays at network transitions by ranking them within 
the framework of PLMP is only part of the simulated network dynamics determined 
by its internal conditions. Another part of this process is associated with a change 
in operating conditions external to the CEN – a change in the input signals of the 
network. To simulate external conditions, we will use the CO model, which we will 
build on the basis of the given relations .

This model should provide for the fixation of two variants of events related to the 
operation of the CO. The first option concerns the generation of discrete input signals, 
the second – the calculation of analog (continuous) values. Let us first consider a 
variant of discrete signals. We will assume that in a general case, each CEN output 

 can be assigned not one input signal, but a whole set of discrete input signals 
, such that . It may be . 
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To simulate each -th element of the set , we will use the unit function

     

.                                                         (4.25)

In the case when an inverse change of the input value is required, the operator is 
used

.                                                                            (4.26)

The value  is defined by mapping  as a function . The prediction for 
analog (continuous) inputs is based on the values specified by the mapping  of the 
laws of change corresponding to these inputs. Continuous input signal models can 
be represented by difference or differential equations. The state of such models 
changes continuously over time. In a general case, the analyzed -th continuous input 
corresponds to the equation of the form

,                                                                                                                   (4.27)

where . 

When there is a linear dependence of the input quantity on state variables, a 
difference equation is as follows:

,                                                                     (4.28)

where  is the predictive time point; 

 – current moment in time;

 – the value of the entry   at the time ; 

 – a variable denoting the rate of change of the -th input signal (can be specified 
as a function of other variables in the model).

An alternative way of   determination is a definition of the derivative of a state 
variable. In this case, the derivative is integrated to obtain values  at each step:

,                                                                                   (4.29)

where , which corresponds to the differential equation:
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.                                                                                                             (4.30)

Usually, in simulation systems the values of state variables are calculated as a result 
of solving the corresponding equations at a separate point in time corresponding to 
the simulation step, with the obtained values being saved for later use. For a new 
point in time, information about the values of the state variables obtained in the 
previous step is used. The required variable is calculated step by step, which is then 
displayed as a simulation result. 

In our case, when analyzing the input signals, it is advisable to solve the inverse 
problem and determine the moment in time when the state variable  reaches a 
given threshold value. Then you can avoid additional performance losses associated 
with changing the model time with a small constant step, which is critical for real-
time systems. For discrete signals, this will be a simple calculation of function .

In the case of analog signals, there are two options: 

1. Solution of the difference equation (4.28) with respect to time

.                                                                 (4.31)

2. Solution of Eq. (3.30). 

From (3.30) we obtain

.                                                                                                         (4.32)

After integrating both sides of Eq. (4.32), we will have 

.                                                                                 (4.33)

The integration constant  must be recalculated after each CEN cycle based on 
the measured value of the input . The first measured value should be taken as the 
initial condition for the first CEN execution cycle at .

We will define the dynamics of the states of the CO as the PLMP proceeding in 
parallel with the process of CEN functioning. Let us denote this process  and 
give its formal definition for :

                                                                                               (4.34)

where  is the set of input signals generated by the output ;

 – a vector of additional coordinates (delay times for inputs );
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 – the number of inputs corresponding to the output .

As with the CEN process, the rate of change of   is minus one, i.e.,

.                                                                                                                   (4.35)

The union of the sets  and  forms a generalized PLMP 
describing the dynamics of the control process in the space of situations. The 
predicted time for changing situations will be calculated by the formula

,                                                                                     (4.36)

where  is the time of the -th step of the prediction.

Expression (4.36) means that the advance of time at each step of the forecast is 
carried out to the nearest event in the models of the CEN and CO processes. After 
each such step, the time values of the additional coordinates are recalculated. It 
should be noted that in reality the moments of setting the input signals, calculated 
by the predictive model, may not exactly coincide with the beginning of the next real 
execution cycle. This fact will determine the accuracy of the forecast, which is caused 
by discretization of the continuous time model. 

The set of formulas  defines the scope of the predictive definition. Based on the 
preliminary syntactic analysis of these formulas, sets of output and input signals 
are formed, which must be controlled during the forecast. In addition, information 
is extracted from these formulas regarding the threshold values of the input analog 
signals and the duration of the time intervals to be monitored. The mappings  
are set in the form of correspondence tables. The mechanism for verifying the 
dynamic properties of CA, given in the form of DCTL formulas, is discussed in detail 
in the next subsection.

4.3.3. Dynamic Model Checking of DCTL Formulas on CEN

Following the verification task, we will use the implementation model presented 
in the form of CEN to check the properties of the CA. 

If we do not consider the development of the control process in the future but 
restrict ourselves only to monitoring the given specifications in real time, the whole 
solution may consist in calculating the values of the corresponding DCTL formulas 
for the current situation. In this case, the verification task is reduced to checking the 
formulas on the state model determined by the change of markings at a time. 

This approach, although it allows for control over the implementation of CA, 
is devoid of any predictive capability. To provide this opportunity, we will use 
the Receding Horizon Strategy, which we will project onto the predictive model 
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described above. We will assume that the predictive time horizon is determined by 
the PLMP obtained as a result of combining the list of events associated with the 
planned triggering of delayed transitions of CEN and events occurring in the CO. In 
this case, the total distance of the horizon at each cycle of the network execution will 
be determined as follows:

,                                                                                                          (4.37)

where  – the execution cycle number; 

 -th delay vector component CEN of CA in the -th cycle;

 -th delay vector component of the input signals in the -th cycle.

From Eq. (4.37) it follows that the predictive interval, determined by the horizon 
remoteness, can change from cycle to cycle, which actually leads to a floating 
predictive horizon as shown in Fig. 4.4.

Within the horizon set at each CEN execution cycle, it is possible to compute 
formula values on states that include temporal operators, including those with interval 
expressions. In this case, one counter is sufficient, which counts the real operating 
time of the CA. However, to control the intervals specified for the propositional 
variables, it is necessary to provide additional counters that would count the time 
the predicate, indicated by the propositional variable, remains in the true state. 

Let us denote  to be the set of propositional variables with interval 
expressions that are present in DCTL formulas for a particular CEN. Each variable 

 will be assigned a time counter , which starts when the 
variable becomes true and resets to zero when the variable becomes false. When 
checking formulas on states that contain propositional variables with interval 
expressions, the values of the counters  must be checked to see if they satisfy 
the given constraints.

Fig. 4.4. Predictive model implementation diagram.
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More complex than checking formulas on states is checking formulas on trees. 
The set of situations that inherit the current situation  will be formed on the set 
of possible options for marking input places and values of input signals. Among 
the latter, let us single out those signals that are not considered in the predictive 
model. Let us designate them as . These will be signals whose values cannot be 
tracked by CEN, since they are determined by non-deterministic external conditions 
of the control process. Such signals can arise, for example, as a result of the actions 
of an operator, dispatcher, etc. We will assume that all these signals are discrete. The 
influence of analog signals on the development of the control process can be set 
by giving them the status of discrete signals. For input places , we will consider 
only the fact of marking these places without taking into account the values of 
the parameters, assuming that the parameters do not affect the calculation of the 
decision procedures for conditional transitions. 

Thus, all the many options that can develop in any situation will be equal 
. Taking into account the remoteness of the predictive horizon in the -th 

cycle of execution, the total number of options will be . 

The input signals that are included in the predictive model (denote them ) are taken 
into account when calculating the DCTL formulas according to their values, which are 
set at the time of verification. In this case, the analog signals are recalculated for each 
execution cycle according to the corresponding equations, and we can assume that 
their influence exactly corresponds to the condition of the absence of aftereffect. This 
may not be the case for discrete signals. 

For example, let us consider a case where the delay  until the input signal is set 
to the desired value is longer than the duration of a cycle. Such a case is shown in Fig. 
4.6.

If the output signal for setting the input  to the “1” state arrived at the moment 
of time , then the corresponding reaction of the CO should be detected after a 
time interval equal to . At each cycle, the predictive model should take into account 

Fig. 4.6. Timing diagram of the prediction for a discrete signal.
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the fact of  signal generation, but not after interval , but after an interval equal to

,                                                                                                 (4.38)

where – the number of the cycles following the initialization cycle of the output 
signal.

Let us look at the procedure for calculating the value of the DCTL formula for a 
particular situation. If we assume that the current situation satisfies the specified 
interval constraints imposed on the operators, then the formula under the temporal 
quantifier is subject to verification. To calculate it, we will use BDDs; however, 
each binary propositional variable will be compared with predicates given on the 
variables CEN. This correspondence can be displayed in a separate table. As example, 
for formula  see Table 4.3.

A decision diagram based on Table 4.3 can be displayed in the form shown in Fig. 
4.7.

Table 4.3 Propositional Variables 

Fig. 4.7. Binary decision diagram.
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Following this diagram, the DCTL formula is calculated in the following order:

• first, all formulas of depth 0 are calculated:  – predicates denoted by 
propositional variables;

• then subformulas of depth 1 –   and  are calculated;

• then the sub-formula of depth 2 –  is calculated;

• then the sub-formula of depth 3 –  is calculated;

• and finally the formula of depth 4 is calculated – the original formula .

Since the formula  contains a temporal operator, its calculation should be 
postponed until the next cycle. This also entails a delay in the calculation of the 
initial formula, which, due to the presence of the quantifier, should generally take 
the final value only after the results of calculations on all paths of the situation tree 
during prediction. When calculating each of the propositional variables for which 
interval constraints are indicated, the conditions for their fulfillment according to the 
readings of the counters must be checked.

The preliminary clarifications made regarding the specifics of calculations during 
the implementation of the proposed predictive method allow us to go directly to the 
description of the algorithm for checking DCTL formulas. This algorithm includes 
two blocks of basic operations: an initialization block and a computation block. A 
detailed description of the dynamic model checking algorithm is given below.

The initialization block is executed before the start of the CA and includes the 
following steps:

1. Plotting BDD for each given DCTL formula. For each formula  
define a set of formulas  of depth 0 (propositional variables)  a set of 
formulas of depth 1 , etc. We will assume that the formula , where  
is the set of  -depth formulas included in the formula .

2. Allocation of a subset of input signals controlled by the predictive model. Using the 
predictive model, select a subset of the input variables 

3. Calculation of threshold values for input signals. For each analog input signal 
 present in the table of propositional variables, a threshold value  is 

assigned equal to the constant written in the predicate corresponding to this signal.

4. Creation of CEN model of CO. Initialize the creation of a CEN of CO by setting 
the number of X-type transition output places and Y-type transition input places to 

. In the transition-queue T1, using the token generator,  tokens are placed 
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that simulate the input signals. For all transitions of type T, the value of the activation 
function  is set.

5. Allocation of a subset of input signals that form computation trees  
This set, together with a set of input places , will determine the options for the 
development of situations when constructing situation trees, i.e., form a set 

The block of calculations is executed in each cycle of the CA execution and includes 
the following steps:

1. Fix the system execution cycle time. Store the system time of the current run 
cycle in a variable TIME.

2. Form a set of verifiable formulas. Create set of formulas .

3. Choose a postponed situation. Extract place markings  from a variety of 
pending situations . If , then go to item 12.

4. Build an s-tree for the current situation. Form a set of binary vectors 
 of lengths  that differ in at least one 

component.

5. Perform the cycle of testing – s-paths. If , then select an element, remove 
an element from:, otherwise go to Step 3.

6. Check the compliance of the current system time with the interval constraints 
specified for propositional variables. If , where –  the value of the 
time counter for variable ;  – an interval expression that specifies the domain of 
definition of a propositional variable, then go to Step 5.

7. Check whether the current system time matches the interval limits set for 
temporal operators. If , where  –  an interval expression 
specifying the domain of definition of the temporal operator, then go to Step 5.

8. Activate the CEN model of CO. For CEN transitions  of the CO model 
that are not in delay, the delay time is assigned according to the following rule:

• for discrete signals – ;

• for analog signals – , where  is calculated 
according to Eqs. (4.31) and (4.33).

For all transitions of type T, the value of the activation function is set in .

9. Calculate the values of formulas. For each formula , pass through its BDD 
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and sequentially calculate the values of all subformulas and the formula as a whole, 
starting with subformulas of depth 0. In this case:

• if any subformula of the formula  contains a temporal operator  and its value 
is equal to “false”, then replace this subformula with “false”;

• if any subformula of the formula  contains a temporal operator  and its value 
is “true”, then replace this subformula with “true”;

• if any subformula of a formula  contains a temporal operator , then remember 
the values of all subformulas, calculate the value of the formula taking into 
account the values of the previous step;

• if any subformula of the formula  contains a temporal operator , then save all 
the values of the formula  obtained at each step of prediction, calculate the 
value of the subformula when the value of the formula  is “true”, and replace 
the subformula with the obtained value;

• if none of the subformulas of the formula  contains temporal operators, then 
assign the calculated value  to the formula, otherwise assign the 
formula a value calculated without taking into account the temporal operators;

• if all subformulas of the formula  containing the quantifier  have received the 
value “true”, then assign this value to the formula, ;

• if any subformula of the formula containing the quantifier  received the value 
“false”, then assign this value to the formula, ;

10. If , then go to item 12.

11. Pass through the forecast horizon. If , there are no delayed 
transitions to either CEN of CA or CEN of CO, then go to Step 5, otherwise

• put the current marking  in a lot of pending situations ;

• calculate the new value of the model time according to the formula

,

where  –  the delay time of the -th transition to the CEN of CA;

 – the delay time of the  -th transition to the CEN of CO;

• make calculations for CEN of CA and CEN of CO;
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• go to item 6.

12. Complete the algorithm. Assign the calculated values to all formulas.

4.4. Summary

The control algorithms specified by the control E-networks can be considered 
reactive systems for which there are known classifications of dynamic properties 
based on safety and survivability requirements. The most appropriate means of 
specifying these properties are temporal logics, in particular, Timed Computation 
Tree Logic (TCTL), which, nevertheless, does not allow taking into account interval 
dependencies between events occurring in the control system.

To assess the dynamic properties of control systems in real time, a set of tasks 
must be solved related to clarifying the temporal properties of control E-networks, 
developing a dialect of temporal logic focused on control processes, and building 
a predictive model that takes into account the specifics of interaction between the 
control system and the external environment.

The temporal model of the control E-network includes a time model, a state 
model and a computation model that determine the nature of the network behavior 
in time. As a time model, a discrete-event model is adopted, which is characterized 
by a change in the basic states of the network at times determined by the duration of 
the CA execution cycle.

To ensure the determinism of the CA behavior in emerging situations, it is proposed 
to use the dynamic synchronization procedure, which is built on the observance of 
the introduced set of axioms that specify the cause-and-effect relationships between 
network transitions. The reliability of the result obtained is confirmed by the proved 
theorem on the conditions for observing the property of deterministic behavior of 
the control E-network.

In order to specify the complex dynamic properties of CA, a new kind of temporal 
logic is proposed – the interval logic of the DCTL computation tree, which allows 
taking into account the temporal domain of definition of temporal operators and 
individual propositional variables using interval expressions. The semantics of DCTL 
logic formulas can be defined both on individual situations and on a tree of situations, 
taking into account the possibility of non-deterministic behavior of the CO.

The predictive model used to analyze the dynamic properties of the ontrol system, 
specified using DCTL logic formulas, implements the Receding Horizon Strategy 
and makes it possible to take into account the hybrid nature of the control system 
behavior, modeling it by means of an automatically created control E-network. The 
coordinated execution of the CA model and the CO model is the essence of the used 
dynamic verification mechanism, which applies a binary decision tree to analyze 
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formulas on predictable situations.

The developed algorithm for checking DCTL formulas on control E-networks 
provides dynamic verification of the control process in real time, which creates 
conditions for a timely response to emerging situations in order to prevent 
undesirable developments by dynamically changing the control system.

Chapter 5. Recovery Models and their Construction

Like predictive models, recovery models must provide the control system with 
missing information that cannot be obtained from the sensors through the input 
data transmission channels. In this chapter, such a problem is solved by using models 
created by means of computer graphics and computer vision, which are directly 
embedded in the control loop. Computer recovery models make it possible to fill in 
the missing information regarding the spatial location of the CO at the macro and 
micro levels and thereby create conditions for the implementation of methods of 
adaptive and multi-agent control based on model data. Recovery models play an 
especially important role when the operator involved in decision making is included 
in the control loop.

5.1. Cases of Computer Recovery Models

The role played by the recovery models in the CS of IMS is to implement a closed 
control loop even in cases where the real capabilities of sensor devices do not allow 
it. In such cases, the CO is replaced by a model, which should provide the CS with 
all the missing information required by the conditions of the CS functioning. Most 
often, such situations arise in control tasks with space-temporal information, which 
concerns, for example, the relative position of the CO and its environment, the 
location of the tool performing a complex technological operation on the surface of 
the product, the spatial direction of energy fields, etc.

5.1.1. Man in the Control Loop

Undoubtedly, the most popular recovery models are the ones that involve the 
active participation of the operator in the management of the system, as is the case, 
for example, at nuclear power plants, when using deep-sea manipulation robots, in 
the cockpits of airliners. Recovery models should be able to simulate the environment 
and provide the operator with all the missing information through detailed real-time 
reproduction of the state of spatial objects and its visualization. What cannot be seen 
in real life must be available on the recovery model used. This use of recovery models 
can be characterized by the well-known term “Man-in-the-Loop” (MIL) – “operator in 
the control loop” (Pollini and Innocenti, 2000).

An example of building a control system using recovery models according to the 
MIL version is shown in Fig. 5.1. The main distinguishing feature of a control system, 
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which contains an operator, is the presence of a display (monitor) with a Human 
Machine Interface (HMI).

The input, or communication, processor processes information from the interface 
modules, which gives a partial view of the state of the CO. It can be data on the spatial 
location of the CO, for example, the values of the current coordinates, or indications 
of navigation devices (direction of movement, speed, etc.). Information about the 
state of the environment can also be partially obtained: temperature, air pressure, 
and vacuum level. However, all this may not be enough for the operator to make a 
decision, since all the information listed does not create the effect of presence, which 
is achieved only with direct observation of the process. But even if such observation 
is feasible, it may also be limited by a view angle, image scale, or even hidden by 
nearby objects.

The visual computer model, which is displayed on the monitor screen, is able 
to reproduce by means of graphical imitation all the details of the CO state in real 
time and thereby compensate for the arising limitations of the observation system. 
Typically, such a model is a three-dimensional representation of an op-amp immersed 
in a synthetically generated environment. It allows the operator to observe the object 
in all positions of interest using the controls.

Such a representation of CO in combination with a synthetic environment most 
fully corresponds to the modern concept of Virtual Reality (VR) (Delaney, 2017). 
Allowing with the same success for the simulation of quite tangible, as well as more 
abstract objects (for example, magnetic fields or turbulent flows), virtual reality 
technology helps reproduce the entire production process from the development of 
the product concept to the stage of its operation. At the same time, virtual reality 
provides, as a rule, the creation of more complex models than when using other 
methods. For example, when working with a virtual model, the motor housing can be 
made transparent so that its internal structure is visible for observation.

It should be noted that virtual reality as recovery models can be used at various 

Fig. 5.1. MIL case of recovery model usage.
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stages of the product life cycle:

• creating products, when the simultaneous work of several departments at 
different stages of design is required;

• forming tasks for technological lines without use of real product samples;

• testing the created control programs;

• evaluating the developed plans, etc.

In all cases, the use of virtual models provides not only high quality control of the 
design process, but also significant time and cost savings, eliminating the need to 
create physical prototypes.

Another important application of the MIL control option is personnel training. 
Simulation of real operating conditions of systems can be used for training pilots 
and operators of complex industrial installations. The virtual object will allow you 
to work out all control operations, including even those that arise in the event of 
breakdowns, equipment failure or due to extreme external conditions of operation. It 
also saves time, money, and at the same time prepares you to act in the most difficult 
situations.

Finally, the most important aspect of using virtual recovery models is the 
implementation of remote object management. Surveillance cameras that are 
actually used can be replaced by virtual computer models that change synchronously 
with the actions performed. In this case, the location of the observation means can 
be chosen by the operator independently. The main requirement that such recovery 
models must meet is high modeling accuracy.

5.1.2. Hardware in the Control Loop

The need for recovery models may not be limited to the operator. Reconstruction 
may be subject to the conditions of real processes when they are evaluated by 
hardware solely from the obtained images. This is often the case, for example, in 
automatic detection and tracking systems. 

For example, the recognition of cartographic information in missile homing 
systems, the detection and classification of target marks on the radar screens, the 
training of the tool paths along the marked lines on the surface of the products and 
the tracking of the specified trajectories of movement are the tasks that are solved by 
hardware automatically directly from the digitized images of objects obtained. 

These images can either be displayed on monitors for observation by operators, 
or hidden for observation, remaining in the computer memory. The important thing 
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is that these models are an integral part of the control process, closing the feedback 
loop. Such use of recovery models will be called “Hardware-in-the-Loop” (HIL).

Figure 5.2 shows a recovery model usage diagram for HIL case recovery model 
usage.

A distinctive feature of this scheme is that the HMI no longer plays a decisive 
role and is only an auxiliary element in the CS structure. All actions for analyzing 
the situation and making decisions are carried out automatically by hardware, 
which can combine sensors (observation equipment) and actuators, together with 
controllers that ensure their work. This means that it is not the creation of virtual 
reality pictures that comes to the fore in the construction of reconstruction models, 
but the acquisition of a high-precision image of the CO and its recognition.

The key point for the successful functioning of a CCS that implements the 
use of recovery models according to the HIL option is the high speed of input/
output channels and high-speed data exchange between hardware and software. 
Computations related to the recognition and classification of digitized images should 
be completed no later than it is provided by the cycle of functioning of the hardware 
complex. Real-time operation in sync with the control program is a fundamental 
requirement for HIL recovery models. This can be achieved using highly efficient 
digital image processing and recognition algorithms. No less important is the speed 
of data transmission channels.

5.1.3. Recovery Model Design

An analysis of the use cases of recovery models in the control loop shows that 
their implementation is associated with the creation of virtual reality display models 
and image recognition models. In the MIL variant, display models prevail, while in 
the HIL variant, the main burden falls on the recognition models.

The main requirement for display models is the maximum compliance with the 
situation arising in the control process. In addition, the formation of virtual mappings 
should occur in real time, ensuring that the model is synchronized with the position 

Fig. 5.2. HIL case recovery model usage.
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of the CO. In addition to display models, a requirement for extensibility can be put 
forward – the possibility of complicating the virtual world model with new objects 
and properties.

Recognition models, in turn, should provide automatic recognition of the current 
state of the CO based on its images obtained using observation tools. Since the 
problem of recognition is solved automatically, the main requirements for it are 
efficiency and flexibility. Efficiency means that the time of recognition (acquisition, 
processing and analysis of the image) should not increase the duration of the control 
cycle, and flexibility implies the ability of the system to recognize arbitrary objects 
both with and without preliminary training.

The listed requirements make it possible to formulate a list of tasks that must 
be solved when building recovery models. Mapping models in the structure of 
reconstruction models should perform the following functions (Dorf and Bishop, 
1998):

1. To simulate virtual three-dimensional representations of the CO state and its 
position in the surrounding space. At the same time, the required accuracy in the 
presentation of image details that are important from the point of view of the control 
process must be ensured, and the use of color gamut to convey the internal state of 
the displayed objects.

2. To provide an opportunity for the operator to actively influence the resulting 
virtual display by changing the viewing angle for inspecting any point of the CO and 
objects of the external environment, as well as by changing the image scale.

3. To scan the states of the control process, based on the data received from the 
sensors. In fact, it is necessary to give the operator the possibility of situational 
control of the object, based on the provided virtual display.

The functions of recognition models used when working with images differ from 
those inherent in the classical formulation of the mathematical theory of recognition 
(Silbert and Hawkins, 2016). In a pure form, the theory of recognition considers 
situations that are characterized by the absence of order relations specified on the 
set of object attributes. It is assumed that each object is identified with some point 
of the multidimensional attribute space, and the class of objects is represented by 
a compact set of such points. The task of recognition is to assign an object to one 
or another class, and knowledge of the formal description of the object itself is not 
required.

In contrast to this approach, in image recognition, mathematical problems arise 
associated with the formal description of an image as an object of analysis (Schyn 
et al., 2003). In this case, information should be used that reflects the mechanism 
of image formation – both the image as a whole and the objects represented on it. 
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The structure of the image allows determining what objects can be distinguished in 
the image, how elementary they can be, and in what relationships they are located. 
Moreover, image analysis is only part of the overall recognition task in this case. 
Based on the information contained in the image, a model should be obtained that 
gives an idea of the shape of the object. In the future, this model can be used in CS 
when implementing one or another control method.

Thus, the recognition models used in the control loop should provide:

• construction of an image model as an object of mathematical analysis;

• formal description of the structure of the recognition object;

• conversion of image models to a form convenient for recognition;

• restoring the shape of an object using image models;

• training on reference images.

It should be noted that the considered recovery models can closely interact 
with each other in the process of solving control problems. The expediency of the 
connection between them follows from considerations of the maximum information 
content of the display subsystem, on the one hand, and the high efficiency of the 
recognition subsystem, on the other. In particular, the use of these models makes it 
possible to implement methods of adaptive and multi-agent control of the IMS, which 
are based on the acquisition and analysis of visual information. Moreover, what is 
especially important, the application of these methods is possible at all levels of 
control, as well as with the involvement of predictive models. 

5.2. Virtual Reality Models 

5.2.1. Display Subsystem Structure

The display subsystem is intended for virtual display of objects. Moreover, both 
real objects and models of objects of the virtual world are subject to display. The 
block diagram of the display subsystem is shown in Fig. 5.3.

The main components of the display system are:

• monitor – a set of hardware for the presentation of virtual reality;

• frame generator – algorithms for creating virtual display frames;

• images of objects in virtual space;
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• image supervisor – an algorithm for managing the interaction between object 
images;

• control unit – a set of hardware for receiving control commands from the 
operator (sensors, drives, consoles, etc.);

• display supervisor – an algorithm for controlling the viewing angle in the 
virtual world;

• database (DB) of object images containing three-dimensional models of objects 
from which frames are formed.

The display subsystem has three main elements that perform control functions: 
frame generator, image supervisor, display supervisor. Let us consider them in detail.

5.2.2. Frame Generator

The block diagram of the frame generator is shown in Fig. 5.4. The main 
components of the frame generator are the following:

• OpenGL Graphics API – libraries of graphic functions of the OpenGL standard, 
which transform the commands of the standard into the form required for the 

Fig. 5.3. Block diagram of the display subsystem.
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complex of display hardware;

• API callings service – an extension of the implementation language that allows 
using the OpenGL standard;

• Compiler of API callings – a language extension that converts higher-level calls 
into commands of the OpenGL standard;

• Calling of primitive – language words that call the image of an object consisting 
of primitives;

• Calling the view angle – language words that control the view angle.

5.2.3. Image Supervisor

The structure of the image supervisor is shown in Fig. 5.5. The main components 
of the image supervisor are the following:

• Image access API – provides access to the attributes of images;

• Display rule analyzer – analyzes the rules of behavior of objects and executes a 
request to the image attributes to change them in accordance with the analysis 
results;

• Object behavior rules – a set of rules that determine the features of the behavior 

Fig. 5.4. Block diagram of the frame generator.
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of objects (an object can be transparent for other objects, hidden, etc.);

• Behavior rule t description language compiler – compiles the rules for mapping 
objects written in the object description language into expressions in the 
programming language;

• Image attribute generator – executes a request via the image access API to 
change the attributes for the corresponding images;

• Object relationship analyzer – analyzes the rules of relations between objects 
and makes a request through the API access to the attributes of images to 
change them in accordance with the results of the analysis;

• Object relationship rules – to define relations between objects. For example, 
when an object rotates around its axis, then all objects associated with it can 
rotate. At the same time, the movement of an object does not affect objects that 
are not associated with it;

• Relationship rule description language compiler – compiles the relations 
between objects written in the language of the rules of relations into the rules 
of relations for the programming language;

Fig. 5.5. Block diagram of the image supervisor.
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• Preprocessor of requests for changing the state of objects – state change 
requests are divided into three categories: requests to change object display 
rules, requests to change object attributes, and requests to change relations 
between objects.

5.2.4. Display Supervisor

The structure of the display supervisor is shown in Fig. 5.6.

The main components of the display supervisor are the following:

• Request generator – creates a request to change the position of the surveillance 
camera;

• Active camera – model of the active camera from which the observation is 
carried out at the current time;

• Model of camera 1, .., Model of camera N – a  stack of cameras that are needed 
to quickly switch from one place of virtual space to another while maintaining 
the position at the current point;

• Commands compiler – converts commands from the control unit hardware 
complex into camera model commands;

Fig. 5.6. Block diagram of the display supervisor.



129

• Camera control commands API – language extension for managing a stack of 
cameras;

• Behavior scripts API – language extension for script execution. A script is a 
sequence of commands, the execution of which is similar to a certain sequence 
of control actions, for example, a script of a standard traversal of some part of 
the virtual world;

• Scripting request compiler – scripting requests in the virtual world are compiled 
into scripts in a programming language.

5.2.5. Technics for Constructing Display Models

Three-dimensional images for the display subsystem can be developed in two 
main ways:

• created from a set of standard objects, which are a straight parallelepiped, cube, 
sphere, cone, pyramid, cylinder, etc.

• generated according to the given descriptions using any graphics software 
system that supports standard 3D formats: Autodesk 3dsMax, 3D Bruce 
Models, NuGraf Rendering System, OpenGL, etc.

A view of a welding robot model built from standard objects created using the 
OpenGL library is shown in Fig. 5.7.

The basic objects (primitives) in this case are a cylinder and a straight 
parallelepiped. The number and position of the primitives used are specified using 
parameters, and the generated object is represented as a tree of inherited primitives.

                      a) view angle 1                                                           b) view angle 2

Fig. 5.7. Welding robot display model view.
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The process of developing such a model in the NuGraf Rendering System is shown 
in Fig. 5.8.

The image database can be expanded by introducing new objects. Figure 5.9 
shows the process of developing scene objects for a welding chamber using Autodesk 
3dsMax.

5.3. Image Recognition Models

An image is usually understood as one or more projections of a spatial object 
obtained using an observation system. Therefore, the task of automatic recognition 
deals with flat images with all their inherent processing features. This applies to both 
the procedure for obtaining an image and its preliminary filtering, and recognition 
of the contours of objects. The end result of recognition should be the restoration of 
information about the state of the object, which is necessary for making a managerial 
decision and, above all, the shape of the object.

                      a) image design                                                    b) image representation

Fig. 5.8. Welding robot model development process.

Fig. 5.9. Expansion of the virtual world with new models.
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5.3.1. Recognition Subsystem Structure 

Consideration of the image recognition models used in the control loop will be 
carried out on the example of the CCS for electron beam welding machines.

The problem that arises during the welding process is the precise hitting of the 
electron beam in the middle of the joint between the edges of the products being 
welded. Considering that the joint can have a width of tenths of a millimeter, it is 
impossible to do this process without using special observation means. In addition, 
welding must be carried out inside a vacuum chamber, which isolates the operator 
from direct observation of the welding process. It is possible to ensure contact with 
the joint in such conditions only by obtaining and processing enlarged images of the 
joint. Moreover, it must be done in the process of moving the electron beam over the 
surface of the product synchronously with the movement and taking into account the 
interference caused by the influence of strong electric and magnetic fields. The use of 
television cameras in this case is limited only at the stage of preparation for welding 
and is excluded at the time of welding.

Thus, the task of image recognition in the welding process includes:

• obtaining an image of the product surface at the welding site;

• filtering of the received images;

• recognition of the joint area in the resulting image;

• accurate detection of the middle of the joint;

• restoration of the joint trajectory.

The functional structure of the recognition subsystem, which provides the 
solution of the recognition problem in this setting, is shown in Fig. 5.10.

This structure reflects the sequence of functional tasks solved in the process of 
image recognition. It should be borne in mind that there are no universal models of 

Fig. 5.10. Functional structure of the recognition subsystem.
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images that have the necessary degree of constructivism for all recognition problems. 
In this regard, at each of the stages, an image model of a certain type is formed, which 
is then converted into a model of the next level. We can say that a hierarchy of image 
models is formed with its inherent transformation procedures. If we denote an image 
, and the transformation applied to it , then the whole recognition process will 

consist in defining on the equivalence classes  a set of algebraic transformation 
systems  such that,  where .

The advantages of the proposed approach are that the decomposition of the 
general recognition problem into a sequence of stages makes it possible to reduce 
the complexity of the solution due to the sequential use of various image models and 
their mutual transformations. It should be borne in mind that all stages of recognition 
should be performed at the rate of development of the process synchronously with 
the movements of the electron beam. Let us consider these models in more detail.

5.3.2. Sampling and Quantization Models

To process an image on a computer, it must be converted to a finite set of numbers. 
However, the image is primarily some kind of signal that conveys information to 
the surveillance system. Therefore, the task of forming an image is a task of signal 
processing for the purpose of its sampling.

Among discrete signaling models, the most widespread models are the ones that 
are focused on the positional representation of image elements. In them, the image is 
a matrix , each element (pixel) of which contains some characteristics 
of the original image. The main advantage of the matrix representation of the image 
is to preserve the structure of the original image. Such representation of video data 
is also called direct, and it allows for easy implementation of their digital processing 
(Gonzalez and Woods, 2018).

When processing signal information, two basic procedures are used: sampling 
and quantization. The goal of sampling is to build an image matrix for some 
limited space. In the course of further processing, only the signal values recorded 
in the elements of the image matrix will be used. The classical way of discretizing 
continuous signals, which are real images, is the application of the Nyquist–Shannon–
Kotelnikov theorem. Despite the fact that this theorem admits a trivial generalization 
to the two-dimensional case, it is of little interest in computer observation systems. 
When working with images, the sampling rate should be significantly higher than 
that determined by the results of spectral analysis.

Quantization consists in mapping the values of brightness (for black and white 
images) and color (for color images) into integers. It is correct to assume that 8 
bits (256 levels of brightness) are required to represent most images, and in many 
practical tasks, in particular, for welding robots, 4 bits (16 levels) are sufficient. But 
fewer bits guarantee less processing time, which is critical in control tasks.
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Currently, spatial sampling of images is carried out, as a rule, using hardware by means 
of electronic scanning. Moreover, in these cases, sequential processing is sufficient. As a 
result, the two-dimensional function of brightness , describing a flat image, is 
converted into a one-dimensional function of time  using line-
frame scanning. Such systems are usually called raster systems. With the cyclical 
operation of the observation equipment, all points of one frame have the same 
reference time. 

For example, in an EBW machine, a special device is used as such observation 
equipment. This device has a number of advantages over other surveillance means, 
including television (Nazarenko, 1993). Its principle of operation (Fig. 5.11) is 
based on the measurement of the energy of secondary electrons, which, after being 
reflected from the joint, are captured by a special sensor installed at the end of the 
electron gun. 

As a result of these measurements, a signal is generated, and then it is processed 

Fig. 5.11. The principle of operation of the joint recognition equipment.

Table 5.1 Parameters of the generated Joint Image Frame
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by a special electronic board. The board converts in real time the signals of the 
secondary electron sensor into digital codes, which are sent to the computer in 
the form of separate frames. The computer program, based on the received data, 
generates an image frame, which has the parameters shown in Table. 5.1.

An image frame is saved in the computer memory for further processing. It can also 
be displayed on the monitor screen for operator observation of the joint. Although 
this operation is not required when using the HIL variant, it is quite convenient 
because it allows you to trace the entire recognition process. In some cases, as, for 
example, when teaching the paths of joints, it is mandatory.

The view of the joint image formed using the sampling and quantization models 
is shown in Fig. 5.12. 

The joint on the monitor screen looks like a narrow dark strip, the smooth surface 
of the products being welded – a light area on both sides of the joint. Both the joint and 
the surface of the products have a fairly uniform texture. In the computer memory, 
information about the image frame is presented as a two-dimensional array (matrix). 
The number in each cell of the matrix corresponds to the brightness of the dot, which 
depends on the value of the flux of secondary electrons captured by the sensor. There 
four bits are used to define color results in 16 shades of gray with brightness ranging 
from 0 (for the darkest pixel) to 1:5 (for the lightest pixel).

For a more visual representation of the image, each pixel of the matrix is 
represented by four pixels on the monitor screen, which at a set resolution of 
640×480 gives an image magnification of about 1: 5 (Fig. 5.12 a). When the ZOOM 
option is enabled, the size of the scanned area is halved, which corresponds to a 
representation scale 1:10 (Fig. 5.12 b). 

It should be noted that technical systems do not have the task of lowering the 

                              without increasing                     in ZOOM mode. 

Fig. 5.12. View of the joint image on the monitor screen:
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image contrast by using histogram equalization procedures. This circumstance is a 
positive factor, since no additional time is required for the primary image processing.

5.3.3. Filtering Models

The need to filter interference in technical surveillance systems is primarily 
associated with the effect of various physical fields caused by the operation of 
equipment and nearby mechanisms. Therefore, any technique for accounting for 
interference should be adequate to the real situation and the adopted recognition 
concept, since the general procedure for eliminating interference by introducing a 
certain random scatter of feature values in some cases leads to the appearance of 
additional errors.

The simplest technique is linear space-invariant filters (threshold, moving 
average, recursive, etc.), which are widely used in time signal processing. However, 
the relationship between noise removal and blurring of the edges of an image means 
that line filters should be used with caution when processing images. In particular, 
they are not suitable for our task, which requires a clear image of the joint against 
the background of product surfaces. In technical systems, it is more often required 
not to smooth out the contours of areas, but to eliminate the gaps in image areas and 
changes in texture that occur due to interference.

Filters, the use of which precisely removes noise from areas located inside the 
image regions, without causing blurring of its edges, are much more complicated 
than a simple linear transformation. They form a class of non-linear filters. Among 
the latter, the most widely used for spatial image filtering is the method of anisotropic 
filtering (Olano, 2001). A discrete interpretation of this method leads to the relation

,                                                                             (5.1)

where  – an element of the filtered image matrix located at the intersection of 
the -th row and the -th column;

 – an element of the image matrix distorted by noise, which is located at the 
intersection of the  -th row and the  -th column;

 – an element of the aperture (additional matrix in size ) located at the 
intersection of the  -th row and the -th column;

 – a filtering threshold (constant);

 – a threshold function.

For complete filtering, the image matrix is symmetrically supplemented with 
elements equal to zero so that the resulting size is equal to the  
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elements, where  is the size of the image in pixels. Note that for , the 
averaging algorithm takes place. In addition, when filtering a quantized image, it is 
necessary to introduce a set of thresholds, the power of which is equal to the number 
of brightness gradations (in our case, these are 16 values). The element  is assigned 
a value corresponding to the maximum threshold that exceeds the sum on the right 
side of Eq. (5.1).

The filtering quality increases with increasing aperture size . However, at 
the same time, the time spent on calculations increases proportionally . In practice, 
it is enough to have , which gives good quality with a short filtration time. The 
aperture of this size corresponds to Table 5.2.

Elements  are usually selected based on a normal uncorrelated bivariate 
distribution, the maximum of which coincides with the center of the aperture. The 
smaller the standard deviation of the distribution , the more weight is given to the 
central element if the next normalization condition is met:

.                                        (5.2)

Practice shows that narrow apertures ( ) are more effective at a low noise 
level, while wide ( ) – at a large one. In this case, the values range from 0.4 to 
0.02.

Anisotropic filtering works successfully in many situations; however, in the 
above application, the structure of the image is not taken into account, while such 
information can be useful in solving a specific filtering problem. In particular, in EBW 
it is a priori known that the joint has sufficiently smooth edges and, therefore, its 
image should not have large gaps and thinning. Based on this information, you can 
improve the anisotropic filtering method using the idea of constructing a composite 
filter. This filter calculates the gradient of the original image.

One could first simply apply a linear directional filter to the image and then perform 

Table 5.2 Aperture Size 
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anisotropic filtering. In this case, we will have an obvious loss of performance. It will 
be more efficient to use a linear directional transform together with the aperture at 
a single filtering step. In this case, a narrow aperture with  can be chosen, 
since when  the weight of the central element  is 1, the other elements with 

 are not filtered. It can be accepted , since for it there are already 
known from practice values . As you can see, in this 
case, the aperture degenerates into a matrix , and eight predefined directions 
from the central element can be set for it, which can be investigated when calculating 
the image gradient. Taking into account these directions, each pixel of the image 
corresponding to the aperture will, in addition to coordinates, be characterized by an 
angle of location relative to the central element of the aperture:

,                                                                            (5.3)

where  is the direction of the aperture element specified by coordinates. 
The coordinates and directions will be counted according to Fig. 5.13.

The gradient of the image point coinciding with the center of the aperture is 
defined as a vector directed towards the maximum decrease in brightness, assuming 
that the joint is always represented by a dark stripe. The gradient value is calculated 
by the formula

,                                                         (5.4)

where  – the brightness value of the -th pixel, counting from the central 
element of the aperture in the direction ;

 – the specified length of the direction vector;

 – the direction of the gradient.

Based on Eqs. (4.3) and (4.4), the final formula can be obtained for calculating the 
brightness levels of image pixels during filtering

Fig. 5.13. Coordinates and directions of aperture.
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,                                                  (5.5)

where  when  and  when  – the 
threshold function.

Figure 5.14 shows the images of the joint before (Fig. 5.14 a) and after (Fig. 5.14 b) 
the application of the anisotropic filtering method together with a directional filter.

Thus, using the applied filtering model, it is possible to restore the areas of the 
joint image distorted by interference (indicated by red squares) and clear the surface 
texture of the sample.

5.3.4. Contrasting Models 

Many manufacturing tasks require precise definition of the boundaries of objects 
in order to isolate their shape or find the middle pixels. The anisotropic filter, 
although it does not introduce additional blurring of the edges, does not solve the 
contrast problem. Figure 5.15 shows an example of the various contrast options that 
may arise in practice.

To increase the contrast, special algorithms are used that perform image 
reconstruction functions. These algorithms usually implement the idea of linear 

Fig. 5.14. View of the joint image before (a) and after (b) filtration.

Fig. 5.15. Examples of image contrast: a) perfect border; b) blurred border.
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filtering, when the original image  is converted to an image  as a result 
of applying a linear transformation

.                                                   (5.6)

Known methods for determining boundaries mainly used as linear transformations 
the convolution of image points with template. For example, for convolutions along 
the x-axis and y-axis, respectively, the Sobel method (Parker, 1999) uses templates of 
the form that is shown in Fig. 5.16.

Eight templates with size  are used in the method of contrasting with 
directional gradient masks (the number of templates corresponds to the number 
of main directions: north, northeast, etc.). The course name indicates the direction 
of the slope of the brightness difference at which the template gives the maximum 
response. It should be noted that in all methods using templates, the latter have zero 
total weight; therefore, in image regions with constant brightness, they give zero 
response. The disadvantage of the listed methods can be considered that they all use 
static templates that do not take into account the real values of the brightness of the 
image pixels and their relative position.

With the existing information regarding the structure of the analyzed image, the 
construction of templates can be improved by making this process dynamic. Unlike 
simple filtering, we need to reorganize the original image to highlight the difference 
at the levels of the seam image and the background area. At the same time, we will 
adhere to the following assumptions:

1. The joint is always displayed as a dark bar and has the lowest brightness level.

2. The brightness of the joint points should not change, which means, taking into 
account clause 1, there should be no correction towards decreasing brightness for 
any points.

3. The diagonal of the template is oriented in the direction of the gradient of the 
image point corresponding to the center of the template.

Fig. 5.16. The forms of image templates.
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Under the assumptions made, the algorithm for calculating the template for all 
image points will include the following steps:

1. Select an element of the image in size  (each side of the original image 
should be initially increased by 1 pixel).

2. Align the template with the image point  and set the central element of the 
template to 1.

3. Calculate the gradient of the point .

4. Divide the image element by the diagonal into two disjoint subsets  and ; 
set all elements of the template located on the diagonal to 1.

5. Calculate the average brightness of the pixels for each formed subset 

.

6. Compare the brightness of the subsets with the brightness of the average pixel: 
if , then all elements of the template that cover , 
assign the value 1, but the elements  – the value 2, otherwise all elements of the 
template get the value 1.

7. Apply transformation to the image element 5.6.

An example of a template generated by this algorithm is shown in Fig. 5.17.

Figure 5.18 shows a view of the joint image obtained before and after applying the 
contrasting method described above.

Fig. 5.17. Dynamically generated template.

Image element5 3 24 3 14 3 3 2 1 12 1 12 1 1Gradient Template
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5.3.5. Segmentation Models 

Segmentation allows you to select homogeneous areas of images, such as a joint. 
The main methods traditionally used in segmentation are thresholding, boundary 
detection, and augmentation of areas.

The first two of the listed methods are based on determining the difference in 
the brightness values of pixels, while the segmentation method by augmentation 
involves finding groups of pixels with similar brightness values. In its simplest form, 
it also involves selecting a pixel and examining adjacent pixels to check the proximity 
of brightness values. If the brightness values   are close, then the corresponding pixels 
are included in the same group to form a region. In this case, the area is formed by 
splicing individual pixels.

However, it is more efficient to use in segmentation not separate points, but 
entire areas. There is, for example, a group of methods related to digital morphology 
(Latecki and Gross, 1995). The concept of digital morphology is that pixels are 
assembled into groups that have a given structure. These groups of pixels are called 
shapes, or building blocks. The main morphological operations that are applied to 
already selected pixels are deleting and adding shapes. As a rule, binary templates 
are used, consisting of two types of pixels: white and black, which are designated 1 
and 0, respectively.

Formally, the operation of adding a template is defined as

,                                                                            (5.7)

where  – the image to be segmented;

 – a figure template.

Sketchily, the operation of adding shapes looks as shown in Fig. 5.19.

Fig. 5.17. Dynamically generated template.

Image element5 3 24 3 14 3 3 2 1 12 1 12 1 1Gradient Template

Fig. 5.18. View of the joint image before (a) and after (b) contrasting.
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For gradient images, it is possible to propose, instead of binary templates, the 
calculation of the average brightness value for all pixels of the template. The same 
condition can serve as a constructive rule for constructing the template itself: 
those pixels that do not worsen the uniformity (average brightness) of the area will 
be enrolled in the template area. As a result, templates of a certain shape will be 
generated dynamically in the course of segmentation.

By combining the augmentation method with digital morphology, it is possible 
to obtain a more efficient algorithm for selecting areas to be recognized, since whole 
groups of pixels will be added at once. This algorithm will include the following steps:

1. On the original image, determine the first element belonging to the seam area 
(perform training) with brightness .

2. Determine the width of the joint  (the diameter of the smallest circle, 
homogeneous to the first element).

3. Determine the direction of the joint by circular scanning the image with a 
vector of a given length. The direction of the joint will correspond to the direction of 
the vector of image pixels, which has the lowest brightness (darkest); assign .

4. Having chosen as the base , construct a rectangular area  with a width equal 
to , and a length equal to , located perpendicular to the calculated direction 
of the joint.

5. Check the homogeneity of the resulting area. If the average brightness of the 
area  has not improved, i.e., , then assign  and go to 
item 4, otherwise go to item 6.

6. If , then go to item 7, otherwise assign , where  is the median 
element of the side of the rectangle opposite to the base, which was obtained in the 
previous step; go to Step 3.

7. Finish selection of the joint area in the image frame.

Figure 5.20 shows a view of the segmentation model built using the augmentation 
method with digital morphology for joint recognition.

Fig. 5.19. Scheme for adding a template.
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5.3.6. Thinning Models 

Skeleton models are used to restore the geometric properties of objects to be 
recognized, in particular the path of the joint.

At this stage, the original regions obtained as a result of segmentation are 
converted into lines one pixel wide. This approach is most widespread in the problems 
of character recognition, but it can be successfully applied in technical vision systems.

The basic technique in skeletal models is thinning. It is an iterative procedure that 
eventually extracts the skeleton of an object. At each iteration, a border pixel that 
has at least one pixel adjacent to the background is removed if it does not violate the 
object topology. There are two main requirements that a thinning model must satisfy:

• if the object is connected, then the result must also be connected;

• the line obtained after thinning should pass in the middle of the area subject to 
thinning.

The thinning algorithms based on the use of templates have become most popular 
in recent years. The principle of their work is to iteratively align the template with the 
image and remove the middle pixels. The original image is gradually thinned until the 
last layer of boundary pixels is reached.

An example of this kind of algorithms is the Stantiford’s algorithm (Parker, 1999). 
It uses a set of four templates of the size  shown in Fig. 5.21.

Note that when checking images, only template pixels marked with circles are 
considered. The rest of the pixels are not counted. In addition, the Stantiford’s 
algorithm considers binary images whose pixels are marked with either 0 (white) or 
1 (black). Application of templates  is based on two definitions.

Fig. 5.20. Joint image segmentation model.
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Definition	5.1. An endpoint is a black pixel that has only one bordering black pixel 
out of eight adjacent pixels.

Definition	5.2. The indicator of the connectivity of an image element covered by 
a pattern is the number of connected components that are formed when the central 
pixel is removed.

In Fig. 5.22, image elements with different connectivity indicators are given as an 
example: . 

Within the template, pixels are numbered counterclockwise, starting from the 
pixel to the right of the center. The center pixel itself is numbered 0.

Let us apply the Stantiford’s algorithm for thinning the image of the joint, slightly 
modifying it. In particular, we will calculate the connectivity index of the central pixel 
by the formula:

.                                                                                         (5.8)

Further, let us perform the following steps:

1. Convert the image obtained after segmentation to a binary form, assigning all 
black pixels of the selected area to 1, and all other pixels to 0.

2. Find an element of the image A that satisfies the pattern , sequentially passing 
through the image with this pattern along the top border of the image from left to 
right and from top to bottom.

Fig. 5.22. Examples of picture elements with different connectivity indicators.

Fig. 5.21. Patterns for removing pixels by the Stantiford’s algorithm.
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3. If the central pixel of the image element A is not the end point and has a 
connectivity index equal to 1, then this pixel is marked for deletion.

4. Repeat Steps 2 and 3 for all image points that match the pattern .

5. Delete all points marked for deletion.

6. Repeat Steps 2–4 for all templates . The pattern  passes, starting from 
the left edge of the image, sequentially moving from the left edge of the image from 
bottom to top and from left to right. The pattern  passes from the bottom edge of 
the image, moving sequentially from right to left and from bottom to top. The pattern 

 is traversed starting from the right border of the image, moving sequentially from 
top to bottom and from right to left.

7. Repeat Steps 2–6 until at least one pixel is removed.

Figure 5.23 shows the result of this thinning algorithm.

Note that always after applying the thinning model, an image of the selection is 
one pixel wide.

5.3.7. Trajectory Restoration Models

Analysis of the majority of applied problems of image processing shows that most 
often a distinctive feature of an object is its shape.

The set of points obtained as a result of the primary image processing must be 
converted into a mathematical description of the object shape. The requirements for 
such a description depend on the recovery goals. In some cases, it is necessary to 
obtain a description of the outline of the selected area in order to then use it for 
classifying objects. In the problem we are considering, the trajectory of the joint 
of the welded products is subject to restoration, which should set the program for 
moving the electron beam.

Fig. 5.23. View of the joint image before (a) and after (b) the thinning algorithm.
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There are several problems associated with the restoration of trajectories. Finding 
a trajectory passing through a given set of points is an interpolation problem. If it is 
necessary to draw a trajectory near a given set of points, then the approximation 
problem is solved. Finally, when it is necessary to reproduce the curve according to 
the obtained mathematical descriptions, the problem of computer graphics is solved.

From a mathematical point of view, interpolation problems are easier to solve. 
However, in many cases, an approximation is more appropriate. First, data distortion 
is often caused by the presence of noise, which should not be mistaken for actual 
deviations. Second, the tool movement program is usually specified as a set of standard 
CNC commands, including  linear and circular interpolations; spline interpolations, 
like Bezier polynomials, do not always reproduce the trajectory correctly, since they 
allow for unwanted deviations in the spacing between points. The latter problem can 
be partially overcome by localizing and interactively defining glue points. However, 
for automatic systems of the HIL class, this solution is no longer trivial.

With the existing tolerances for accuracy, the trajectory can be successfully 
reconstructed by an automatic approximation. The choice of reference points in this 
case is replaced by measures of proximity, precisely determined mathematically. Note 
that the approximation by splines with variable knots generally cannot be solved by 
strictly mathematical means.

Let us consider an automatic approximation algorithm that provides trajectory 
reconstruction from the resulting image. The limitations of this algorithm are as 
follows:

• a sequence of points  obtained as a result 
of primary image processing at the stages from sampling to refinement is 
considered the initial data;

• only trajectories defined on the plane are considered;

• approximation is carried out using segments of straight lines and arcs of circles 
starting at fixed points, which are the gluing points of the local areas (trajectory 
segments) selected during the operation of the algorithm;

• the Least Squares Method (LSM) is used to calculate the parameters of the 
approximating functions.

The automatic approximation algorithm includes the following steps:

1. Select the path segment that includes the first three points in the sequence . 
Assigned to  – a starting point number,  – a segment last point number.

2.  – a sign of linear interpolation,  – a sign of 
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circular interpolation. If , then go to Step 6. The possibility of approximating 
the selected trajectory segment consisting of  points with a straight 
line segment is checked. Straight line  coefficients are calculated by the 
formulas:

,                                                                               (5.9) 

where . 

3. The error of linear approximation is calculated by formula: 

,                                                                                                                     (5.10)

where  –  the distance from a point  to the interpolating line.

If , where  is the specified accuracy of the linear approximation, then 
the initial point of the approximating straight line  is fixed, the error of 
the corrected linear approximation is calculated by Eq. (4.10) and, if , then 

 and the transition is to item 2.

4. . If , then go to Step 6. The possibility of approximating the 
selected trajectory segment consisting of  points by an arc of a circle 

 is checked. The unknown coefficients a, b, and c, which are 
used to calculate the radius of the circle , are determined using the 
system of equations

,                                                                       (5.11)

where , , , , , ,

,  , .

5. The maximum error of circular interpolation is calculated:

,                                                                                      (5.12)

where  – the distance from the point  to the interpolating circle;

 – the distance from the center of a line segment connecting two adjacent points 
of the segment to the approximating circle.
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If , where  is the specified accuracy of circular interpolation, then the 
starting point of the approximating circle  is fixed, the error of the 
corrected circular approximation is calculated by Eq. (5.12) and, if , then 

 the transition is to Step 4.

6. If , then the circular interpolation is set for the segment 
. If , the linear interpolation is set for this segment, 

otherwise the linear interpolation obtained for the segment at . If  
and , the points of the segment are connected by straight line segments, 
forming a piecewise linear approximation.

7. A new segment  is selected. If , then go to item 8, otherwise 
go to item 2.

8. Complete the algorithm.

5.4. Summary 

The main purpose of the recovery models is to provide the CCS with the missing 
information that cannot be obtained from the sensors through the input data 
transmission channels. There are two main options for using recovery models 
(operator in the control loop and hardware in the control loop), which define two 
classes of computer recovery models: virtual reality display models and image 
recognition models.

Display models perform functions associated with displaying virtual three-
dimensional representations of the CO position in the surrounding space with the 
ability to change the viewing angle and image scale. Taking into account the scanning 
of the CO state according to the data coming from the sensors in real time, it is 
possible for the operator to carry out situational control of the object, based on the 
provided virtual display.

The technique for constructing virtual representations is based on the use of a 
display subsystem that includes a frame generator, an image manager and a display 
scheme manager as structural components. The used images of objects can be 
created either on the basis of a set of typical elements, or formed using well-known 
graphic systems.

Models of image recognition imply the sequential application of methods of 
obtaining images, filtering the obtained images, contrasting and segmentation of 
images to select target areas, as well as their refinement to restore the resulting 
trajectories in the form of graphic models.

To speed up the processes of obtaining and processing images, as well as to ensure 
high quality recognition, a set of methods and algorithms has been used. It includes: 
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an improved method of anisotropic filtering, taking into account the structure of 
images, an improved contrasting method using dynamically created templates, and 
an improved segmentation method by building up with simultaneous application of 
digital morphology. These methods can be applied not only to the control loop of 
EBW machines, but also to other control problems using recovery models.

Chapter 6. Software and Hardware Tools for MOC 

In the process of applying model-based control, it is necessary to solve two 
practical problems: the creation of CA models for their preliminary debugging and 
their integration into the control loop of technological process. The main difficulties 
arise in the development of technology that supports the use of implementation and 
predictive models, since recovery models are based on standard instrumental and 
operational environments. 

6.1. Technology for Creation of Implementation Models

6.1.1. E-net Modeling System

The E-nets Modeling System (EMS) (Kazymyr et al., 2011) is a tool for creating 
software implementation models which is available at http://195.69.76.84:8080/
ems-ui-vaadin-0.1-SNAPSHOT/. The main difference of EMS is that it combines 
the power of simulation with the ease of creating software models of CA. The JAVA 
language has been chosen as the basic programming language, which is not only an 
object-oriented language corresponding to the chosen formal approach, but also 
provides cross-platform program execution.

E-networks in combination with an aggregate approach are used as the formal 
apparatus involved in EMS. Thus, this system of simulation modeling fully meets the 
needs of building models for the implementation of CA and can be successfully used 
as a software environment for their development and preliminary research.

EMS functionality is focused on supporting the full life cycle of simulation models, 
including the development of conceptual, formalized and programmatic models. 
This modeling system allows you to create new models for the implementation 
of CA; modify existing models and perform statistical experiments with models 
at the design stage of the CA. In addition, EMS contains a graphical web-interface 
with specification language that enables models to be built by a user with no prior 
programming background.

The EMS architecture is shown in Fig. 6.1.

The main part of this architecture is a model. An aggregate is used to store the 
structure of the model. It can contain base elements of CEN, such as transitions, 
positions, variables including temporal formulas, as well as nested aggregates inside. 
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The model contains a reference only to the root aggregate; the objects of the root 
aggregate are taken into account when the model is run. Thus, in essence, a model 
is also an aggregate and can be used precisely as an aggregate in other structurally 
more complex models. The main difference between the model and the aggregate 
is that the latter cannot be launched to carry out experiments and collect statistical 
data.

Variables defined by name, type, and value can be defined at both the root and 
nested aggregate levels. The scope of a variable is determined by the aggregate in 
which it is created and the child aggregates. The token is determined by the position 
at which it is set, which allows creating several tokens in the aggregate with a 
different set of attributes. Each attribute, like a variable, is characterized by a name, 
type, and value.

The main window of the EMS system (Fig. 6.2) is visually divided into several 
parts.

The elements of the main window of the system are the following:

• Model – a graphic editor of models;

• Components – a set of E-network components for building models;

• Aggregate – a library of aggregates (templates for creating models). This 
window displays previously created aggregates that the user can reuse in other 
models;

• Model components – display the internal structure of the model in the form of 
a hierarchy tree, which contains all the elements of the model at all its levels;

• Console – a system console, which displays errors and other messages related 

Fig. 6.1. EMS architecture.
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to the modeling process. For example, when the system starts, the message 
“System started” is displayed in the console.

• Main menu of the system for setting parameters and performing simulation;

• Quick launch toolbar.

By default, all panels of the system are active; however, if necessary, they can be 
disabled/enabled using the main menu command View  Model components  Panel 
name.

The creation of models carried out in graphical mode on the basis of the developed 
components includes the following stages:

1. At the first stage of creating models, it is necessary to determine its conceptual 
scheme, i.e., to determine its structure. Since in the proposed approach the model 
is a set of pyramidal growing aggregates, it is, first of all, necessary to create the 
aggregates of the model. There are two ways to call the unit creation window (Fig. 
6.3): using the File  New  Aggregate main menu item or the “A” button on the quick 
launch panel.

In the window that appears, the user enters the name of the unit and chooses 
the method of its creation: from a “blank slate” or on the basis of previously created 
units, in the latter case, the user selects the unit from the list and presses the “Choose” 
button.

2. At the second stage, it is necessary to create (edit) the internal structure of 

Fig. 6.2. General view of the main window of the EMS system.
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the unit. Adding the components of the E-net to the unit is performed by sequential 
clicking of the mouse first on the corresponding component in the Components 
panel, and then in the model editor. As a result of these actions, a new component is 
added to the unit, its image appears in the editor, and the name is entered into the list 
of components of this unit in the Model Components panel. The possibility of moving 
objects is provided, which makes it possible to represent the internal structure of the 
unit in the most convenient and ergonomic form.

After determining the required components of the unit, it is necessary to connect 
them in order to define a network that follows the logic of the conceptual model. 
Components are connected using the “CONNECT” element, which is also selected on 

Fig. 6.3. Model aggregate creation window.

Fig. 6.4. Formalized aggregate model.
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the Components panel. Note that connecting a transition with a transition, as well 
as a position with an E-net position, is impossible. However, it is possible to connect 
an aggregate with an aggregate, which is dictated by the need to create hierarchical 

Fig. 6.5. CEN model of aggregate.

Fig. 6.6. CEN model with nested aggregates.
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aggregates; in addition, the aggregate can be directly connected to a position 
and play the role of a transition in the network. It is possible to construct broken 
communication lines and move them in order to improve the convenience of building 
a network.

An example of a formalized model consisting of aggregates is shown in Fig. 6.4.

Another example of a formalized model of an aggregate in the form of a CEN 
is shown in Fig. 6.5. One more example (Fig. 6.6) shows the possibility of building 
hierarchical models that include nested aggregates that are used as CEN transitions.

3. The final stage of building a model aggregate is the task of marking the 
network, determining the variables of the network, as well as setting functions on 
the transitions of the network. For marking, it is necessary to select the “MARK” 
component and click on the corresponding position of the E-net – the token will 
be displayed in the middle of the position. Double-clicking on the token calls the 
attribute editing window (Fig. 6.7).

A similar window is called for editing network variables, using the main menu 
item of the system or the “V” button on the quick launch panel. The scope of a variable 
is limited to the aggregate, in which it is created and is available to nested aggregates. 
The top-level unit does not have access to the specified variable.

To set the values of the functions, it is necessary to select the required transition; 
double clicking on it calls the function editor window (Fig. 6.8).

The transition functions are defined in the special E-nets language (EL). By 
default, the delay function is zero, the permitting function also returns zero by 
default, which corresponds to the first input / output position of the transition, 
and the transformation function does not perform specific actions. The permitting 
functions are defined only for “X” and “Y” types of  transition.

Fig. 6.7. Token Attribute Editor window.
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6.1.2. E-net Language Definition

E-net Language is a high-level interpreted language that is used in EMS to define 
the CEN transition functions by the user. The interpreter converts EL constructs into 
Java sentences.

The EL supports the following data types:

1) INTEGER – integers in the range from -263 to 263 -1 (0, 128, -144);

2) REAL – real numbers, the exponent can take values from -2147483648 to 
2147483647 (-0.05, 32E + 2, 2E-3);

3) BOOL – Boolean data type (TRUE, FALSE);

4) STRING – text data type, the number of characters in a line is not limited 
(“LINE”, “LINE”).

Language identifiers are used to specify variable names and consist of any 
sequence of letters, numbers, or underscore. A digit cannot be the first character. The 
names must not match the values of the keywords.

Variable declarations begin with the VAR keyword followed by the variable name. 
Repeated announcements are prohibited. At the moment of declaration, the variable 

Fig. 6.8. Transition function editor.
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can be initialized by a certain value, otherwise it will take an undefined value. For 
example:

VAR INIT = 4.5;

VAR UNINIT.

Using EL, the user has the opportunity to organize a full interaction with the 
model. To refer to aggregates, it is necessary to use the key character A, to the root 
aggregate – ROOT, to tokens – T, to positions – P, to variables – V.

To access an aggregate variable, you must refer to the required aggregate using 
the key character A with the aggregate identifier or key word ROOT to access the root 
aggregate and specify the variable name. For example:

VAR X = V [‘r01’];

ROOT.V [‘t02’] = TRUE;

A [8] .V [‘as’] = “STRING”.

To access the attributes of a token, you must refer to a certain position in the 
aggregate. If no aggregate reference is specified, the current aggregate is accessed. 
For example:

A [2]. P [11] .T [1] = 12.5;

P [2] .T [2’] = TRUE.

To check the presence of a token in position, the T key character is used. The type 
of the calculated value is BOOL:

VAR isPlace1Marked = P [‘place1’]. T.

Mathematical operations are defined for the INTEGER and REAL types. In the 
case of using an operand of a different type, the result of the operation will be an 
undefined value (unless the operator used for this type, for example, ‘+, can be used 
to concatenate strings). The resulting type is INTEGER or REAL. Allowed operators: 
‘+’ – addition; ‘-’ – subtraction; ‘*’ – multiplication; ‘^’ – exponentiation; ‘-’ – sign 
change; ‘!’ – sign change for BOOL variables; ‘/’ – division. Division by zero results in 
an undefined value.

Comparison operations are defined for all data types. Allowed operators: >,> =, 
<, <=, ==,! =.
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Logical operations are defined for the BOOL type. If an operand of a different type 
is used, the result of the operation will be an undefined value. Allowed operators: 
‘&&’ – logical AND; ‘||’ – logical OR; ‘!’ – negation; ‘-’  – negation. 

The concatenation operation is defined for STRING data type by using the ‘+’ 
operator.

Conditional operators are used to skip or execute some statements depending on 
the computed values of the given constructs. Operators can be grouped into blocks 
using brackets. Defining constructs are of two types:

1) Explicitly specified logical expression. Example:

VAR X = 0; IF (‘a’ == ‘b’) X = -92; ELSE X = 92; RETURN X; // = -92

2) Check for the existence of a value. Example:

IF (‘aa’) RETURN 2; ELSE RETURN -2; // = 2

Operator RETURN returns the specified value, and operator TIME  returns the 
current simulation time, type INTEGER value.

The following functions are defined for values of INTEGER and REAL types:

• SIN (X) – sine, result – REAL;

• COS (X) – cosine, result – REAL;

• TAN (X)  – tangent, result – REAL;

• COT (X) – cotangent, result – REAL;

• ATAN (X) – arctangent, result – REAL;

• LN (X)  – a natural logarithm, result – REAL. The function is defined for 
argument values > 0;

• SQRT (X) – a square root, the resulting type corresponds to the type of the 
argument, the function is defined with the argument values > = 0.

The following functions are defined for any value of type INTEGER and REAL:

• ABS (X) – a module, the absolute value of the argument. The resulting type 
matches the type of the argument.
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• SIGN (X) - 1 for X> 0, 0 for X = 0, -1 for X <0

• ENTIER (X) is the largest integer not exceeding X. The computed value type is 
INTEGER.

Functions for obtaining random variables use the internal congruent generator 
of pseudo-random numbers, which generates sequences of random numbers. Each 
time before starting the interpretation, the generator is initialized with the current 
time value in ms. These functions are the following:

• SEED (X) – initializes the random number generator with the INTEGER, for 
example,  SEED (60,000);

• POISSON (X) – generates integers distributed according to Poisson’s law with 
parameter X. Type of parameter X is INTEGER or REAL, the returned value 
is INTEGER; the function is defined for argument values > 0, for example, 
POISSON (2.5);

• UNIFORM (A, B) – generates numbers evenly distributed over the interval [A, 
B] (B > A); parameters A and B are INTEGER or REAL. The returned value type 
is INTEGER. The function is defined for values B > A, for example, UNIFORM 
(2, 10.9);

• EXPONENTIAL (X) – generates exponential distributed numbers with the X 
parameter of INTEGER or REAL types, the returned value type is REAL, for 
example, EXPONENTIAL (10.9);

• NORMAL (A, B)  – generates numbers distributed according to the normal 
law with expectation A and standard deviation B. Type of parameters A, B – 
INTEGER or REAL, the returned value type is REAL; the function is defined for 
values B > 0, for example, NORMAL (2, 10.9);

• BINOMIAL (A, B) – generates numbers distributed according to the binomial 
law with the number of trials A and the probability of success B; parameter A 
is INTEGER, range from 0 to 231-1 inclusive, B – INTEGER or REAL, range from 
0 to 1; the type of the returned value is INTEGER; for example, BINOMIAL (2, 
0.4).

In EMS, the followed operators of temporal logic DCTL are used: 

• AG – the condition must be fulfilled in all ways, in all states;

• AF – the condition must be fulfilled on all paths, at least in one state;

• EG – the condition must be fulfilled in at least one way in all states;
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• EF – the condition must be fulfilled in at least one path in at least one state.

The formula that will be checked with these operators determines the condition 
that must be met and will be checked for each state of the model. The formula 
can consist of several expressions that are combined by a logical operator during 
determination of experiment conditions.

6.1.3. Simulation Process in EMS

EMS organizes the simulation process on three levels:

1) meta level (conceptual model)  – modeling of interaction of aggregates, i.e., 
work of model as a whole;

2) macro level (mathematical model)  – modeling of functioning of separate 
aggregates;

3) micro level (software model) – modeling the functioning of E-network 
transitions.

Execution of the simulation program at the meta level begins with the compilation 
of a list of aggregates containing events scheduled for the current model time. 

At the macro level, the first aggregate is activated, after which the list is adjusted 
by removing this one from it. This will happen until all the aggregates planned for the 
current time have elapsed, as a result of which the list of aggregates will be empty. 
The activity of the aggregates depends on whether they have ready-to-operate 
transitions. If a transition at the current time has to end its active phase, the related 
notification in the control list is removed and the transition becomes executable. 

When all the planned and ready-to-operate transitions have been completed, the 
simulation program begins to check the presence of output signals in the model units 
by viewing the interface matrix. If the output signals are available, the states of the 
units change according to the coupling schemes, which, in turn, can lead to another 
adjustment of the list of ready-to-operate units. These steps are repeated until all the 
planned units have been worked out and all the external signals have been worked 
out. 

Model time advances on the principle to the nearest event, which leads to a 
significant acceleration of the modeling process compared to the principle of a 
constant step. To implement the discrete-event modeling adopted in the EMS system, 
the capabilities of the basic language in terms of organizing simulation experiments 
were used. Scheduled moments of transitions firing are fixed in the control list. Since 
event notifications are arranged in a strict order of time, it allows simply calculating 
the time of the next event, leading to a change in the model state.
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The micro level implements the process of functioning of individual transitions 
that make up the unit. Execution of any transition involves the sequential passage of 
the following three phases:

a. readiness, when the transition is not in a delay and the condition of its triggering 
(analysis of positions related to this transition) determined by a specific type 
of transition is satisfied;

b. delays, when the time is counted until the transition is triggered; the phase 
duration is determined by the transition delay time, which must be calculated 
before entering the delay phase; the state of the transition positions until the 
end of the delay phase does not change;

c. firing when, after the delay time has elapsed, there is an instant change in 
the marking of the transition positions by moving the tokens from its input 
positions to the output ones in accordance with the rules for triggering 
transitions of this type; at the same time, the values of the attributes of the 
tokens placed in the output positions and the model variables are changed in 
accordance with the specified transition transformation procedure.

Simulation with the use of predictive models involves checking of all possible 
paths in CEN model, which are formed through the use of X-Transition, which provides 
the choice of alternatives, and F-Transition, which provides the branching of the path.

When the “X” type transition fires, all input positions are checked and which of 
them was triggered during a specific simulation is compared. There can be only one 
such position. Its name is added to the path being checked, and information about it 
is added to the resulting path map.

When the transition type “F” is analyzed, the passage is analyzed in all paths. If 
the output position of this transition is not the last, its name is added to the stack and 
new path is added to the resulting path map. Next, a recursive method is called, which 
performs a passage to the end of the path with a return to the place of branching. 
Then another position is removed from the stack and the current path number is 
increased for further passage. After all the starting positions are passed, there is an 
exit from the recursion.

For all transitions of other types, only one position is selected, which is added to 
the map of the current path. 

The check of execution of the set formula of TL is carried out for each position of 
each path, and results of such checking accumulate in the map of states of positions.
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6.1.4. Processing of Statistical Information in EMS

EMS provides two types of collected statistics distinguished by their level of 
definition: primary and secondary. Primary statistics characterizes the operation of 
transitions and states of positions during the simulation and can be specified both for 
all aggregates of the CEN model and for those selected by the user using the graphical 
interface subsystem. 

As a result of collecting primary statistics in the form of tables (Fig. 6.9), the 
following information is displayed:

1) position (transition) number;
2) occupied coefficient calculated as the total time of occupation of a position (de-

lay for transition), which is divided by the simulation time, for queues – the  
average length of the queue is given;

3) number of passed tokens through the position (transitions), for queue posi-
tions – the number of tokens that visited the queue during the simulation in-
terval;

4) average occupied time of a token staying in a position (staying in a delayed 
transition state), equal to the total busy time divided by the number of fires; for 
queues – the average time spent by tokens in the queue.

It is important to note that when calculating the standard numerical characteristics 
displayed in the tables of primary statistics, data are accumulated for all performed 
runs, while the value of the simulation interval is determined as the total time of all 
performed runs. Thus, it is possible to obtain data on the operation of the E-networ 
objects for the entire experiment.

Fig. 6.9. Tables with the results of primary statistics.
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Primary statistics provide detailed information about the dynamics of the 
simulation process and can be actively used at the stage of model debugging. However, 
it should be remembered that collecting primary statistics is time consuming. 
Therefore, when studying a model with a large number of runs, it is recommended to 
disable the collection of primary statistics, which can be easily done when forming 
an experiment using the graphical user interface subsystem. At the same time, 
the primary statistics may be sufficient to obtain complete information about the 
characteristics of the studied models of interest to the user. In addition, EMS provides 
for the selection of CEN objects, for which it is necessary to collect primary statistics 
during the experiment.

For a more complete presentation of the experiments carried out in EMS, the 
possibility of obtaining secondary statistics is implemented. Secondary statistics 
reflects the behavior of certain characteristics, which are responses of the modeled 
system to the given values of its parameters, which are used as factors. It is possible 
to vary the values of the factors. In this case, the resulting report will represent the 
dependence of the response on the selected parameter in the form of graphs or 
histograms, examples of which are shown in Figs. 6.10 and 6.11. 

During the simulation with the use of a predictive model, a logical result variable 
is initialized, which is assigned the correct value. Then, depending on which operator 
was selected, the following is performed:

1. If “AG” – a passage through all the alternative paths and checking for at least 
one false value, the detection of which concludes that the resulting variable is also 

Fig. 6.10. Graph of average queue length changing in time.
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false, and further analysis does not make sense; otherwise, the result remains TRUE.

2. If “AF” – an auxiliary map is initialized to accumulate the results in every path; 
the passage is performed on all paths and it is checked whether the path has true 
states; the result of this check is recorded in the auxiliary folder; after passing, the 
result is formed, which will be true if the auxiliary map does not contain false values, 
otherwise – the result is false; the generated result is assigned to the result variable.

3. If “EG” – as in the previous case an auxiliary map is initialized to accumulate the 
results in every path; the passage is performed on all paths and it is checked whether 
the path has wrong conditions; the result of this check is recorded in the auxiliary 
folder; after the pass, a result is formed that will be true if the auxiliary map contains 
at least one true value, otherwise the result is false; the generated result is assigned 
to the resulting variable.

4. If “EF” – an auxiliary map is initialized to accumulate the results in every path; 
the passage is performed in all paths and the presence of at least one correct condition 
is checked; the result of this check is recorded in the auxiliary folder; after the pass, a 
result is formed that will be true if the auxiliary map contains at least one true value, 
otherwise the result is false. The generated result is assigned to the result variable.

Fig. 6.11. Histogram of average queue length changing in time.
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Based on the result of model checking the execution of the formulas of DCTL, the 
resulting table is formed (Fig. 6.12).

Evaluation of the success of the TL formulas is given as the results during a multi-
run experiment.

6.1.5. Organization of Simulation Experiments in EMS

EMS provides both strategic and tactical planning of the experiment. With regard 
to the strategic planning of the experiment, the system provides for only one-factor 
experiments. In this case, the parameters of the model are assumed to be constant, 
and only one of them is changed over the entire range of values. If necessary, you can 
sequentially conduct an experiment for each parameter separately.

The parameter that changes during the experiment is called a factor, the values 
of the parameter – the levels of the factor, the obtained values of the investigated 
quantity corresponding to the levels of the factor – the responses. The number of 
factor levels is not limited and is set indirectly by determining the initial and final 
values of the factor, as well as the interval of its change. In a particular case, only one 
point of the selected parameter can be specified, which will correspond to a single-
level experiment.

Regarding the tactical planning of the experiment, EMS provides two options for 
carrying out the simulation: 

1) with a predetermined number of runs to obtain each response point at fixed 
values of the factor; 

2) the determination of the required number of runs in accordance with the rule 
of “automatic stop”.

In the second case, the assumption of independence and normal distribution of 
response values is used. This assumption is based on the application of the central 
theorem of probability theory. The mathematical expectation of the response is taken 
as the parameter estimated using the expectation value.

Fig. 6.12. The resulting table of model checking.
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The “automatic stop” rule is based on the confidence interval method. In this 
case, let us assume the accuracy d of the mathematical expectation E. The response 
y and the level of significance , which guarantees that E falls inside the intervals 

 with the probability , are assumed. In this case, Y is the mean 
value calculated over a sample of volume N and is an estimate of E.

EMS provides options for calculating confidence probabilities for the three most 
frequently used confidence probabilities p, equal to 0.90, 0.95 and 0.99. The values 
of the deviations d, characterizing the accuracy of the estimate of the mathematical 
expectation E, at the specified confidence probabilities p are calculated on the basis 
of two-sided statistics with a normal distribution and correspond to:

,                                                          (6.1)

,                                                     (6.2)

,                                                     (6.3)

where d – a given confidence interval;

D – variance;

N –  the number of runs (sample size).

The algorithm for choosing the number of model runs to obtain an estimate with 
a given accuracy includes the following steps:

1) the initial value of the sample size N is set, equal to 30, and the sample mean 
and the corrected variance of the estimate are found from the sample of this size;

2) according to one of the formulas (6.1, 6.2, 6.3), selected in accordance with a given 
confidence probability, the value of the achieved confidence interval  is found;

3) the specified accuracy d is compared with the achieved accuracy . If the 
inequality  is fulfilled, the required accuracy is achieved in N runs, and the 
algorithm goes to Step 5. Otherwise, Step 4 is performed;

4) one more run of the model is performed, the value of N is increased by 1 and 
the transition is to Step 1;

5) the end of the experiment.

Therefore, to enable the “automatic stop” rule, at the stage of setting the 
experiment parameters, the user must set the values of the confidence probability 
and the required accuracy of the result – the confidence interval.
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The experiment is started via the model menu item (Fig. 6.13).

The experiment parameters are set in a special Experiment Setting window 
(Fig. 6.14).

Mandatory fields for starting an experiment are the following: experiment name, 
model time, and number of model runs. To collect statistical data, you must specify 
additional parameters of the experiment: select the required statistics collection 
mode (or both), specify the network components for collecting primary statistics, set 
the factor values and determine the response. In the case of distributed modeling, you 
must also specify as parameters the name of the federation in which the modeling is 
performed, as well as the IP addresses of the clients on which the models will run and 
the specified statistics are collected.

Fig. 6.13. Menu to start experiments.

Fig. 6.14. Experiment Setting window.
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Additionally, parameters for automatic stop mode can be set in the Experiment 
window (Fig. 6.15).

Parameters for experiment with model checking of TL formula are set in 

Experiment TL setting window (Fig. 6.15) that is opened by Start TL Experiment 
item. 

Required fields to run a TL experiment are the following:

• name of the experiment;

• model time;

• number of runs of the model;

• operator of temporal logic;

• formula that will be checked by this operator.

Fig. 6.15. Automatic stop setting.
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The formula determines the condition that must be met and will be checked 
for each state of the model. The formula can consist of several expressions that are 
combined by a logical operator.

The EMS provides a special window with information about the progress of the 
experiment, as a result of which the user receives information about the number of 
runs (if a multiple experiment is specified), factor levels (if a factorial experiment is 

specified) and the time remaining until the end of simulation (Fig. 6.16).

For modeling large models, the system supports the distributed simulation 
capability based on the High Level Architecture (HLA) standard (HLA, 2017). In 
the distributed mode, the models are executed on the simulation servers, on which 
the Java Virtual Machine (JVM), the Tomcat application server and the EMS must be 
preinstalled. To perform distributed modeling, it is necessary to create federation 
and federates based on the developed models via HLA item of the main menu (Figs. 
6.17 and 6.18).

Fig. 6.15. Experiment TL setting window.

Fig. 6.16. Experiment progress window.
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The interaction of simulation servers in the NLA is carried out through a special 
service called Run-Time Infrastructure (RTI). The EMC uses the Portico software 
implementation of RTI (Portico, 2021). All data exchange between federates takes 
place through RTI (Fig. 6.19).

6.1.6. Storing Models in EMS

EMS uses XML format for storing and serializing data. Petri Net Markup Language 
(PNML) is an international standard (PNML, 2021) that defines the format for 
storing the structure of a Petri net in XML. PNML allows you to store information 
about positions, transitions, connections between them, as well as data about the 
coordinates of each object, its color, signature, etc. when displaying a Petri net.

Fig. 6.17. Federation creation window.

Fig. 6.18. Federate creation window.

A Federation

Run-Time Infrastructure

Federate A Federate CFederate B

 

Fig. 6.19. HLA component interaction scheme.
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To work with CEN models, the international PNML standard has been expanded 
(Fig. 6.20) by adding new PNML attributes to transition and place objects, taking into 
account such features of CEN as:

• the presence of transitions and queues of different types;

• the presence of nested aggregates;

• the ability to set functions at each transition;

• availability of various input / output variables;

• the presence of a token with attributes.

Fig. 6.20. CEN PNML expansion.
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Different models may include aggregates of the same structure, but with different 
parameters. The EMS introduced the concept of the type of aggregate as a set of all 
aggregates with a single structure. This approach makes it possible to reuse the 
developed aggregate in different models, but at the same time to save the description 
of its structure only once. If necessary, it is possible to change all aggregates of the 
same type in different models, if during the development of the model the user made 
adjustments to its structure.

Below is an example of XML file describing the model in an extended PNML 
format: 

<?xml version=”1.0” encoding=”UTF-8”?>

<model xmlns=”http://www.cs.stu.cn.ua/jess/enetsdefinitions”>

        <rootAggregate type=”Root”>

                <aggregate name=”A1”>

                        <transition name=”T1”>

                                <transformationFunction type=”el”>

                                        RETURN 9 + 1;

                                </transformationFunction>

                        </transition>

                        <aggregate name=”child”>

                                <place name=”P1”>

                                        <initialMarking>

                                                <attribute name=”attr” value=”12.34” />

                                        </initialMarking>

                                </place>

                        </aggregate>

                </aggregate>
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                <aggregate name=”A2”>

                        <variables>

                                <variable name=”varName” value=”34.56” />

                        </variables>

                        <transition name=”T1”>

                                <transformationFunction type=”el”>

                                                RETURN rand;

                                </transformationFunction>

                        </transition>

                        <queue name=”queueName”>

                                <priorityFunction>

                                                RETURN 1;

                                </priorityFunction>

                        </queue>

                </aggregate>

        </rootAggregate>

</model>

This approach makes it possible to automate the process of constructing software 
models and serialization of data based on their XML descriptions, as well as to set 
standard graphic data defined by the standard for all objects of the CEN.

6.2. Technology of Embedding Models into the Control Loop

The advantage of the considered technology for the development and study of 
models for implementing AC using EMC is that these models actually implement 
control programs, which can then be directly executed by controllers. It means that 
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for the practical application of the control algorithms developed and programmed 
in the CEN language, it is sufficient to construct a software interpreter of the 
implementation models capable of executing a set of CL instructions on the chosen 
hardware platform. For this purpose, it is necessary to solve two main problems: 
to develop algorithms for the operation of a software interpreter and to provide a 
model execution environment.

6.2.1. Model Interpreter

The main task of the model interpreter is to ensure the cyclicity inherent in 
reactive systems. In this regard, it is necessary to provide for the possibility of forced 
initialization of the aggregate when transferring control to it by sending a token. For 
this procedure, the input boundary positions have the INIT flag, which can be set 
for a position if the receipt of a token in it should cause the restoration of the initial 
marking of the aggregate and the initial values of its variables, as well as the reset of 
the delay time counters of all transitions.

Compliance with working cycle determines two main differences in the operation 
of the interpreter of the modeling system and the controller that directly controls 
the process. The first difference is the concept of time used. If in EMS the simulation 
occurs in model time, which advances from event to event recorded in the control 
list, then the controller monitors real time, which moves from cycle to cycle and is 
compared with the time of scheduled events.

The second difference is related to signal changes. In the simulation system, it is 
allowed working with signals as with ordinary variables, i.e., changing their values 
using assignment operators. When executing a control program in the controller, 
emulation of the values of input signals inside the transition transformation functions 
is not allowed. These functions can only set the output signals.

The controller cycle structure includes four main phases, which are executed 
sequentially (Fig. 6.21).

At the beginning of the cycle, the interpreter reads the values of the input signals 
using calls to the runtime functions. The resulting input values are assigned to the 
aggregate variables. These variables make up shared memory, the state of which is 
frozen until the next cycle.

In accordance with the EMS methodology for constructing CA implementation 

Fig. 6.21. Controller cycle structure.
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models, there are three levels of operation of the software interpreter when executing 
the control program code:

1. Meta level (model level) – the work of the aggregate model as a whole, including 
the synchronous cyclic execution of aggregates and ensuring their interaction 
by passing tokens.

2. Macro level (aggregate level) – operation of an individual aggregate in 
accordance with its CEN scheme.

3. Micro level (transition level) – the work of CEN-transitions according to the 
rules encapsulated in the corresponding classes.

The meta-level algorithm includes the following steps:

1. Walk through the list of aggregates. Model aggregates are sequentially activated.

2. Check the marking of the boundary positions. If no boundary position has 
received a token, go to Step 4.

3. Activate the aggregate linking scheme. The marking of the input positions is 
changed. Go to item 1.

4. Change the model time. The model time value is set equal to the current real 
time. Go to item 1.

The work of the interpreter at the macro level includes the following steps:

1. Check the initialization sign. The marking of the input boundary positions 
with the initialization sign is checked. If at least one such position is marked, 
the initial state of the aggregate is set. It does not change the marking of the 
boundary positions.

2. Walk through the list of transitions of the aggregate. If the transition is of type 
X or Y, then it is entered into the list of pending transitions, otherwise it is 
activated. If there are no transitions ready for firing, go to Step 4.

3. Pass through the list of pending transitions. If at least one transition has 
worked, then go to Step 2.

4. Return the control. Go to the meta level.

At the micro level, the interpreter performs the actions caused by the activation of 
the transition, which include the following steps:
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1. Change the transition delay time. If the transition is in delay, then the remaining 
delay time is calculated. Then go to Step 6.

2. Check the conditions of readiness. Calculate the decision function and 
verification of the transition readiness conditions. If the conditions are not 
met, then go to Step 6.

3. Check the activity of the transition. If the conditions are not met, then go to 
Step 6.

4. Calculate the delay time. If the value of the delay time is calculated, then place 
the transition in the list of delayed transitions and go to Step 6.

5. Fire the transition. Execute the conversion function. Change the marking of 
transition positions in accordance with the triggering scheme.

6. Return the control. Go to the macro level.

At the end of the processing of the control program code, the obtained values of 
the DCTL formulas in the units are checked. The formula receives the value TRUE 
only if this fact is confirmed by all the aggregates in the model. Then, for each formula, 
the program performs actions to change the transition functions, which consist in 
changing dynamically an internal variable, which influences the control program by 
changing the control parameters or control path.

The final act of the software interpreter is setting the values of the output signals. 
This operation is carried out by calling special functions of the runtime environment 
that provide interaction with the hardware environment.

The algorithm of the software interpreter described above is repeated when it is 
used as part of the EMS modeling system. In the latter case, at the meta level, both 
the plan of the experiment is additionally tracked and the end time of the simulation. 
In addition, at the stage of designing models, the use of a runtime environment with 
special functions for interacting with the external environment is not required. In this 
case, it is possible to implement a distributed simulation. However, it should be noted 
that when using models as control programs for controllers, there is no need to use a 
special mechanism for synchronizing the execution of transitions. Real time, which is 
involved in calculating the duration of cycles in the controller, is itself a synchronizing 
factor that tracks the pace of processes in the realization models.

6.2.2. Porting of Runtime Interpreter

Algorithms for interpreting implementation models when used in real control 
systems require the presence of a runtime environment in the form of the necessary 
software. Regardless of the chosen programming language, the runtime environment 
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must provide:

• deterministic CA operation in real time;

• timing with high resolution;

• direct work with memory when using input-output ports;

• support for network communication using standard protocols in the case of 
distributed use;

• multithreading when executing model components.

To a large extent, these requirements are covered by real-time operating systems 
(RTOSs), the most famous of which are VxWorks and QNX. All these systems 
are commercial; therefore, it is possible to use their own methods of organizing 
computations and, most importantly, embed the runtime environment in arbitrary 
processor devices.

The greatest flexibility in resolving this problem can be provided by Linux, which 
is a full-blown operating system, and for which there are versions of Java virtual 
machines. More importantly, Linux is freely distributed along with the source code. 
This allows you to develop and modify this operating systems (OS) to the level of 
Real-Time Linux (RTLinux) in order to use it as a basic runtime environment for 
implementation models.

However, taking into account the need to support a distributed control scheme, 
it is required to provide a porting of Linux OS to a specifically used microprocessor 
hardware platform, taking into account the existing limitations on hardware.

As a target hardware platform, let us consider a RISK processor family with the 
MIPS architecture, which has already become widespread among embedded systems. 
For example, these processors are known to be used as a platform for a compiling 
system, including mobile applications.

Among the main requirements for Linux OS ported to the RISK platform, we 
define the following:

1. The use of real memory without a hardware memory manager (Memory 
Management Unit –MMU). Fulfilling this requirement will provide significant 
resource savings.

2. Compliance with existing standards, primarily for compliance with the 
POSIX (Portable Operating System Interface) specification. Fulfillment of this 
requirement will ensure compatibility of the developed programs for Linux OS 
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at the source code level.

3. The need to support a USB interface for connecting external devices and 
organizing field buses, as well as accompanying microcontrollers restrictions 
on available memory.

The result of solving this problem should be the creation of a Plinux OS capable 
of running on an RISK processor without an MMU as an execution environment for 
implementation models.

The developed Linux porting technology includes the following sequence of steps:

1) selection of the base kernel;

2) analysis of the structure of the kernel in order to determine the hardware 
dependent parts of the code that require modification;

3) determination of the core limitations due to the lack of MMU;

4) determination of the organizational features of porting;

5) kernel modification.

Choosing a base Linux kernel for modification.

Among all known Linux kernel versions targeting embedded systems without 
MMU, a version called uClinux (read as “you see linux”) may be considered (Ungerer, 
2005). It can be considered a universal relative to the supported platform. The 
advantages of this OS version include a large number of freely available versions of 
the kernel without MMU, libraries and utilities, as well as the USB support needed in 
the uClinux.

In the version of Plinux discussed below, uClinux was used as the base OS kernel, 
which was reworked taking into account the requirements formulated above. Note 
that choosing the most suitable kernel as the base is an important consideration as it 
determines the overall development time.

An analysis of the internal structure of the kernel of the uClinux operating system 
shows that the hardware-dependent sections of the program code that require 
changes when porting Linux to another hardware platform include:

1. In the task manager:

• the function of generating a new process. It is required to set the process context 
to the initial state;
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• the function of loading the program into memory exec(). It is necessary to create 
a program loader in ELF and / or other formats, the implementation of which is 
largely determined by the hardware architecture of the chosen platform;

• the function for switching the context of the schedule() task;

• initialization of the null task idle(). It is required to set the process context to 
the initial state;

• changing the structure of the process context, as well as the sequence of its 
saving and restoration, taking into account the hardware architecture.

2. In the memory manager:

• changing the level of paging to work with real addresses (without MMU);

• changing the level of memory areas, since in real memory addressing, a memory 
area should be allocated from pages that continuously follow each other;

• removal of the brk() function, since there is no way to change the size of the 
memory area after its allocation (since the memory area must consist of 
continuously successive pages).

3. In the subsystem of interaction between processes (Interprocess 
Communication – IPC), all components are hardware-independent, except for the 
functions of shared memory. They cannot be implemented due to the lack of an 
MMU. Therefore, these functions should be redesigned as stubs, i.e., they should 
always return an error code.

Kernel functionality limitations.

Separately, we note the limitations in the functionality of the uCLinux OS kernel 
compared to the Linux kernel functionality caused by the lack of virtual addressing:

1. No memory protection – processes can address all memory types, including 
kernel memory.

2. No swapping – since memory pages are located at real addresses, it is impossible 
to swap pages between memory and disk.

3. The size of the memory area cannot be changed.

4. Since the fork() function is replaced by vfork(), it is impossible to create a copy 
of the process with the same addresses (as with virtual addressing).
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Features of porting to the RISK platform.

Due to changes in the kernel architecture, the following have been developed 
additionally:

1. Loader of ELF files.

2. Library of the LibC programmer.

3. The interpreter of commands (shell) in a simplified version.

4. A set of command files and programs for initializing the system, which includes:

• unpacking a compressed binary image of the OS kernel into memory;

• transfer of control to the uncompressed binary kernel image;

• hardware initialization;

• system initialization;

• starting the zero (idle) and the first process (init), etc.

The Plinux process that this architecture generates is described as follows. Source 
codes are compiled using MIPS processor-specific cross compilers. The object files 
are then linked to the LibC programmer library. The resulting executable files in ELF 
format, together with the compiled kernel, make up an image that is loaded into 
ROM. Then the loader expands this image and transfers control to the initialization 
program, which starts the runtime environment.

6.2.3. Hardware Platform of Hybrid Embedded Models

For the practical use of implementation models of control algorithms in the 
form of CEN, a number of requirements for their hardware platform must be met 
(Khropatyi, Lohinov and Kazymyr, 2020):

• the ability to update control programs and conditions for interaction with the 
external environment;

• high-speed performance with support for the logical capabilities of control 
programs and during their execution;

• the possibility of dynamic verification of control algorithms;

• the availability of high-speed hardware memory elements;
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• the possibility of flexible reconfiguration of the hardware platform for specific 
control tasks;

• the ability to synchronize the logical elements of the control program, which 
are SDT transitions and support for time delays on them.

The previously considered solutions based on real-time operating systems are 
not quite suitable for the embedded implementation models, since they do not 
provide effective load balancing in terms of program execution time, fast response to 
changes in external conditions. Moreover, such solutions create many problems with 
the deployment of the runtime environment on microprocessors.

Therefore, a hardware architecture should support not only the methodology 
for building implementation models in form of CEN specifications, but also provide 
high performance, including aggregating of models. Additional possibilities include 
interaction with databases, special management and configuration services. 

The best way to satisfy these requirements is the use of a hybrid platform, in which 
high-speed hardware blocks provide the computational functions corresponding to 
CEN transition on the one level, and anoter level supports the interaction between 
aggregates corresponding to the control program modules by passing input and 
output signals.

A combination of ARM (Advanced RISC Machine) and FPGA architectures is the 
most suitable solution. ARM, originally Acorn RISC Machine, later Advanced RISC 
Machine, is a family of Reduced Instruction Set Computing (RISC) architectures 
for computer processors, configured for various environments. The 32-bit ARM 
architecture is supported by a large number of embedded and real-time operating 
systems, including Android, Linux, FreeRTOS, VxWorks, Windows Embedded 
Compact, Windows 10 IoT Core, ChibiOS/RT, DRYOS, eCos, Integrity, Nucleus PLUS, 
NuttX, MicroC/OSII, PikeOS, QNX, RIOT, RTEMS, RTXC Quadros, ThreadX, MQX, 
T-Kernel, OSE, OS-9 (Zlatanov, 2016).

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are based 
around a matrix of configurable logic blocks (CLBs) connected via programmable 
interconnects. FPGAs can be reprogrammed to the desired application or functionality 
requirements after manufacturing. Due to their programmable nature, FPGAs are an 
ideal fit for many different markets in particular for CPS applications (https://www.
xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html):

aerospace & defense – radiation-tolerant FPGAs along with intellectual property 
for image processing, waveform generation, and partial reconfiguration;

automotive – automotive silicon and IP solutions for gateway and driver assistance 
systems, comfort, convenience, and in-vehicle infotainment as Xilinx FPGA enabled 
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automotive systems;

Industrial – Xilinx FPGAs and targeted design platforms for Industrial, Scientific 
and Medical (ISM) purposes enable higher degrees of flexibility, faster time-to-
market, and lower overall non-recurring engineering (NRE) costs for a wide range of 
applications such as industrial imaging and surveillance, industrial automation, and 
medical imaging equipment.

Actually, it is somewhat misleading to present an FPGA as a standalone component. 
FPGAs are always supported by development software that carries out the complicated 
process of converting a hardware design into the programming bits that determine the 
behavior of interconnects and CLBs (ttps://www.allaboutcircuits.com/technical-articles/
what-is-an-fpga-introduction-to-programmable-logic-fpga-vs-microcontroller/).

The combination of FPGAs and microprocessors in one hybrid platform may be one of 
the best solutions. The possible structure of a hybrid platform is shown in Fig. 6.19.

In this example, an architectural solution for the hybrid platforms is based on 
microchips of the family Xilinx Zynq-7000 as it was proposed by Albert and Yao 
(2010). The structural scheme in Fig. 6.22 includes additional I/O between different 
components.

Combining FPGA with a high-performance ARM processor in one physical device is 
the main advantage of such a decision (Kalachev, 2013). The control program, presented 
in the form of CEN, is schematically divided into two components. One of them is the 
program blocks associated with the operation of CEN transitions. They are implemented 
by the FPGA level. All communication functions are assigned to the ARM. In fact, the 

Fig. 6.22. Structure of the hybrid platform.
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ARM performs an integrating function for linking CEN transitions. The control program 
represented in the XML format is converted into a code executed by the ARM. This code 
then uses predefined FPGA blocks to implement the CEN transition logic. Changing the 
program, if necessary, does not require reconfiguration of the FPGA – only the sequence of 
the transition calls for the execution of the prescribed logic is changed. It reduces the time 
for modifying the control program depending on the operating conditions.

The choice of the ARM processor is the most important architectural decision 
(Palagin and Yakovlev, 2017). However, it is important to mention the use of the AMBA 
AXI (Advanced Extensible Interface) broadband interface. Thus, it will be possible to 
implement data transfer from/to FPGAs at multi-gigabit speeds, simultaneously ensuring 
low-power consumption.

6.2.4. Neural-like Network Platform for Recovery Model Implementation

The Hamming network (Bruck and Blaum, 1989) is designed to solve problems of 
pattern recognition (images, etc.). It uses a set of templates to assign an input binary 
vector or several vectors if they have the same proximity measure. The Hamming 
distance is used as a maximum proximity measure.

Let  be a binary alphabet and  – the set of all words of length  
in the alphabet  that is called the complete set of words. It is obvious that . Let

, and  be a cyclic shift operator with step 1, 
the definition of which has the form:

.

The subset  from  that is closed to the shift operator , i.e., . 
 will be called a cyclic Hamming code, which is a subset of words closed by Hamming 

distance in the alphabet .

Let the unit word be a word consisting of units. Some chosen unit words will be 
called reference words. In the case of the Hamming distance equal to 1, all words 
from the set  will be generated by the cyclic shift operator. These words will be 
called the generating words.

Further we will consider:

 – a cyclic code of length , which has the generative word with the  – 
component group  of  cyclically adjacent “1” and  – 
component group of cyclically adjacent “0”;

 – a cyclic code of length , which has generative word with – component 
group of “1”;
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 – a cyclic code of length , which has the generative word with  –   
component group of “0” and  – component  group of “1”;

 – a cyclic code of length , whose parent word includes  – component group 
consisting of “0”.

Formulation of the problem.

Let  be a set of words with length  in the alphabet  and  (or 
) be the cyclic code of length  defined above. It is necessary to build a logical 

structure that implements the mapping , defined as follows:

,

(respectively, .

The problem can be solved by serial connection (Palagin, Opanasenko and Kryvyi, 
2013) of cyclic structures such as AND and NOR, which have  inputs and  outputs, 
as well as an OR structure, which has  inputs and one output. In the general case, the 
problems of synthesis of multilevel logical structures for the classification of input 
binary vectors with one and many output structures for the task at hand have an 
–level organization, the  –th level  of which contains  AND logic gates 

that implement the transformation:

,                                        (6.4)

where  – a logical function of two variables;

 – the one-bit components of the input binary vector;

 – a step of cyclic shift.

All elements of the same level are configured to perform the same logical AND or 
NOR function.

The cardinality of the group of cyclic adjacent “1”, based on the truth table of the 
logical function AND and the structure of links , with an increase in the 
level number  decreases by “1”. Thus, to convert a codeword with a given value , it 
is necessary to have  levels.

The structures  and  ( , the step  in the operator ) are selected as 
logical structures. Based on the truth table of logical operations AND and NOR, as 
well as the structure of links , the number of cyclically adjacent “1” with an 
increase in the level number  decreases by one for the AND operation, and for the 
NOR operation. On the contrary, the number of “0” will increase by 1 if the word is 
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input containing  cyclic contiguous “1”.

Let us consider the structures  and  synthesized earlier by Opanasenko and 
Kryvyi (2012). If to the input of the  -th level of a structure  with such 
connections is fed a word containing a group of  cyclic adjacent “0”, then its output 
will be a word containing a group of  cyclically adjacent “0”. It is shown that it is 
sufficient to investigate the type structure , since the type structure  after the first 
level turns into a type structure  with an input word .

Theorem 1. a) If to the input of the first level of a computational structure  with 
the NOR operation is fed a word with  cyclically adjacent “1”, then the output will be 
a word with  cyclically adjacent “0”.

b) If to the input of the  -th level of the structure  a word with  
cyclically adjacent “0” is fed, then the output of this level will be a word with  
cyclically adjacent “0”.

The substructure  identifies a nibble (a 4-bit word of “0” and “1”) containing 
three or four “1s”, and the substructure  identifies a nibble containing one or all 
“0s”. Nibbles consisting of all “0s”  or all “1s”  will be called singular points, 
the identification of which will be discussed below.

Let us consider now the general problem of classifying input nibbles that are not 
necessarily circular in structure. For this purpose, let us consider a basic structure 
consisting of two similar 4-bit substructures built from substructures  and , the 
outputs of which are indicated by symbols , , and  , , respectively (Fig. 6.23).

This structure is justified by the following lemma.

Lemma.	If	the	singular	points	do	not	take	part	in	the	classification,	then	with	the	help	of	
the	given	substructures	the	 	units	in	the	input	byte	are	identified,	where	 .

Fig. 6.23. Basic structure of cyclic code converters.



185

Substantiation. From Theorem 1 and the tables of values for the substructures 
it follows that the outputs of both substructures are mutually exclusive, i.e., if the 
output  ( ) gives 1, then the outputs  and  (  and ) give the value 0. The 
same is true for ( , ).

The outputs of the substructures ,  give 1 if in the input of the substructures 
 and  the nibble has exactly one “1” or all “0s”. The outputs of the substructures 
,  give 1 if in the input of the substructures  and  the nibble has exactly three 

“1s” or all “1s”. The output of the substructures  and ( ) yields “1”, if the input 
nibble of the substructures contains exactly two “1s”.

It follows that the setting of both substructures for initialization in a byte of three “1s” 
takes the form: . Setting for four “1s” in a byte (without 
taking into account the singular point  . Setting for 
five “1s” per byte (excluding the special point . Setting for 
six “1s” per byte (excluding singular point .

The statement is proven.

An example of a network structure for identifying three “1s” in a byte is shown in 
Fig. 6.24.

Remark 1. In a general case, if a sample not from  bits is fed to the input of such 
a structure, for example, a sample of 11 bits, then it is divided into two nibbles, and 
the remaining three bits are supplemented with one bit to a nibble, and, thus, the 
problem is reduced to the previous case.

Fig. 6.24. Network structure for identifying three “1s” in a byte.
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Identification of special points. From Statement 1 it follows that the setting 
for seven and eight units per byte requires taking into account singular points, in 
particular, points  in the input nibbles. Since the substructure  (respectively, 

) identifies together with three “1s” (three “0s”) and four “1s” (four “0s”), it must be 
modified so that it is possible to separate the singular points from the rest. This can be 
done by simply modifying the basic structure  (appropriately ) by replacing the OR 
output function with AND. The implementation of such structures is shown in Fig. 6.25 
(structure for the singular point  – , and for the singular point  – ).

Let us denote the outputs of these substructures  and   to identify 
four “0s” and four “1s”, respectively.

Based on the above tables for base structures and modified ones, the output  of the 
modified substructure will be 1 if the input nibble value is a singular point . Similarly 
to the second structure, the output  will be 1 if the value of the input nibble is a 
singular point .

Thus, connecting the outputs  and  using the AND operation, we get the output 1 
only when there are four ones at the input in the nibble (singular point ). Similarly, 
a semi-structure is constructed for identifying a singular point  on the basis of 
semi-structures  and . Then the above-described construction will look like as 
shown in Fig. 6.26.

Justification of the properties of the given structure gives the next theorem.

Theorem 2. The general structure identifies the arbitrary content of an input 
byte by setting its outputs to the number of “1” (“0”) in the byte.

Evidence. It follows from the lemma and the substructures modified above that to 

                                                                a)                                                                     b)

Fig. 6.25. Structure of a cyclic code converter based on AND and NOR 
operations for determining singular points: a) type structure ; b) type structure .
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identify four “1” in a byte, the identification function will be as follows:

.

The units in the input byte can be distributed so that in the first nibble (in the 
second nibble) there will be one “1” on the first substructure, and in the second 
(first) nibble of the second substructure there will be three “1s”.

From the form of the first two expressions in the above expression we find: if 
, then it means that the input nibble of the second substructure contains no 

more than three “1s” and if , then it contains exactly three “1s”; if , then the 
input nibble of the first substructure contains more than three “0s”, and if , then it 
contains exactly one “1”.

Then there will be exactly four “1s” in the byte. The validity of what has been said 
for the second expression follows from symmetry, while for the other two expressions 
it is obvious.

Identification of five “1s” in a byte is performed by setting up the following 
function:

.

Identification of eight “1s” in a byte is performed by setting to the following 
function:

.

The theorem is proved.

Taking into account Remark 1, we note that the proved theorem is valid for an 
arbitrary value of the Hamming distance and an arbitrary bit width of the input 
vector.

Fig. 6.26. The general structure of the network taking into account special points.
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6.3. Summary 

The use of model-based control requires the solution of two practical problems: 
the creation of models and their integration into the control loop. The main challenge 
is the development of technologies that support implementation, predictive and 
recovery models.

When choosing the means of software implementation of control E-networks, 
the emphasis was placed on ensuring the possibility of building distributed systems, 
including in the Internet networks. Java has been chosen as the basic programming 
language, which provides cross-platform program execution. A particularly important 
advantage of Java is the ability to dynamically compile transition functions. This 
creates conditions for the dynamic change of the program model in the process of 
its execution.

The developed simulation system is focused on supporting the full life cycle 
of aggregate implementation models, including the development of conceptual, 
formalized and software models. This modeling system allows creating new models 
for the implementation of CA, modifying the existing models and performing 
statistical experiments with models at the design stage of the CA. The modeling 
system contains a graphical specification language that provides the construction 
of models by a user who has no special training in programming. Implementation 
of distributed properties of the simulation system based on HLA concepts helps 
speed up the model design process, provides code reusability and increases the 
performance.

The use of models in the control loop involves the development of a software 
model interpreter, for the implementation of which it is necessary to perform the 
task of porting the runtime environment to a microprocessor platform. The synthesis 
of a multilevel structure on the basis of the cyclic Hamming codes converters is a 
promising solution for recognizing images using a subset of binary vectors of 
arbitrary width and Hamming distance as a proximity measure.

Chapter 7. Examples of MOC Applications

7.1. Model-Oriented Control of EBW Machine

7.1.1. Model-Oriented Control Problems of EBW Machine

Electron Beam Welding machines are outstanding representatives of the class 
of industrial robots (Schulze, 2012), on the basis of which, at the appropriate level 
of their development and application, an intelligent manufacturing system can be 
formed.

At present, the most developed areas of industrial use of EBW are aerospace, 
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nuclear power, power engineering, electronics and precision electromechanics. 
When designing products of complex shapes, designers are increasingly focusing 
on electron beam welding. EBW is used to create aircraft engine assemblies, rocket 
bodies, equipment for nuclear power plants, and many other complex products.

The appearance of the EBW machine KL118 designed for welding aerospace 
structures and examples of such samples are given in Figs. 7.1 and 7.2, respectively 
(Electron, 2004). This EBW machine has  seven controlled coordinates, of which four 
are controlled simultaneously.

The increased requirements for the quality of control of the EBW machines 
are explained not only by the complexity of the tasks being solved, but also by the 
peculiarities of the EBW process itself. Electronic welding, as a rule, is performed 
automatically according to a predetermined program and consists in the passage of a 
focused high-power electron beam exactly along the joint line. The prerequisites for 
performing electronic welding are:

• constant maintenance of high vacuum (about 10-5mm Hg) in the welding 
chamber;

• smooth multi-axis movement of the electron gun and product;

• stable maintenance of the beam, focusing and bombarding current parameters 
specified by the program.

Fig. 7.1 The appearance of the EBW machines type of KL115 and KL118.
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Each of the listed conditions, in view of the specifics of their implementation, is 
provided by its own subsystems, which must function as synchronously as possible. 
Thus, as a CO, an EBW machine is a complex structure, including:

• a vacuum chamber equipped with the necessary vacuum equipment;

• a mechanical system for moving the electron gun and sample inside the vacuum 
chamber;

• a power source providing the formation of an electron beam of a given power.

During the operation of the installation, all its structural components are 
influenced by many factors of both external and internal nature. These factors cause 
deviations of the functioning parameters from the values set by the program.

Most of the factors are stochastic in nature. First of all, this concerns the 
generated electron beam, where instability is already incorporated at the level of 
physical processes occurring in the power supply and the electron gun. In addition, 
during welding under the influence of high temperature, mechanical displacements 
of the joint position from the programmed beam path are possible, which must be 
detected and compensated for by the control system. As for the vacuum system, 
it is necessary to constantly monitor its condition, preventing the development of 
explosive situations associated with the operation of pumps and valves, as well as an 
unauthorized drop in vacuum. 

In such conditions of the welding process, it is necessary to ensure the deviation of 
the beam from the joint line at the exit from the sample by no more than 0.1 mm and 
to prevent interruption of the welding process due to any unforeseen situation, for 
example, associated with the loss of vacuum in the welding chamber. The fulfillment 
of this requirement is significantly complicated in the case of using several electron 
guns as part of one EBW machine.

To the above-mentioned features of the EBW process itself, one should add the 
limited possibilities of the operator to influence the preparation and performance 

Fig. 7.2. Examples of samples welded in KL115 and KL118 EBW machines.
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of welding, which are caused by isolation from the product located in the vacuum 
chamber. It is possible to control the welding process only according to the indications 
of measuring instruments. When using EBW machines in serial production, it is 
necessary to weld several samples at once, placed inside the vacuum chamber, and 
the operator cannot correct the position of the product or change the program 
during the welding process. In such cases, all actions to ensure the required quality 
of welding are assigned exclusively to the control system.

An important point is also adherence to the exact work schedule associated with 
the need to prepare the product for welding. Usually, the edges of the joint to be 
welded are pre-cleaned, the product is placed in a special tooling and then installed 
on the faceplate of the working table (rotator). In a continuous production cycle, all 
these works must be coordinated with the processes of evacuating air and ventilating 
the vacuum chamber for product replacement in order to avoid downtime and 
unexpected production delays.

After welding, the product undergoes final inspection to determine the quality 
of welding. This is usually done for a prototype by cutting the product at the joint 
and measuring the parameters of the resulting weld with a microscope. If the seam 
meets the specified parameters, the welding program is approved for serial use. In 
the future, all conditions for ensuring the required quality of the output product are 
assigned to the control system and the production process, which must be strictly 
adhered to in accordance with the requirements of the quality management system.

Summarizing the above features of the process of operation of EBW machines, we 
can conclude that the main problem from the point of view of control is the lack of 
accurate a priori information about the state of the CO and the external environment, 
including work planning and compliance with the technological conditions for 
their implementation. This circumstance does not allow using a simple structure of 
programmed control, since in this way it is possible to track only the execution of a 
given program of movement along a programmed path. However, it does not solve 
the problem of exact hitting of the beam into the joint and does not guarantee the 
required conditions for the welding process, which can change under the influence 
of external conditions.

In turn, model-oriented control implies precisely the adaptive control of the CO 
under conditions of uncertainty. In this case, the missing information about the state 
of the CO is replenished by the models of implementation, forecasting and recovery 
built into the control loop. Problems that can be solved by applying Model-Oriented 
Control include:

• automatic situational control of the vacuum system and the power source, 
carried out using built-in implementation and forecasting models;

• visual design of welding programs with multi-axis movements based on the use 
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of virtual reality display models;

• automatic adaptive control of an electron beam when tracking a joint by using 
image recognition models;

• multi-agent control of the welding process when using several electron guns in 
one installation.

7.1.2. Principles of Constructing a Model-Oriented CS of EBW Machines 

The application of MOC of EBW machines is based on the observance of a number 
of principles that should form the basis for the development of a computer control 
system (Morozov, 2003):

1. The principle of the hierarchy. For different subsystems in the EBW machine, the 
local control goals are clearly different: for the vacuum subsystem, the control goal is 
to ensure reliable and safe operation; for the power source – to maintain the specified 
currents, and for the motion control subsystem – to maintain the beam movement 
at a given speed along a given trajectory. All local targets must be consistent with 
the systemic control quality criterion, which is expressed in the accuracy of hitting 
the focused beam at the junction. It means that there is a relationship of functional 
tasks, which is expressed in the coordinated implementation of the models for the 
implementation of CA.

2. The principle of dynamics, which must meet the requirements for real-time 
systems. CCS must ensure the synchronous operation of all its subsystems at the rate 
of change of the CO. For this purpose, all models, including recovery models, must 
be coordinated in execution cycles with the duration of the interpolation cycle of the 
movement subsystem of the electron gun and the product, which is usually 2 or 4 
msec.

3. The	principle	of	reliability	and	safety.	Reliability refers to the ability to complete 
a welding program satisfactorily within a given period of time, while safety refers 
to the likelihood that the system will function safely. Since the EBW machine is a 
potentially dangerous object, it is necessary to evaluate using forecasting models 
and prevent a potential emergency development of the process before an accident 
becomes inevitable.

4. The	 principle	 of	 distribution. It is an additional condition for ensuring high 
control reliability. It implies distributed control of various subsystems, due to which 
each of them is able to independently perform its functions. Compute-intensive 
display models should not limit the performance of implementation and predictive 
models.

5. The	principle	of	flexibility. It refers to the ability of the control system by the ELS 
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installation to quickly readjust to perform various welding programs. Compliance 
with this principle implies the use of a flexible mechanism for creating and editing 
welding programs, automatic teaching of possible joint paths of arbitrary complexity, 
adaptation of ready-made programs to the actual location of the product inside the 
vacuum chamber. This principle is based on recovery models built into the CCS circuit.

6.	 The	 principle	 of	 openness. The EBW machine must operate according to the 
established production plan, obeying all the requirements of the quality management 
system. This can be achieved by connecting the EBW machine to project and quality 
management systems operating at the strategic level of enterprise management. At 
the same time, using the property of openness, it is possible to implement remote 
control of individual subsystems at the tactical level.

7.1.3. Hardware and Software Architecture of EBW CCS

The hardware and software architecture of the EBW CCS, which ensures the 
solution of the problems of the MOC on the above principles, is shown in Fig. 7.3 
(Kazymyr, 2006).

The main feature of this distributed architecture is the integrated use of PCs 

Fig. 7.3. Hardware and software architecture of EBW CCS.
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that execute control programs in conjunction with executive devices of automation 
systems produced by Siemens:

• drive system Simodrive 611 U, which provides direct control of motors;

• Simatic S7-300 interface modules providing transmission and reception of 
signals from controlled equipment of the vacuum subsystem and power supply;

• communication processor CP 5613, which ensures the use of the industrial bus 
Profibus DP, through which interaction with actuators is carried out.

Integration of high-quality executive equipment with intelligent control based on 
built-in models ensures the reliability and efficiency of the EBW machine.

The execution of models built into the control loop is as follows:

• an upper-level PC that operates under Windows NT, implements tactical-level 
implementation models that coordinate the algorithms for controlling the 
installation equipment with other systems and models; recovery models are 
also executed on this PC, in particular virtual reality display models, which are 
presented in the HMI;

• a low-level PC that operates under the QNX real-time OS (QNX, 2017) executes 
implementation models and drive level prediction models that control the 
motion subsystem, vacuum subsystem, and power supply;

• PC of the RASTR system, which operates under DOS control and carries out 
models of seam image recognition; the image is formed by the observation 
equipment according to the information coming from the secondary-emission 
electron sensor installed on the electron gun;

• a remote PC, which can operate under both Windows and Linux operating 
systems, executes strategic-level models that interact with tactical-level models 
via the Internet / Intranet.

For the execution of implementation models in the PC of the upper and lower 
levels, the interpreters of the models described in Subchapter 5.2.1 are built in. Note 
that the real-time operating system QNX, like Linux, is a representative of the class of 
Unix-like systems, which facilitated the implementation of the developed software.
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7.2. Situational Control of a Vacuum Subsystem Based on the Implementation 
and Predictive Models

7.2.1. General Characteristics of Vacuum Subsystem Control Process

The control task of the vacuum subsystem (VS) is to create and maintain a vacuum 
of a given level in the vacuum chamber and the electron beam gun during welding, 
as well as to ensure the safe operation of vacuum equipment in all modes of its use.

There are four operating modes of the vacuum subsystem: pump down, 
ventilation, standby and stop. In all modes, control is carried out by checking the 
status of the equipment and sending control commands through the appropriate 
interface modules. The VS equipment includes:

1. Pumps for evacuating air from the vacuum chamber. Typically, an aircraft 
contains one or more fore-vacuum pumps (RPs), a rotary pump (BP), and diffusion 
pumps (DPs). Diffusion pumps are potentially hazardous because they explode when 
air enters a heated pump.

2. Turbo-molecular pump (TMP) that provides evacuation of air from the electron 
beam gun, which takes a significant amount of time to prepare for operation and 
cannot be stopped instantly.

3. Remote control valves (VE, VM).

4. Vacuum level sensors – vacuum gauges (NV, VV).

Equipment characteristics that must be taken into account:

• time of valve actuation, starting and stopping of pumps;

• permissible vacuum level in the chamber and gun, at which the pumps are 
turned on (off), valves are opened (closed);

• temperature of DP.

Each of the VC modes has its own set of conditions that guarantee the safe 
operation of the equipment and ensure the performance of technological operations:

• maximum time for fore-vacuum pumping of air from the vacuum chamber;

• the boundary level of vacuum in the vacuum chamber and the electron gun, at 
which permission is given for welding;

• the boundary vacuum level in the chamber, at which permission is given to turn 
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on the rotary pump;

• the limit vacuum level in DP, at which their heating is allowed;

• the limit temperature level in DP, at which their ventilation stops.

VS control is carried out by issuing appropriate signals to switch the states of 
the vacuum equipment. If the normal operating conditions of the VS are violated, 
errors and warnings are issued via the operator interface, which are analyzed by 
the diagnostic system. For example, if the vacuum in the chamber falls below the 
permissible limit while the pumps are running, a message is displayed about air 
leakage into the chamber, after which actions are automatically performed to transfer 
the aircraft to a safe state. The vacuum in the gun and DP is similarly controlled.

In the operator interface, the vacuum system is presented in the form of a 
mnemonic diagram (Fig. 7.4), on which the current state of the vacuum equipment is 
displayed using the corresponding color symbols.

7.2.2. Implementation Model of VS Control Algorithm

The VS control algorithm in the form of an implementation model built using the 
EMS modeling system is shown in Fig. 7.5.

The control of the PUMPs is transferred from the upper-level program after the 
operator selects the pumping mode in the graphical interface. In this case, the token 
is placed in position P1, after which the execution of the model begins.

In the model, the transition functions have the definition given below.

Fig. 7.4. Mnemonic scheme of the vacuum system.



197

Transition	F0: initiates the pump down process.

Transition T0:

• activation function

{RP1 == 1 & RP2 == 0 & RP3 == 1;} – the transition is activated when all RP pumps 
are running;

• conversion function

{VE1 = 1; VE4 = 1;} – valves are opened through which air is pumped out of the 
vacuum chamber.

Transition	T1:

• conversion function

{RP1 == 1 & RP2 == 0 & RP3 == 1;} – RP pumps are started.

Transition	T2:

• activation function

{RP1 == 1 & RP2 == 1 & RP3 == 1 & VE1 == 1;} – the transition is activated when 
all RP pumps are running and the valve for pumping air from DP is open;

Fig. 7.5 Implementation model of VS control program.
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• conversion function

{VE2 = 1; VE3 = 1;} – air pumping from DP starts.

Transition	J5:

• activation function

{NV3 == 1;} – the transition is activated when the vacuum in the chamber reaches 
a level sufficient to start the BP pump;

Transition	T4:

• conversion function

{BP = 1;} – the BP pump starts up.

Transition	T3:

• activation function

{VV3 == 1 & VV4 == 1;} – the vacuum in the diffusion pumps has reached the 
specified limit;

• conversion function

{DP1 == 1; DP2 == 1;} – DP pumps are switched on for heating.

Transition	J2:

• activation function

{NV1 == 1;} – the vacuum in the chamber has reached the upper limit;

• conversion function

{VM3 = 1; VM4 = 1;} – DP pumps are connected to pumping air from the chamber.

Transition	T9:

• activation function

{VV3 == 0 || VV4 == 0;} – there is no vacuum in any of the DP pumps;

• conversion function
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{DP leaking = 1;} – issuing the signal “DP leaking”.

Transition	T5:

• delay function

{TimeT12 = 1200000;} – a delay is set for the foreline pumping time of 20 minutes.

Transition	T6:

• activation function

{VV1 == 1;} – the lower vacuum limit in the chamber is reached;

Transition	X0:

• decisive function

{if (P16.M [1] == 1) return 1; else return 2; } – the choice of the direction of the 
process development: 1 – the vacuum has not reached the lower limit for the given 
fore-vacuum pumping time, otherwise – the fore-vacuum pumping was successful.

Transition	Y1:

• conversion function

{Chamber leaking = 1;} – issuing the signal “Leaking into the chamber”.

Transition	T7:

• conversion function

{VМ1 = 1; ТМР = 1;} – air pumping from the gun begins.

Transition	T8:

• activation function

{VV2 == 1;} – the vacuum in the gun has reached the lower limit;

• conversion function

{ready = 1; } – a signal of readiness for welding is issued.

Transition	T10:
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• activation function

{NV2 == 1; VV2 == 0;} – the vacuum in the gun fell below the lower limit;

• delay function

{TimeT10 = 60000;} – a 1-minute delay;

• conversion function

{Gunr leaking = 1;} – issuing the signal “Leaking into the gun”.

Transition	Y2:

• conversion function

{ready = 0; } – removing the readiness for welding.

The normal operating conditions of the VS, which are checked using the predictive 
models, are determined with DCTL as follows:

• AG ((RP1 and RP2 and RP3) {> 1200000} implies VV1) – always after 20 
minutes of fore-vacuum pumping, the vacuum in the chamber must be above 
the lower limit;

• EF ((READY and not VV2 {> 60000}) implies CHAMBER_LEAKING) – if at any 
time, when ready to weld, the vacuum in the chamber remains below the upper 
limit for more than 1 minute, a “Leak into chamber” signal should be generated.

7.3. Visual Design of Welding Programs Based on Recovery Models 

7.3.1. Formulation of the Problem

Usually, in EBW machines, the welding program is carried out using devices such 
as CNC (Computer Numerical Control). CNC programs are written in G-codes (Smid, 
2007). The welding program in G-codes (Fig. 7.6) is a sequence of blocks (lines of 
code), in which the coordinates of the point to which you want to move are set for 
each segment of the path.

In addition to coordinates, the block specifies the speed of movement, the 
method and parameters of interpolation, as well as the values of welding current 
(CW), focusing current (CF) and beam deflections, set when the end point of the 
programmed path segment is reached.
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In the case of simultaneous use of several coordinates, when the final trajectory 
is a complex spatial curve, the traditional procedure involves the development of a 
motion program using a product drawing built by means of a CAD/CAM system. The 
duration of the preparation of such a program can be, depending on the complexity 
of the trajectory, from several hours to several days or even weeks.

It should also be taken into account that the operator-welder will spend 
additional time to adapt the pre-designed program directly at the installation to the 
real product, taking into account the inaccuracy of its manufacture and placement 
at the welding position. If such an adjustment is quite simple when using only linear 
coordinates (X, Y, Z), then when the trajectory is formed by simultaneous linear and 
angular displacements, the adaptation becomes extremely difficult.

The use of recovery models built into the control loop eliminates the traditional 
G-code welding programming and allows for visual design of multi-axis welding 
programs. The developed method of visual design assumes a sequential solution of 
the following tasks:

• construction of a three-dimensional virtual representation of the situation 
inside the vacuum chamber;

• automatic learning of the displacement system to follow the path of the joint;

• graphical representation of the recorded butt path for drawing up a welding 
program.

In the process of visual design, a synthetic EBW CCS environment is formed (Kazymyr, 
2003), and then it is used by operators to control the installation.

Fig. 7.6. Fragment of a welding program in G-codes.



202

7.3.2. Virtual Representation of the Sample and Welding Path 

The operator needs a virtual three-dimensional representation of the product 
inside the vacuum chamber to select the key points and set the correct angular 
orientation of the gun during visual trajectory design.

The developed toolkit of virtual reality display models allows, in particular:

• creating three-dimensional images of sample;

• displaying the actual location of the sample and the gun inside the vacuum 
chamber;

• changing the scale and view of the generated display for its more convenient 
and detailed presentation;

• displaying the location of the programmed welding path on the surface of the 
sample;

• setting the permissible areas of movement of the gun and carrying out 
automatic control of movements in order to prevent damage to the sample and 
equipment inside the chamber;

• tracking on the surface of the product the position of the electron beam relative 
to the specified trajectory during welding.

With the help of display models, models of structures of the highest complexity 
level can be created (Paton, 2004).

Table 7.1 shows complex structures, when welding, which, taking into account 
the need to ensure the perpendicularity of the beam to the surface of the sample, 
requires at least four simultaneously controlled axes.

Figure 7.7 shows the designations of the coordinate axes of welding movements, 
the combination of which allows welding such products.

Fig. 7.7. Coordinate axis system.
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In Fig. 7.7, the following designations are adopted: X,	 Y,	 Z – linear axes of gun 
movement; Q – cannon rotation axis; V – cannon tilt axis; W – rotation axis of the table 
faceplate, U – table tilt axis.

Sample images are formed by the operator from a basic set of auto shapes and 
displayed on the monitor in three-dimensional space . To display in the same three-
dimensional space the trajectory of the beam on the surface of the sample formed as a 
result of welding movement in multidimensional space , it is necessary 
to transform the seven-coordinate vectors describing the points of the trajectory into 
three-dimensional vectors of spatial display.

For this purpose, to take into account the angles of rotation and tilt of the gun, we 
find an additional vector

,                                                                 (7.1)

where  – the coordinate distance from the  beam axis to the gun tilt axis;

Table 7.1 Types of Samples and Required Movements
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 – the distance from the axis of rotation of the gun to its end;

 – the distance from the end of the gun to the surface of the product.

Next, for each point, we rotate the vector A around the axis of rotation of the gun 
in the plane  by an angle , and then – around the axis of inclination of the gun in 
the plane  by an angle . As a result, we get the coordinates of the point  
relative to the center of rotation and tilt of the gun.

To take into account the angles of rotation and tilt of the table, we find an 
additional vector

 ,                                                                (7.2)

where  – coordinates of the center of the table in the base coordinate 
system;

 – the distance from the axis of inclination of the table to its surface.

We move the center of coordinates to the end of the vector  and for each point 
rotate the vector  around the axis of rotation of the table in the plane  by an 
angle . Let us get a point . Then we will rotate the same vector around the 
table tilt axis in the plane  by an angle . Let us get a point .

Ultimately, the base coordinates of the points , according to which the points 
will be displayed inside the vacuum chamber, will be recalculated according to the 
following expression:

 
.                           (7.3)

Figure 7.8 shows the resulting three-dimensional image of the product and the 
trajectory for different viewing angles.

Fig. 7.8. 3D sample and joint path views.
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7.3.3. Automatic Learning of the Joint Path 

The joint path, which is displayed in a 3D virtual representation of the sample, 
forms the basis for constructing a welding program. First, it sets the program for 
multi-axis movements of the gun and the item. Second, the program for changing the 
welding currents must subsequently be linked to this trajectory.

When designing simple, for example, linear joints, the operator can specify 
the path in the form of a table, identifying the coordinates of the start and end 
points of movement. However, this method of programming trajectories becomes 
unacceptable in the case of complex spatial joints with an arbitrary trajectory. The 
problem is solved by creating a method for automatic trajectory learning based on 
the use of recovery models.

To obtain an image of a joint, the complex of developed models of image recognition 
is used (Kazymyr, 2006). The joint in the resulting image (Fig. 7.9) appears as a 
dark line against the background of the lighter surface of the product. The red cross 
indicates the location of the center of the electron beam.

At the beginning of training, the operator, manually moving the gun or the sample, 
aligns the electron beam with the starting point of the joint of the edges being welded, 
sets the initial direction and speed of movement, and issues a command to start the 
movement. Further, the learning process occurs completely automatically.

Automatic learning is carried out in the process of joint work of recovery models 
and implementation models of the executive level. The diagram of the hardware and 
software complex as part of the control system, which provides automatic training of 

Fig. 7.9. Image of a joint during automatic trajectory learning.
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the joint trajectory, is shown in Fig. 7.10.

Automatic learning is performed based on the following assumptions:

• in the initial position, the beam is set in the middle of the joint;

• the initial direction of the joint search is set;

• the joint has a continuous (homogeneous) structure.

Calibration is a prerequisite for automatic trajectory learning. This operation is 
performed before the start of the training procedure, and its end result is to establish 
the correspondence of the sizes of one pixel to the linear dimensions of the image in 
millimeters.

In the process of movement, the recognition program finds a joint in each new 
image frame and determines a vector of displacement to a new trajectory point 
located in the middle of the joint. The process of automatic learning of the path is 
performed cyclically with stepwise linear movement to a new joint point. The choice 
of the next point from the joint area is carried out on the basis of obtaining piecewise-
linear interpolation of the joint path with a possible deviation from the middle of the 
joint by no more than 0.1 mm.

When moving during training, the relative position of the electron gun and the 
product is constantly monitored. The coordinates of the displacement point are 
recalculated according to Eqs. (7.1)–(7.3) and checked for falling into the admissible 
area, which is set when forming a three-dimensional image of the product. The 
learning algorithm stops if the next found point coincides with the previous point 
or with the starting point of the trajectory (for a closed trajectory), or when the next 

Fig. 7.10. The scheme of the hardware and software complex for automatic joint 
trajectory learning.
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point goes beyond the permissible displacement range.

7.3.4. Graphical Representation of the Joint Path 

During training, the resulting seam path is displayed on a 3D virtual representation 
of the product and on reference planes, as shown in Fig. 7.11.

                                            a)                 b)

As path points are found, they are connected to the previous points by straight 
line segments. A piecewise-linear model of a real joint obtained in this way does 
not take into account its geometric features and contains an excessive number of 
points (the greater the curvatures of the joint, the more points are required for its 
piecewise-linear approximation). The number of trajectory points can be reduced 
by carrying out additional approximation at the command of the operator using the 
trajectory reconstruction models. After approximation, the trajectory is represented 
by segments of straight and circular lines, for which the corresponding parameters 
are automatically calculated. In any case, the accuracy of the resulting trajectory does 
not go beyond the specified criterion – 0.1 mm.

In addition to performing additional approximation, the operator can edit the 
resulting trajectory manually, changing the coordinates of points, interpolation 
methods (linear or circular) on selected sections of the trajectory, adding new points 
to an existing trajectory or removing some points from the resulting trajectory. As 
the point parameters, the operator also sets and edits all technological welding 
parameters, including beam and focusing currents, the speed of welding movement 
between points, etc.

Fig. 7.11. Display of joint path during automatic learning: a) representation of 
the trajectory on a three-dimensional virtual representation of the sample; b) 
representation of the trajectory on the base plane.
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7.4. Adaptive Control of the Electron Beam Position in Joint Tracking 

7.4.1. Formulation of the Problem

Joint tracking is performed with the aim of precisely keeping the center of the 
beam in the middle of the butt during welding, when due to the emerging welding 
deformations, the joint may shift away from the specified path of movement. The 
beam is aligned with the joint by deflecting the beam along the X and Y axes in the 
plane of the gun and by an angle calculated by the control program.

The calculation of the deflection parameters is performed in such a way as to 
ensure the accuracy of keeping the beam in the middle of the joint within 0.1 mm. To 
achieve the specified accuracy, the coordinates of the middle of the joint are always 
determined taking into account the linear dimensions of the image pixel.

The problem is that during the welding process, a pool is formed at the location 
of the beam, which melts the joint, as a result of which it is impossible to determine 
the deviation of the beam from the middle of the joint at the welding location. In this 
regard, the problem arises of tracking the joint at the lead-in point, which is moved 
forward along the path of the joint at a given distance. In the case of arbitrary curved 
joints, the calculation of the lead-in point can only be performed using restoration 
models.

In this setting, we will have an adaptive control problem with a reference model, 
which we will consider the joint trajectory restored in the process of automatic 
learning. The management quality indicator will be determined by the expression

=
( )

( 2 + 2),                                                     (7.4)

where   – the deviation of the middle of the joint from the position of the center 
of the beam along the X axis;

 – the deviation of the middle of the joint from the position of the center of the 
beam along the Y axis;

 – control (beam deflection angle) from the area of permissible deviations .

7.4.2. Recovery Models Used in Tracking 

When tracking the joint, the models of the recognition subsystem and the 
constructed trajectory model in the form of a graphical representation are used. 
Figure 7.12 shows a view of the image of the seam during tracking.

The frame outlines the joint search zone, which is located perpendicular to the 
direction of movement at a given lead distance. The current position of the deflected 
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beam at the place of the proposed welding is marked with a red cross.

Additionally, the joint image displays:

• current position of the beam that is not deflected (current point of the trajectory) 
– light cross at the location of the weld pool;

• the position of the middle of the joint at the lead distance detected by the 
recognition program – a dark point;

• the estimated position of the middle of the joint at the lead distance – a light 
cross next to a dark point;

• permissible beam deflection zone – middle part of the search zone.

Fig. 7.12. Joint view during tracking.

The search area is built perpendicular to the direction of the velocity vector at the 
lead-in point. By the position of the cross and the point in the joint search zone, the 
required deviations of the beam along the X and Y coordinates are determined to 
accurately hold the beam in the middle of the joint. This calculation can be performed 
only when the motion control program and the program processing the recovery 
models work together synchronously. Moreover, the accuracy of the calculation 
will largely be determined by the accuracy of the graphical representation of the 
joint trajectory. In this regard, it is necessary to track the joint only after automatic 
learning of its trajectory.

7.4.3. Tracking Algorithm 

The initial premise for the tracking algorithm is the calculation of the lead-
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in points of the joint path exactly at the moments of receiving images from the 
observation equipment. With a typical operating cycle for RASTR equipment of 
300 msec, the points corresponding to the anticipated position of the beam at the 
moments of image acquisition should be calculated along the recorded path of the 
joint, i.e., the trajectory should be divided into sections in exact accordance with the 
period of operation of the RASTR equipment.

To coordinate the operation of the equipment and the motion control program, 
the observation system is launched into operation at the command of the lower-level 
PC at the moment the movement begins. Beforehand, the entire array of trajectory 
points corresponding to the received images is transferred to the recognition 
subsystem. The coordinates of the transmitted points should be projected onto the 
coordinate axis of the sensor installed at the end of the gun, with the origin at the 
point where the beam is located.

Taking into account the clarifications made, the tracking algorithm includes the 
following steps:

A.	Stage	of	preparation

1. Divide the entire trajectory into sections with a length  that equals 
the duration of the observation equipment operation cycle , multiplied by the 
specified travel speed . Let us get an array of  seven-coordinate points 

.

2. For each point , calculate the lead-in point  located at a 
given distance  from the point .

3. Using vectors (7.1)–(7.2) and shifting the center of coordinates, project all 
points  onto the end of the gun. Let us get points with coordinates , assuming 
that for points  such coordinates  are equal to zero: .

4. For each leading point  determine the direction  of the displacement vector 
to the next point.

5. Transfer the resulting list  of displacements and 
directions of movement at the predicted point  for processing to the recognition 
subsystem.

B.	Tracking	stage	(performed	sequentially	for	each	image	frame	and	each	point	in	
the array)

1. Determine the real coordinates of the midpoint of the joint in the place of the 
lead-in point .
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2. Calculate the deviation of the calculated lead point from the middle of the joint 
.

3. Make the deflection of the beam relative to the current deviation of its axis 
 by an angle , where  is 

the working distance (the distance from the end of the gun to the surface of the 
sample). The specified deviation vector  should be processed by 
linear increments in each interpolation cycle (IPO cycle) by the value  and 

, respectively, where  is the duration of the IPO cycle.

Thus, as a result of executing the tracking algorithm, we get the following 
implementation of adaptive control operators:

1. Operator of the main control loop:

 ,                                                    (7.5)

where  – the vector of deviations of the beam center at the lead-in point 
at the next step;

 – the vector of deviations of the center of the beam at the lead-in point at 

Fig.7.13. Operator interface screen view during trajectory learning.
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the current step;

 – the vector of coordinates of the current position of the joint midpoint at 
the lead-in point;

 – the current deflection angle of the beam.

2. Operator adaptation:

.                                                   (7.6)

Note that the information about the process contained in the vector  is 
formed by using reconstruction models, namely, joint recognition models that take 
into account the current deflection of the beam. The control vector  is 
recalculated at each step of the algorithm.

Figure 7.13 shows the operator interface of the KL115 and KL118 EBW machines 
during the performance of trajectory learning.

7.5. Multi-Agent Control of the Simultaneous Operation of Several Electron 
Beam Guns

7.5.1. Formulation of the Problem

The unique EBW machines KL 117, designed for welding of drill bits, use three 
electron beam guns, which should weld the three joints simultaneously. Guns are 
permanently installed and arranged in a circle at a distance of 120 degrees from 
each other, so their beams are focused on three joints. The appearance of the KL117 
machine and samples of bits are shown in Figs. 7.14 and 7.15, respectively.

For obtaining a quality weld in this EBW machine, there is a need for stable 
operation of the parameters of the welding current and focusing current according to 
the program. These conditions provide the most efficient use of the energy capacity 
of the welding machine, maintaining a safe mode of operation.

Each electron gun is controlled by its module of computerized CS, but the program 
is the same for all guns. It is compiled for one base joint and includes values of beam 
speed, welding current and focusing current, which are determined by the profile of 
the workpiece. The problem that arises during the welding process is a discrepancy 
in the physical parameters of the electron guns. This is due to uncontrollable 
variations in the electrical equipment and uneven wear cathodes. For this reason, 
the predetermined value of the focusing current is fulfilled in each of the guns at its 
level, and the resulting welds differ in quality, which is unacceptable. The challenge 
is that, using the embedded computer models of physical processes in the guns to 
provide agreed job of them, it is possible to obtain the same quality of beam despite 
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the variations in the parameters of the guns.

Obtaining high quality welds with simultaneous operation of three electron guns 
within a single EBW machine can be achieved by applying the method of software 
control using intelligent agents.

7.5.2. Construction of Recovery Models

To get background information about a control object, there may be used 

Fig. 7.14. The appearance of the KL117 machine.

Fig. 7.15. The samples of bits.
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the model of the current density profile obtained by means of diagnostic systems 
proposed by Akopyants et al. (2002). For three different guns within a single EBW 
machine, a density beam profile model of the welding current can be prepared (see 
Fig. 7.16).

The principle of this system is based on measuring the power distribution in the 
electron beam when the focusing current is changed. It uses a special sensor that 
intersects the beam at different values of the focusing current. As a result, the current 
density distribution is built from  cross-sections of the beam. Within each -th 
section, the current density  is assumed to be constant. In order to find unknown  
there is built a system of linear algebraic equations of the form

Fig. 7.16. Density beam profile models of the welding current:  
а) gun 1; b) gun 2; c) gun 3.
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,                                                                             (7.7)

where  – the matrix of dimension  with the elements proportional to cross-
sectional area;

 –  -dimensional vector of the beam density values;

 –  -dimensional vector of pulse amplitudes at each section.

According to the found values  the current density distribution is 
constructed for each cross-section of the beam. The cross-section with the highest 
current density on the axis  corresponds to the sharp focusing of the beam. For 
each distribution, the effective beam radius  is calculated on the assumption that 
the current density distribution can be approximated by the normal distribution law. 
Within this radius 63 % of the beam power extends. Thus, the sharp focus with the 
highest current density corresponds to the smallest effective radius of the beam .

The current density distribution along the beam axis displays four areas: 10–
25 %, 25–50 %, 50–75 % and 75–100% from the maximum density. These charts are 
used as recovery models of physical processes in the guns.

7.5.3. Theoretical Background of Control Method

A scheme explaining the calculation used in the control algorithm is shown in Fig. 
7.17. Designations used:

Fig. 7.17. Scheme of calculation in the multi-agent control algorithm.
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•  – the beam radius in the plane of the focusing lens;

•  – the smallest effective radius of the  -th gun;

•  – the distance to the maximum zone of density beam of  -th gun;

•  – the distance to the surface of the workpiece (working distance);

•  – removing distance of maximum density beam gun from the surface of  
-th workpiece;

•  – the beam radius on the workpiece.

When there is a mismatch of  it is necessary to bring it to a common measure 
in order to provide the work of all the guns by the welding program, for example, in 
sharp focus. For this purpose, the software will calculate the correction for the value 
of the focusing current  by the formula

,                                                                (7.8)

where ;

 – the coefficient that takes into account the change of focusing distance ;

 – the coefficient that takes into account the change of focusing distance during 
the change of focusing current.

At the low values of the ray convergence angles, the coefficient  is determined 
by the formula:

.                                                                           (7.9)

The coefficient  for each gun is estimated by a special procedure when a 
cathode is changed. It is used in the calculation as the initial parameter. It should be 
noted that when the focusing current increases the value  decreases, i.e., always 

.

7.5.4. Implementation Model of Control Algorithm

In the described method of the current focus matching one control module for 
every gun is used. It operates on the principles of intelligent agents. Each agent uses 
an implementation model represented in the form of CEN. An example of such an 
agent model is shown in Fig. 7.18.

1. At the cooperative level the task of information exchange between agents, which 
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control guns, is solved in order to determine the agreed level of focus distance. Input 
data are received in the form of tokens from adjacent agents via the input boundary 
positions P0–P3. In particular, the positions P0 and P1 receive tokens containing two 
attributes , where  is the number of the agent (the gun), and  – a decision 
accepted by the agent about the number of the leading guns (to the focus level of this 
gun all other agents will lead their focusing current). Positions P2 and P3	get tokens 
that contain a set of attributes , where  means deviation required for a 
change in the focusing current that is calculated by the agent. Calculated cooperative 
knowledge is compared at transitions J0 and J1, then the results are transmitted to 
the planning level of agent. 

Fig. 7.18. CЕN implementation model of an agent control algorithm.

The agent model shown in Fig. 7.18 defines three levels of focusing current control 
for one gun.

There are two possible options  of coordination:

• all agents make the decision on the appointment of the leading gun with 
middle level

;

• the gun that does not run the limits for values of focusing current is taken as 
a leading gun 
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.

2. At the level of planning on the basis of the results of diagnostics of the gun (token 
is in the input position  and the boundary values of the current focus 
defined by the welding program (token in the input position , the 
following processes take place:

• checking of the possibility of working out a specified range of currents at the 
focusing current (transition T1) to meet the existing restrictions on focusing 
current

;

• calculation by Formula (2) on the basis of an agreed level  of the required 
change of focusing current (transition T3) that is on the transition X18 checked 
again at the specified limit;

• output of data on the results of calculations in other agents (via the position 
P43 and P44 – the  signs of acceptance/rejection of the agreed  solution and via 
the position P45	and P46 – the  calculated value  are transmitted).

3. At the reactive level, the value of focusing current  (enters the position P6) 
set by the program using the conversion function of transition Y3 is adjusted in ac-

Fig.7.19. Operator interface screen view during trajectory learning.
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cordance with the generated correction , and an output signal is trans-
mitted to perform in the power supply control module of the gun. Processing of the 
program values of focusing current is used in the cycle as they are received from the 
motion control module.

The presented implementation model of agent is created using the system 
simulation EMS. After preprocessing, it is built into the control circuit of EBW machine 
in a view of XML file, which is executed by the interpreter of CEN model under QNX 
OS. For each electron gun there is a control module similar to the presented agent 
model.

Trajectory learning is similar to the KL118 installation. Figure 7.19 shows the 
operator interface of the KL117 EBW machine.

7.6. Model-Oriented Planning and Quality Assurance

7.6.1. Tasks of Model-Oriented Manufacturing Management

Model-oriented control is useful not only at the drive and operational level of the 
IMS control, as it was shown in the examples described in the previous sections. We 
can say that modeling is currently one of the main tools for managing production 
activities at the strategic level during planning and quality assurance of the 
manufacturing activities.

Almost all modern enterprise management systems of the Enterprise Resource 
Planning (ERP), Manufacturing Resource Planning (MRP), or Customer Resource 
Management (CRM) classes (Ganesh, 2014) include model-based planning modules. 
For example, the Production Planning module of the Oracle e-Business Suite (Oracle, 
2021) is a powerful system that combines planning models and forecasting methods 
with a runtime environment that allows you to quickly respond to changes in 
customer needs and working conditions. The same can be said about the SAP R3/
S4 (Razem, 2020). In addition to the planning module, it includes a unique solution 
related to the dynamic modeling of enterprise processes (DEM – Dynamic Enterprise 
Modeling), which ensures the adaptation of software, tested on world leaders, for 
the business processes of a particular enterprise. The latest proposal in the field of 
ERP II systems from Microsoft, called Axapta, is more versatile in terms of building 
an electronic office of enterprise management (Microsoft, 2021). Focusing not only 
on large, but also on smaller enterprises, Axapta uses the most modern Western 
management technologies in order to optimize production activities.

If we sum up the models used in these and other enterprise management systems, 
then their spectrum can be represented by four main directions:

• planning of production resources;
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• assessment and forecasting of financial activities;

• description of business processes;

• decision-making mechanism.

Each of these directions uses its own set of well-known mathematical methods. As 
a rule, these methods are focused on specific processes and have their own specific 
application. When planning resources, the methods of mathematical programming 
are most commonly used. At the same time, methods of statistical analysis and game 
theory are more suitable for assessing financial performance. The description of 
business processes is usually carried out using network methods, and in decision-
making tasks it may be necessary to build a neural network  or a whole hierarchical 
system of evaluating functions (Geunes, 2017).

The task of the enterprise management system is to ensure that all these methods 
work for a common goal. In modern enterprise management systems (as IMS), this 
task is accomplished using two basic CALS technologies that are invariant with 
respect to the object (products):

• project and task management (Project Management/Workflow Management);

• quality management (Quality Management).

Although these technologies have their own models, determined by the corresponding 
standards, they cannot be directly considered models for the implementation of 
management at the enterprise level. First of all, it is due to the fact that the known 
models of planning and quality management are not characterized by a direct impact 
on the control object. As a rule, the results of their work are taken into account only 
by the decision-maker that not only increases the reaction time of the CCS, but also 
introduces a pronounced subjective factor into it. In addition, these models significantly 
differ from models at other levels in terms of use. It creates certain difficulties in the 
methodological, functional and informational coordination of management levels. At 
the same time, the use of a unified approach to building implementation models at all 
levels of management will not only simplify their interaction, but also provide the basis 
for the complete automation of the production management process.

If we consider the planning and quality management models as models for the 
implementation of the corresponding algorithms, then a clear hierarchical management 
structure is built, when the higher-level models call the lower-located models in the 
order prescribed by the management system. Depending on the results obtained in the 
called models, management influences are formed at the next level in the hierarchy. 
With the existing cyclical nature of the production process, the models used will be 
called many times, forming a logical sequence of actions, covered by a feedback loop.
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Thus, with the model-oriented method of management, the difference in 
approaches to the use of models at different levels of management, which was 
characteristic of the enterprise CCS at the early stages of their formation, is erased. 
It means that at the strategic level the principles of building implementation models, 
given in the form of CEN, must be followed. If these principles are observed, we can 
talk about the continuity of technologies for building and using models at different 
levels of management. However, we note that at the level of strategic management, 
the participation of the operator, or manager, is still manifested more fully, which 
puts forward additional requirements for the user interface.

Considering model-based management in relation to basic planning and 
quality management processes, we will rely on the main CALS standard ISO / IEC 
10303 (ISO 10303, 2021) – the standard for the exchange of product data models 
(Standard for the Exchange of Product Model Data – STEP) and the international 
quality standard ISO 9000 (ISO 9000, 2015). First of all, we will be interested in the 
following requirements of these standards:

1. Project management:

• unlimited hierarchy of work in projects;

• the ability to include one work in several projects;

• association of any objects (documents, products, technological processes, 
etc.) with the work of the project;

• managing the revision of project milestones;

• formation of various reports on the progress of projects.

2. Workflow management:

• automation of management of formalized enterprise processes;

• support for cyclical processes, for example, returning drawings for revision;

• automatic notification of completed and overdue works;

• support of the hierarchy of processes (product development – unit 
development – part development).

3. Quality data management:

• ensuring a process approach to quality management;
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• computer support of the quality management system;

• tracking the conformity of manufactured products to the established 
requirements;

• maintenance of quality records;

• presentation of the results of control of lots and copies of products;

• quality documentation management;

• monitoring and analysis of enterprise processes.

4. Messaging:

• built-in mail subsystem allows you to exchange messages among employees. 
In this case, both files and links to any database objects can be transferred 
along with messages.

5. Organization of access to data:

• the ability to set access rights to any object of the system both for an 
individual user and for groups of users;

• the ability to automatically assign access rights to the created objects.

7.6.2. Implementation Models of Planning Processes

Regardless of the forms of running the economy, planning has always 
occupied and continues to occupy a leading place in the production activities of 
enterprises. With the help of planning, it is possible to solve the issues of choosing 
a development strategy, determining plans for the purchase, production and sale 
of products, efficient use of enterprise resources, etc. 

A particularly important role in planning is played by computer technology, 
which makes it possible to automate the process of drawing up plans and monitor 
their implementation. We can say that today, thanks to computers, planning is 
becoming an element of management in the modern enterprise.

There are two main approaches to planning automation. The first approach, 
characteristic of a market economy, was based on models and methods of 
project management, aimed at solving specific practical problems. The most 
famous mathematical models used to describe projects are PERT and GERT 
networks (Wiest, 2011). This direction was more in line with organizational 
needs, but clearly lost in the validity of decisions. The second approach, actively 
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implemented in the system of the planned economy, consisted in the creation 
of automated systems for planned calculations (ASPC). It was based on the use of 
computational and logical systems, which were a further development of intelligent 
software packages for collective problem solving. The basis of the computational-
logical system was an aggregated model that used second-level economic and 
mathematical models as modules.

The fact that the first direction prevails in today’s enterprise management 
systems does not at all mean that there should be a complete rejection of the use of 
calculation methods. The challenge is to make project management more meaningful, 
taking into account the needs of the IMS. It can be achieved by using as models of the 
dynamics of projects not simple network schemes, but more complex logical systems 
capable of calling specific calculation methods and taking into account the results of 
calculations in the process of making management decisions.

Following our accepted concept of CALS, which requires the use of a unified 
strategy for presenting data at all levels of management, we can use control 
E-networks to describe work structures. First, we will consider the PERT network as 
a conceptual model. Without going into the details of the PERT method, we only note 
that in PERT networks, only nodes of the “AND” type are allowed: the event indicated 
by the node is performed only if all the work that preceded it has been completed.

Figure 7.20 presents the PERT network of the project, the purpose of which is to 
manufacture a new industrial plant.

In Fig. 7.20, jobs are marked with letters and nodes with numbers. A description 
of the jobs with an indication of the time of their execution is given in Table. 7.2.

The durations of all jobs are assumed to have a triangular distribution, which in 
this case approximates the beta distribution commonly used in network analysis. 
The density function of the triangular distribution is defined as follows:

Fig. 7.20. PERT-model of the industrial plant manufacturing project.
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,                 (7.10)

where the mathematical expectation and variance are respectively equal

                                                                                                                (7.11)

and

.                                                                         (7.12)

The minimum value is interpreted as an optimistic estimate, and the maximum 
value is interpreted as a pessimistic estimate of the duration of work.

If we take the average values for the actual duration of the work, then the time 
characteristics of the project can be calculated analytically using the critical path 
method (CPM) (East, 2015). The results of such calculations are shown in Table 7.3.

In Table 7.3, the following designations are used:

•  – a set of immediately preceding and immediately following jobs with 
respect to the k-th job;

•  – duration of the k -th work;

•  – the earliest and latest completion dates of the k-th work;

Table 7.2 Description of the Jobs of the Industrial Plant Manufacturing Project
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•  – reserve time of the k-th job.

The target time is 36 days, the critical path is formed by works A-C-E-G-H. Now we 
will show how a PERT network can be modeled using CEN. Using EMS, let us build a 
CEN model corresponding to the PERT network of the project shown in Fig. 7.20. We 
assign to each work a transition of the “T” type. In the places of branching, we add 
transitions of the “F” type, and in the nodes of the merge of works – transitions of the 
“J” type. The delay time at transitions of the “T” type will be calculated according to 
the triangular law with the parameters given in Table 7.3. The value of the activation 
functions is set equal to 1. The CEN model for this project will have the form shown 
in Fig. 7.21.

Table 7.3 Calculation of the Time Characteristics of the Project by CPM

Fig. 7.21. CEN model of the industrial plant manufacturing project.
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It is clear that for the CEN network modeling the PERT network, it is possible 
to determine an analytical method for calculating both the directive time and other 
characteristics of the project network schedule based on the MCP. The calculation 
algorithm in this case will be as follows:

1. Based on the structure of the CEN network, we construct an incidence matrix 
of transitions of the “T” type, which we denote as , where . In what 
follows, we will consider only transitions . We will consider a 
transition  to be incidental to a transition  if it is the first -transition in the firing 
chain after the transition . Let us assign the value 1 to the elements of the matrix 
that satisfy this condition. For example under consideration, the incidence matrix of 
T-transitions can be represented in the form of Table 7.4.

Table 7.4. T-Transition Incidence Matrix

2. For each transition , we determine the set of immediately preceding transitions 
 and the set of immediately following transitions .

3. In all transitions  for which , let us assign  .

4. In all transitions  for which , let us assign .

5. We calculate the target time using the formula . 

6. In all transitions  for which , let us assign .

7. In all transitions  for which , let us assign .

8. We calculate the time reserve for all transitions .
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9. In all transitions for which , let us assign the sign of belonging to the 
critical path.

However, the advantage of CEN is not the ability to perform an analytical solution 
on the web. It is important that with the help of CEN, using the method of simulation, 
it is possible to obtain statistical estimates of these characteristics, which take into 
account the influence of random factors. In this case, various distribution laws can be 
used to calculate the delay time during transitions. Simulation runs of the model can 
be organized both in the EMS modeling system and in the model runtime built into 
the project management system. For example, statistical experiments with the model 
shown in Fig. 7.21, performed with EMS, gave the following results: for 50 model 
runs, the mean value of the directive time was 36.2 with a variance of 12.8, which 
coincided with the analytical calculations.

In addition to preliminary evaluation of the characteristics of the plan, the CEN 
model can be used to organize programmatic management of the project progress. 
For this purpose, it is sufficient to include in the definition of the activation functions 
of T-transitions taking into account signals indicating the completion of the previous 
work, and use the delay time at transitions only in forecasting models. Then the CEN 
network will be transferred to the category of implementation models that initiate 
the implementation of subsequent work by issuing the corresponding output signals. 
Simultaneously, for dynamic estimation of the directive time in the control process, 
both analytical and simulation methods of modeling can be applied. In the latter case, 
the actually measured delay time is set for the work already performed. Carrying 
out statistical experiments with a model that is used as a control algorithm becomes 
possible due to the fact that at the strategic level (when planning and managing the 
work flow), the response time requirements are not as stringent as at the drive or 
operational and tactical levels. It increases the cycle time to the level required for 
multiple runs of the model.

When modeling PERT networks using CEN, all the capabilities of the latter as a 
means of describing control processes are not implemented. Due to their analytical 
orientation, PERT networks still have significant structural limitations: they do not 
allow for the use of loops and exclude probabilistic branching. Therefore, the PERT 
model cannot include the feedback operations required for project management. 
More preferable for CEN in terms of conceptual models are GERT networks, which 
are free of the above drawbacks, although they also have their limitations for the 
same reasons as PERT networks.

The best solution can be obtained by combining the capabilities of the PERT 
and GERT networks by including additional “OR” nodes at the input and output 
in the PERT network. With the help of the extended PERT network, it is possible 
to represent not only the network diagram of the project, but also more complex 
diagrams describing the workflows.



228

Let us consider the application of the extended PERT network as a conceptual 
model of the semiconductor manufacturing process, which includes the works 
related to checking and preparing the oven (Fig. 7.22). 

Fig. 7.22. Conceptual model of the semiconductor manufacturing process.

As shown in Fig. 7.22, the process begins with the receipt of raw materials (work 
A). At the same time, the oven power supply is checked (operation B). After molding 
the raw material (C) and checking the furnace (D), the loaded samples (E) are fired. 
Then the obtained samples go to the final control (G), and the oven is cleaned and 
prepared for the next heating (F).

After inspection, the samples obtained are either recognized as good crystals and 
packed for shipment (I) or sent for recycling (H).

CEN interpretation of the extended PERT network will be as follows:

• nodes with input function “OR” will be represented by transitions of type “Y”;

• nodes with an output function “OR” – transitions of the “X” type;

• conditions of probabilistic choice for the specified nodes will be determined 
using decision functions;

• we assign transitions “J” to the nodes of the “I” type, and nodes without a 
probabilistic choice at the output – transitions of the “F” type;

• as before, the planned works will be depicted using transitions of the “T” type;

• the execution time of work will be modeled by the delay time at the transition, 
which is calculated according to a given distribution law.

For the example under consideration, the CEN model built according to these 
rules will have the form shown in Fig. 7.23.
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Fig. 7.23. CEN model of the semiconductor manufacturing process.

The formal definitions of extended PERT networks using CEN are used in the 
same way as in the case of conventional PERT networks; however, analytical solutions 
cannot be obtained for them. By means of statistical experiments, estimates of the 
average and variance of the time of complete processing of a batch of raw materials 
are calculated (see Fig. 7.23). The condition for the end of the cycle is the remaining 
amount of raw materials, which is calculated each time at transition T8 and stored in 
the tag attribute. At transition X0, the remainder of the raw material is checked, and 
if it turns out to be less than the specified level, the mark is sent to position P15 – the 
process ends.

Summarizing the consideration of planning models, we note that the use of CEN 
as network diagrams of plans and workflows has several advantages over other 
methods. These advantages lie in the capabilities provided by CEN:

• simulation of various options for project development, taking into account a 
large number of random factors and existing risks;

• creation of aggregated models that call functional modules for calculating the 
current values of production indicators;

• monitoring the progress of the project and analysis of its current state;

• dynamic evaluatation of design performance using both analytical and statistical 
methods;
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• use of estimates of design indicators when choosing the direction of project 
development;

• predicting the development of the project with the existing trends in its 
dynamics;

• management of the project progress by generating conditions for the start of 
work.

7.6.3. Risk Assessment in Model-Oriented Planning and Management

In network planning, risk is the result of unforeseen events, which make the 
work impossible to be performed on time. It leads to delays in the entire production 
process or project execution time and to unforeseen losses of financial, time and 
labor resources. Therefore, the implementation of any plan largely depends on its 
reliability, which is determined by the probability of fulfillment of the technical and 
economic indicators laid down in the plan.

Even greater demands are placed on real-time work planning. In general, the task 
of real-time network planning is to ensure the implementation of the project under 
the given constraints, which must be checked during the implementation of the plan. 
In this case, the problem of planning is in many respects similar to the problem of 
dynamic verification, in the solution of which varieties of temporal logic can be used 
to formally determine the constraints on the operating conditions.

According to PMBOK (Project Management Body Of Knowledge) (PMBOK, 2017), 
risk management is the process of identifying, analyzing risks and making decisions, 
which include maximizing the positive and minimizing the negative consequences 
of risky events. Thus, risk is an activity associated with overcoming uncertainty in a 
situation of choice, in the process of which there is an opportunity to quantify and 
qualitatively assess the probability of achieving the predicted result or deviation 
from the goal.

According to risk management standard (ISO/IEC, 2019), risk is defined as a 
consequence of the impact of uncertainty on the achievement of objectives.

The basic concepts of risk include:

• risk assessment is a process that includes risk identification, risk analysis and 
comparative risk assessment;

• level of risk is a measure of risk or a combination of several types of risk char-
acterized by the consequences and their plausibility (probability).

To estimate the probability, the following resources are used:
• chronological data to identify an event or situation that occurred in the past 

and extrapolate their occurrence in the future;
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• forecasting methods, such as error tree analysis and event tree analysis;
• expert assessments in a structured probability assessment process.
In a situation where there are several options, risk assessment must be performed 

for each of the alternatives.

There are the following groups of risk assessment methods:

• methods of observation (method of expert assessments);
• scenario analysis;
• functional analysis;
• statistical analysis (Markov analysis, Monte Carlo method, Bayesian analysis).

Methods of statistical analysis carry out quantitative risk assessment. For 
example, according to the Bayesian method (Kruschke, 2014), even before the data 
are obtained, decision maker considers the degree of their confidence in possible 
models and presents the data in the form of probabilities. Once the data are obtained, 
Bayes’ theorem allows us to calculate a new set of probabilities that represent new 
degrees of confidence in possible models that take into account new information 
from the received data.

Of the three stages of risk assessment, which include risk identification, risk 
analysis and comparative risk assessment, these methods cover only the last 
stage, i.e., none of the above methods of statistical analysis provides support for all 
components of the risk assessment process.

Recent studies of methods for assessing the reliability and risks are the following:

• The method based on oriented graphs – the  model of the project implementa-
tion process is considered in the form of a Cyclical Alternative Network Model 
(CASM) (Voropayev, 2013). With the help of CASM, it is possible to take into 
account the alternative nature of both the technology of production of works 
and methods of allocating resources for work to carry out their optimal pur-
pose with the optimal rate of use. However, this method takes into account only 
consistent work and a priori risk assessment before the experiment.

• The method of finding the optimal strategy within the Markov decision-mak-
ing process with non-Markov rewards (Thiebaux et al., 2006) includes the task 
of checking the properties of the system expressed by probabilistic temporal 
logic. However, this method is not suitable for solving the problem of dynamic 
risk assessment and decision-making in network planning because in a general 
case planning processes are non-Markov.

• The method based on the use of alternative stochastic network models in-
cludes analysis of the stochastic graph using a simulation model, and it is a 
combination of Ford-Falkerson algorithm (Laube and Nebel, 2016) to find the 
maximum path length, logically justified calculations, and elements of the sta-
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tistical test method. The disadvantage of this method is that the evaluation of 
the implementation goes to the beginning of the project, and in real time it 
does not work.

• Cognitive map method. The essence of the method is to build cognitive maps 
and implement on their basis modeling of different scenarios. It allows you to 
predict the occurrence of certain events that may adversely affect the results of 
project activities or activities of the enterprise. 

However, these methods do not take into account the intersection of time intervals 
and changes in the state in the process of work with the simultaneous analysis of 
alternative paths in the work plan. This problem is solved by the method of dynamic 
risk assessment in network planning and management, based on the combination of 
implementation models as CEN and predictive models as CTL in simulation mode.

Let us assume that the work plan of CPS manufacturing looks like as shown in 
Fig.7.24 (Kazymyr, 2017). Alternative ways to implement the work plan in Fig. 7.24 
are shown by a dotted line.

With the beginning of execution of the plan of works (1) there is a division of 
ways of works which will be carried out in parallel, namely: a choice and the further 
works with hardware (2) and software (3). When choosing the hardware, the choice 
of the tablet is between two manufacturers. The difference in choice will affect the 
financial costs. This is followed by the division (13) into the parallel performance of 
such tasks as: the development of the identification system (14), the choice of server 
configuration (15) and the choice of network equipment (16).

When choosing software, tasks (3) should be divided into client (6) and server 
(7) parts. For client software, the question is: under which platform to develop? That 
is why there is a choice of alternatives (6) among the available platforms. Choosing 

Fig. 7.24. Work plan of CPS manufacturing.
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one of the options will affect the development time. This is due to the relevance, 
openness, popularity, functionality of each of the platforms, which will certainly affect 
the time spent searching for information, ways to solve problems, the development 
and further support. 

Next is the work that will be used to select the architecture (18) and programming 
language (19). After selecting everything you need to develop software for the client 
part, the coding time (20–23) comes next. It is reasonable to divide the tasks into 
several parts for parallel programming by several programmers, which will allow you 
to do the job faster than one person would do. It is important to choose a database 
for the server software. Therefore, there is a choice of alternatives (7) between the 
commercial and open systems (11 and 12). The choice depends on the financial 
costs, as well as development time, in particular due to the openness and quality of 
documentation. 

Next is the stage of development of the server part. As mentioned earlier, to 
optimize the development time for the available number of human resources, the 
work is divided (25) among developers into the following tasks: development 
of the repository layer (26), domain layer (27), service layer (28) and application 
layer (29). Documentation is maintained at all levels – hardware  and software (17, 
24, 30). After the hardware and software development is completed, there is an 
integration phase (31), a testing phase (32) where you can detect bugs and return 
the system for refinement, a documentation phase (33), and the final startup phase – 
implementation (34) of this system.

The implementation model of the work plan is shown in Fig. 7.25.

Let restrictions introduced on the work plan relate to the maximum value of 
the cost of work – no more than 10,000 monetary units, and the maximum time of 
execution of the work plan – no more than 250 units of time.

Fig. 7.25. Work plan implementation.
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Figure 7.26 presents an editor window with certain model variables:

• COST – initialized with a value that limits the financial resources, 10000;

• PER, PER1, PER2 – auxiliary variables that are needed to determine the 
alternative path after each transition type “X”.

Fig. 7.26. Model variable editor window.

The variable that limits the project execution time is not defined – it will use the 
system variable TIME, which is available for all functions of the model.

In the model, transitions X0,	 X1 and X2 have alternative paths. Thus, at the 
transition X0 there is a choice of tablet type (place P4 or P5), at the transition X1 – the 
choice of client software platform (place P18, or P19, or P20), and at the transition 
X2 – the choice of database for server software (place P26 or P27).

The transition delay function X0, defined as RETURN 1, means the transition delay 
is determined by 1 unit of time. The crucial function of this transition is determined 
by the entered variable PER:

V	[‘PER’]	=	UNIFORM	(0,1);

IF	(V	[‘PER’]	<0.5)	RETURN	0;

IF	(V	[‘PER’]>	=	0.5)	RETURN	1.

It means that the choice of an alternative way to continue the process of work will 
be in accordance with the law.
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The delay function of the transition X1 is defined as RETURN 1; the crucial function 
of this transition is determined using the entered variable PER1:

V	[‘PER1’]	=	UNIFORM	(0,1);

IF	(V	[‘PER1’]	<0.33)	RETURN	0;

IF	(V	[‘PER1’]]	=	0.33	&&	V	[‘PER1’]	<0.66)	RETURN	1;

IF	(V	[‘PER1’]>	=	0.66)	RETURN	2.

Function of delay of transition X2 is defined as RETURN 1; the decisive function of 
this transition is defined by means of the entered variable PER2:

V	[‘PER2’]	=	UNIFORM	(0,1);

IF	(V	[‘PER2’]	<0.5)	RETURN	0;

IF	(V	[‘PER2’]>	=	0.5)	RETURN	1.

Type “Y” junctions are required to join branches of alternative paths. The crucial 
function of the transition Y0 is defined as follows:

VAR	isPlace2Marked	=	P	[‘P7’].	T;

IF (isPlace2Marked == TRUE) RETURN 1;

ELSE	RETURN	0.

In this case, the presence of the label in the input positions of the transition is 
checked using the entered local variable of the transition isPlace2Marked.

The crucial function of the transition Y1 is defined as follows:

VAR	isPlace2Marked	=	P	[‘P23’].	T;

VAR	isPlace3Marked	=	P	[‘P25’].	T;

IF (isPlace2Marked == TRUE) RETURN 1;

IF	(isPlace3Marked	==	TRUE)	RETURN	2;

ELSE	RETURN	0.

The decision function of the transition Y2 is defined as follows:
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VAR	isPlace2Marked	=	P	[‘P27’].	T;

IF (isPlace2Marked == TRUE) RETURN 1;

ELSE	RETURN	0.

Other functions (delays and conversions) for Y transitions are not specified.

At transitions T, the concrete work executed in the project is modeled. At the same 
time, it may take some time, and possibly some resources. This is determined by the 
delay and conversion functions. For example, for the transition T0	these functions are 
defined as follows:

• delay function: “RETURN	8;”, which means a delay at the transition of 8 units of 
time;

• conversion function: “V	 [‘	 COST	 ’]	 =	 V	 [‘	 COST	 ’]	 -	 200;”, which means the 
consumption of 220 units of monetary resources on this transition.

For the transition T2, these functions are defined as follows:

• delay function: “RETURN	UNIFORM	(90,251);”, which means the delay at the 
transition in the interval [90, 251] units of time, set by the uniform law;

• conversion function: “V	[‘	COST	’]	=	V	[‘	COST	’]	-	2000;”, which means the cost of 
this transition 2000 units of monetary resources.

The transition functions of the other T-junctions are set similarly.

The following parameters are set for the experiment:

• 400.0 – system simulation time, it will be enough with all the delays that may 
occur during the run of the model;

• 1200 – the number of runs of the model;

• AG – an operator of temporal logic;

• V [‘COST’]> = 0 && TIME <250 – a formula that checks the condition whether 
the specified financial resource has been exceeded and whether the project 
execution time has been exceeded by 250 units of time.

Figure 7.27 shows a table with the results of the experiment.

In the table of results, the path -> P5 -> P18 -> P27 with the lowest risk (30%) 
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to meet the constraint specified in the form of the CTL formula can be selected, the 
accuracy of the experiment is defined by d= 0.02 (the deviation is at a confidence level 
of 95%) and the number of alternative paths N=12. The model can be complicated by 
increasing the number of alternatives (the factors on which the implementation of 
the work plan depends) and setting additional constraints.

Thus, the developed simulation model allows predicting the implementation of 
work plans taking into account the risks, as well as ensuring the stability of plans 
under conditions of uncertainty.

7.6.4. Implementation Models of Quality Management Processes

If we proceed from the principles of building implementation models, then quality 
management in its form should not differ much from project management. However, 
unlike planning models, quality management models do not have such pronounced 
analogues that can be used as conceptual models when constructing formalized 
schemes of control algorithms using CEN. In this regard, the basic methodological 
approaches that form the basis for the construction of quality management systems 
should be analyzed in order to determine the role and place of MOC in these systems.

To ensure the required level of quality in international practice, two approaches 
have been used: product-oriented and process-oriented. Both approaches require a 
quality management system. Such a system defines the objectives of management in 
relation to quality, establishes its policy and details the necessary actions.

In the first approach, the emphasis is placed on quality control by checking the 
finished product. This approach is based on the assumption that the more errors are 
detected and removed during the final control of the product, the higher its quality. 

Fig. 7.27. Results of the experiment.
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In the second approach, the emphasis is placed on taking measures to prevent, 
promptly identify and remove product flaws by timely defining responsibilities, 
provision plans, basic procedures for ensuring the quality of products, as well as 
taking appropriate measures sequentially, starting from the initial stages of the life 
cycle.

The process approach in our time can be considered generally accepted. It 
underlies the concept of Total Quality Management (TQM) (Kiran, 2016), which 
is implemented in numerous international standards, draft standards and 
working materials. Internationally, specialized systems of standards are formed 
by the International Organization for Standardization (ISO) and the International 
Electrotechnical Commission (IES). International standards of the ISO 9000: 2015 
(ISO 9000, 2015) series establish the principles of enterprise management based on 
the process approach.

According to ISO 9000 standards, regardless of the product category, process-
based quality management takes into account, inter alia, the following aspects:

• description of processes according to the rule “inputs – operations – outputs”;

• identification of links between processes;

• identification of operating procedures.

As you can see, this definition exactly corresponds to our approach to building 
implementation models. It remains only to clarify the concepts of the control object 
for these processes, the list of processes and the details of their operational content.

As a CO for the processes of the quality management system, documents are 
considered that can be located on any data carrier: paper, diskette, disk, etc. Quality 
management documentation is divided into three levels. The first level documents 
include “Quality Manual” and “Quality Policy”. These documents are fundamental, 
defining the structure of the processes. Within processes, they can be used as links, 
although in some cases they can be controlled objects, in particular when making 
changes.

Second level documents are methodologies and instructions that describe 
procedures for fulfilling the requirements of the standards. They set the content of 
the processes tied to the specific conditions of the enterprise.

Finally, the third level documents include work instructions, test procedures and 
quality records. They also include documents accompanying input and output data, 
as well as internal documents that ensure the implementation of work procedures.

The main processes that form quality at the stages of the full life cycle of products 
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defined by the ISO 9001: 2015 (ISO 9001, 2015) standard include:

• requirements management (requirements);

• development and planning of the project (developing);

• control (testing);

• support (maintenance);

• changes (changing);

• inspection (inspection).

Fig. 7.28. Requirements management process algorithm.
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Each of these processes can be described using flowcharts. As an example, let us 
consider the requirements management process, the algorithm diagram of which is 
shown in Fig. 7.28. Requirements management aims at achieving and maintaining 
an agreement with the customer on the requirements for a development project. 
A customer can mean a marketing group, an internal organization, or an external 
customer. This agreement is referred to as the “System Requirements” set for the 
project and covers both technical and non-technical requirements (e.g., lead times). 
The agreement forms the basis for costing, planning, executing and tracking project 
work throughout the entire product life cycle.

System requirements for a product, equipment, and other system components, 
such as people, can be enforced by a team of analysts, and developers do not have 
to directly control this distribution. The development team also takes appropriate 
steps to ensure that requirements are under control that fall under the responsibility 
of the developers. To ensure this control, the development team reviews the original 
and revised system requirements and tries to resolve possible issues before the 
requirements are introduced into the development project. Any change in system 
requirements is accompanied by changes in the broken development plans in order 
to align them with the updated requirements.

A formalized model of the requirements management process developed using 
EMS is shown in Fig. 7.29.

Transitions are modeled by the following procedures:

Fig. 7.29. CEN model of the requirements management process.
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• Y0 – receiving a change request;
• F0 – sending requests to groups;
• T0 – requirements development by the project manager;
• T1 – formulation of requirements by the support team;
• T2 – formulation of requirements by a group of analysts;
• J0 – a summary of the drawn up requirements;
• T4 – review of requirements by the project manager;
• X0 – checking and agreeing on consistency requirements and
• adequacy;
• X2 – making changes to the development project;
• QF – distribution of documents in the order of the queue;
• J1 – sending documents for inspection on demand.

The decisive function of the transition X0 determines the direction of the 
development of the process depending on the value of the first attribute of the label 
according to the rule:

if	(P9.m	[1]	=	0)	then	R1:	=	1;	//	if	the	requirements	are	agreed;

If	(P9.m	[1]	=	1)	then	R1:	=	2;	//	if	requirements	are	not	agreed.

The aggregate states corresponding to the marked positions have the following 
definitions:

• Р3 – request for the formulation of requirements;
• P4 – request processing by the project manager;
• Р5 – request processing by the support team;
• Р6 – request processing by a group of analysts;
• Р8 – documentation of requirements by the project manager;
• Р9 – documenting requirements by the support team;
• Р10 – documenting requirements by a group of analysts;
• Р11 – receipt of documents for consideration by the project manager;
• Р12 – receipt of a document for approval;
• Р14 – request for development and planning;
• P0 – request for changes.

In a similar way, other life cycle processes are modeled in form of DEVELOPING, 
CHANGING, INSPECTION, MAINTENANCE and TESTING aggregates. These processes 
are not self-contained. 

The scheme of interaction of processes is modeled by establishing connections 
between the aggregates as it is shown in Fig. 7.30. The links between the units are 
established by connecting the corresponding boundary positions, through which the 
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transfer of labels (control) between the processes takes place. As a result, even the 
execution of a single project occurs within the TQM quality management cycle, which 
includes: planning, execution, control and corrective actions. Note that the inspection 
process, as in our case, is usually outside the scope of this cycle, since it affects all 
processes.

Fig. 7.30. Aggregate implementation model of product life cycle.

Implementation models make it possible to abandon expert assessment of many 
characteristics of quality management processes. Using the attributes of labels and 
transformation functions of transitions for the accumulation and calculation of data 
characterizing the performance of certain operations, it is possible to evaluate the 
following characteristics:

• quality of definition of input and output data, their sufficiency;

• quality of registration of execution of process operations;

• quality of technologies for performing process operations;

• quality of managerial decision-making by a manager (regularity of control, 
analysis of reports, etc.);

• quality of documentation.
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If we talk about the quality of forecasting the development of processes by the 
leadership, then the real forecast can be compared with the results of the assessment 
obtained using forecasting models based on the dynamic analysis of CEN.

Estimates of the temporal characteristics of processes can be obtained even more 
simply: the duration of preparation, the duration of operations and the total time 
of the process, which are mapped into the standard numerical characteristics of 
transitions obtained as a result of statistical experiments. As with scheduling tasks, 
these experiments can be performed in real time during the process, which will be 
controlled by the implementation model.

7.7. Summary

EBW machines are outstanding representatives of the class of industrial robots, 
on the basis of which an intelligent production system can be formed. The basis of 
such a system is a model-oriented CS, built on the principles of a hierarchy of goals, 
synchronicity, reliability, distribution, flexibility and openness, which are realized 
by integrating high-quality executive equipment with intelligent control based on 
embedded models.

The use of implementation models in combination with forecasting models when 
controlling a vacuum system, a power source and a displacement system made it 
possible to solve the problem of timely switching of CO operating modes in order to 
prevent the development of dangerous situations.

The use of recovery models built into the control loop made it possible to 
implement:

• a visual method of designing welding programs with multi-axis movements;

• an adaptive method of tracking the butt during welding;

• a multi-agent control of the simultaneous operation of several electron guns as 
part of one ELS installation.

The use of model-based control methods for EBW machines makes it possible 
to significantly improve the quality of products and the efficiency of the production 
process as a whole, which is confirmed by the given technical characteristics of the 
CS and the experience of operating these installations at enterprises of the aerospace 
and metallurgical industries.

Implementation and predictive models are one of the main tools for organizational 
management of production activities at the level of the automated control system, 
where planning and quality management processes prevail. These models can serve 
as the basis for building management modules that provide financial activities, 
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decision support and organizational management of the enterprise.

To manage planning processes, it is proposed to use implementation models 
built on the basis of conceptual models in the form of extended PERT networks. In 
this case, both methods of analytical calculation of the main parameters of the plan 
and simulation experiments with built-in models can be applied. The complex of 
developed basic models of quality management processes provides support for the 
full life cycle of products.



245

References

Akopyants K. S., Nazarenko O. K., Gumovsky V. V., Chernyakin V. P. (2002) Diagnostic system of an 
electron beam in electron beam welding machines// Automatic welding. No. 10. pp. 30–33.

Albert W., Yao L. (2010) A petri nets-based process planning system for wastewater 
treatment, Asian Journal of Control.

Alpern B., Scheider F. B. (1985) Defining liveness. Information Processing Letters. Vol. 21, 
No. 4. pp. 181–185.

Alur R. (1991) Techniques for automatic verification of Real-Time systems. PhD thesis, 
Stanford University, 275 p.

Alur R., Henzinger T. A. (1990) Real-time logics: complexity and expressiveness. In 
Proceedings of the Fifth Annual Symposium on Logic in Computer Science, IEEE Computer 
Society Press, pp. 390–401.

Alur R., Henzinger T. A. (1993) Real-time logics: complexity and expressiveness. Information 
and Computation. No. 104(1), pp. 35–77.

Alur R., Peled D., Penczek W. (1995) Model Checking of Causality Properties. In Proc. 11th 
IEEE Conf. Logic in Computer Science, pp. 90–100.

Arica E. and Powell D. (2017) Status and future of manufacturing execution systems// 
In Industrial Engineering and Engineering Management (IEEM), 2017 IEEE International 
Conference, pp. 2000–2004.

Asteziano E., Zucca E. (1995) D-oids: a Model for Dynamic Data Types. Mathematical 
Structures in Computer Science.  Vol. 5, No. 2, pp. 257–282.

Astrom K, Wittenmark B. (1996) Computer-Controlled Systems, Theory and Design, 
Prentice Hall.

Astrom K. (2008). Adaptive control. Dover, 2008. pp. 25–26.

Bailo Clark P. Yen C. J. (1997). Open modular architecture controls at GM Powertrain: 
technology and implementation Proceedings of the SPIE, Vol. 2912, pp. 52–63.

Baranov S. Logic Synthesis for Control Automata. Springer, (1994)393 p.

Basile, F., Chiacchio P., Coppola J., Gerbasio D. (2015). Automated warehouse systems: A 
cyber-physical system perspective. In 2015 IEEE 20th Conf. Emerging Technologies & Factory 
Automation (ETFA), pp. 1–4.



246

Bassi L. (2017) Industry 4.0: hope, hype or revolution? Conference: IEEE 3rd International 
Forum on Research and Technologies for Society and Industry - Innovation to Shape the Future 
for Society and Industry (RTSI), pp.1-5. DOI:10.1109/RTSI.2017.8065927.

Bechet, D., De Groote, P., Retoré, C. (1997), “A complete axiomatisation for the inclusion 
of series-parallel partial orders”, Rewriting Techniques and Applications, Lecture Notes in 
Computer Science,1232, Springer-Verlag, 1997. pp. 230–240.

Beyaert B., Florin G., Long P., Matkin S. (1981) Evaluation of Computer Systems 
dependability using stochastic Petri Nets // FTCS–11: The Eleventh Annual Int. Symp. Foult – 
Tolerant Computing, Portland, 1981. pp. 79–81.

Berg (1985). “CAD/CAM’s Pioneer Bets It All”. The New York Times.

Berkeley (2020), Electrical Engineering and Computer Sciences at UC Berkeley, https://
ptolemy.berkeley.edu/projects/cps/ [accessed in May 2020].

Bibel, Wolfgang (2007). Early History and Perspectives of Automated Deduction. KI 2007. 
LNAI. Springer (4667): 2–18.

Bird R. S. (1993) Lectures on constructive functional programming // Conctructive 
Methods in Computer Science. – NATO ASI Series F: Springer Verlag. –.  No. 55, pp. 151–218.

Boyer, S. (1999). (1999) SCADA Supervisory Control and Data Acquisition, 2nd Edition, ISA.

Bowen J., Hoare C. A. R., Langmack H., et al. (1996) ProCoS II: A ProCoS II project final 
report // Bulletin of the EATCS. – No. 59, pp. 76–99.

Brauer W., Reising W., Rozenberg G. (1987) Petri Nets: Applications and Relations to other 
Models of Concurrency. Berlin: Springer, 516 p.

Brayton R. K., Hachtel G. D., Sangiovani-Vincentelli A. et al. (1996) VIS: a system for 
verification and synthesis //Lecture Notes in Computer Science. – Vol. 1102, pp. 428–432.

Bruck J., Blaum M. (1989) Neural networks, error-correcting codes, and polynomials over 
the binary n-cube. IEEE Transactions on information theory. Vol. 35, No. 5, pp. 976–987.

Bryant R. E. (1992) Symbolic boolean manipulation with ordered binary decision diagrams // 
ACM Computing Surveys. Vol. 24, No. 3, pp. 293–318.

Buffa (1984). Meeting the Competitive Challenge: Manufacturing Strategy for U.S. 
Companies. Dow Jones-Irwin. Competition, International. 190 p.

Buslenko N. P. (1978) Modelling of complex systems. Moscow.



247

Busse, T. (1998) ERP ousourcing options grow // Infoworld. 1998. Vol. 20, No. 37,  55 p.

Chang E., Pnueli A., Manna Z. (1994) Compositional Verification of Real–Time Systems // 
Proc. 9’th IEEE Symp. On Logic in Computer Science. pp. 458–465.

Chaochen Z., Ravn A. P., Hoare C. A. R. (1993) An Extended Duration Calculus for Hybrid 
real-Time Systems // Lecture Notes in Computer Science. Springer-Verlag,. Vol. 736, pp. 36–59.

Chibani, A., Amirat Y., Mohammed S., Matson E., Hagita N., Barreto M. (2013). Ubiquitous 
robotics: Recent challenges and future trends. Robotics and Autonomous Systems, 61(11), 
1162–1172.

Clarke, Edmund M. (2008) The Birth of Model Checking. In: Grumberg, Orna and Veith, 
Helmut eds.: 25 Years of Model Checking, Vol. 5000: Lecture Notes in Computer Science. 
Springer Berlin Heidelberg, pp.1–26.

Clarke E., Emerson E. (1981) Design and synthesis of synchronization skeletons using 
Branching Time Temporol Logic. Lecture Notes in Computer Science. – Vol. 131, pp. 52–71.

Clarke E., Grumberg O., Peled D. (1999) Model Checking. MIT Press, 314 p.

Colombo A. W., Bangemann T., Karnouskos S. (2013) A system of systems view on 
collaborative industrial automation. In 2013 IEEE International Conference on Industrial 
Technology (ICIT), pp. 1968–1975.

CPS (2019), CPS-IoT Week 2019, http://www.cpsweek.org/, [accessed in May 2019].

Culler D., Karp R., Patterson D., et al. (1993) LogP: Towards a realistic model of parallel 
computation // SIGPLAN Notices. No. 7, pp. 1–12.

Delaney B. (2017) Virtual Reality 1.0 -- The 90’s: The Birth of VR, in the Pages of CyberEdge 
Journal Paperback, 2017.  439 pages.

Dixon M. (2018). What are the most popular plc programming languages?  https://
realpars.com/plc-programming-languages/

Derhamy H., Eliasson E., and Delsing J. (2016) Iot interoperability-on-demand and low 
latency transparent multi-protocol translator. IEEE Internet of Things Journal.

Dorf R., Bishop R. (1998) Modern control systems. Addison-Wesley, 1998.

Drusinsky D. (2000) The Temporal Rover and ATG Rover. Proc. Spin2000 Workshop, 
Lecture Notes in Computer Science.  Springer-Verlag, Vol. 1885. pp. 323–329.

East W. Critical Path Method (CPM) Tutor for Construction Planning and Scheduling. 



248

McGraw-Hill Education; 1st edition, 2015, 225 p.

El Mohadab M., Khalene B.B., and Saf S. (2017) Enterprise resource planning: Introductory 
overview, Electrical and Information Technologies (ICEIT), 2017 International Conference, pp. 1–4.

Electron beam welding machine KL118.00.00.000. (2004) Maintenance manual. – K.: 
Paton electric welding institute, 443 p.

Emerson E. A. (1990) Temporal and Modal Logic. In Handbook of Theoretical Computer 
Science, Elsevier Publishers, pp. 1–24.

Emerson E., Trefler R. (1999) Parametric quantitative temporal reasoning. In Logic. In 
Computer Science, pp. 336–343.

Erl T. (2007) SOA Principles of Service Design (The Prentice Hall Service- Oriented 
Computing Series from Thomas Erl). Upper Saddle River, NJ, USA: Prentice Hall PTR.

Ferrer B. R., Afolaranmi S. O., and Lastr J. L. (2017) Principles and risk assessment of 
managing distributed ontologies hosted by embedded devices for controlling industrial 
systems, in IECON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society, 
pp. 3498–3505.

Flatt H., Schriegel S., Jasperneite J., Trsek H., Adamczyk H. Analysis of the Cyber-Security 
of industry 4.0 technologies based on RAMI 4.0 and identification of requirements. In IEEE 
International Conference on Emerging Technologies and Factory Automation, ETFA.

Fleischmann H., Brossog M., Beck M., and Franke J. (2017) Automated generation of human-
machine interfaces in electric drives manufacturing, in 2017 7th International Electric Drives 
Production Conference (EDPC), pp. 1–8.

Ferrer B. Ramis and Lastra J., Martinez L. (2017) Towards the encapsulation and 
decentralisation of OKD-MES services within embedded devices, International Journal of 
Production Research, pp. 1–13.

Frey G., Litz L. (2000) Correctness Analysis of Petri Net Based Logic Controllers // Proc. 
American Control Conference, ACC 2000, Chicago (IL). pp. 3165–3166.

Fuhs H. G. (1995). Applications of the Continuous Acquisition and Life-cycle Support 
(CALS) initiative to the evolved SEASAPPROW Missile program Monterey, California. Naval 
Postgraduate School, 79 p.

Gaines B. R., Norrie D. H. (1995) Knowledge Systematization in the International IMS 
Research Program. // Proc. of IEEE Conference on Systems, Man and Cybernetics Intelligent 
Systems for 21st Century. Vol. 1. pp. 958–963.



249

Ganesh K., Mohapatra S., Anbuudayasankar S. P., Sivakumar P. (2014) Enterprise Resource 
Planning: Fundamentals of Design and Implementation. Springer;182 pages.

Garcia C. E., Prett D. E. and Morari M. (1989) Model predictive control: Theory and practice 
– a survey.  Automatica.  (25) pp. 335–348.

Gluch D., Srinivasan G. (1998) A Study of Practice Issues in Model-Based Verification Using 
the Symbolic Model Verifier (SMV). Technical report. Carnegie Mellon, Software Engineering 
Institute, 43 p.

Gomi H., Kawato M. (1993) Neural Network control for a closed loop system using feedback 
error leaning // Neural Neyworks, Vol. 6. pp. 933–946.

Gonzalez R., Woods R. (2018) Digital Image Processing, 4th Edition. |Pearson.

Grädel E., Kolaitis P.vG., Libkin L., et al. (2007) Finite Model Theory and Its Applications. 
Computer Science Theoretical Computer Science. Texts in Theoretical Computer Science. An 
EATCS Series, 429 p.

Geunes J. (2017) Operations Planning Mixed Integer Optimization Models. CRC Press, 218 p. 

Gunes, V., Peter S., Givargis T., and Vahid F. (2014). A survey on concepts, applications, and 
challenges in cyber-physical systems. KSII Transactions on Internet and Information Systems, 
8(12), 4242–4268. doi: 10.3837/tiis.2014.12.001.

Gurevich Y. (1994) Evolving Algebras 1993: Lipary Guide. Specification and Validation 
Methods/ Oxford University Presspp. 9–36.

Haber R. E., Juanes C., R. del Toro, and Beruvides G. (2015) Artificial cognitive control with 
self-x capabilities: A case study of a micromanufacturing process. Computers in Industry, Vol. 
74, pp. 135–150.

Hagan M., Demuth H., and Orlando De Jesus (2002). An introduction to the use of neural 
networks in control systems. International journal of robust and nonlinear control,  pp. 959 – 
985.

Hamilton K., Watkins D. (2009). Evidence-Based Design for Multiple Building Types. 
Hoboken, NJ: John Wiley & Sons, Inc. 

Harel D., Pnueli A. (1985) On the development of reactive system. In: Logics and Models of 
Concurrent Systems. Krzysztof R. Apt. Berlin: Spring-Verlag, pp. 477–498.

Hardin R. M., Harel Z., Kurshan R. P. (1996) COSPAN. Lecture Notes in Computer Science. – 
Vol. 1102, pp. 423–427.



250

Hartley J. (1984) FMS at Work., Elsevier Science Ltd. - 286 pages.

Hatcliff J., Dwyer M. (2001) Using the Bandera Tool Set to Model–check Properties of 
Concurrent Java Software. Lecture Notes in Computer Science. Springer–Verlag, – Vol. 2154. 
pp. 39–58.

Havelund K., Lowry M., Penix J. (2001) Formal Analysis of a Space-Craft Controller Using 
SPIN. IEEE Transactions on Software Engineering. Vol. 27(8). pp. 749–765.

Havelund K., Rosu G. (2001) Monitoring Java Programs with Java PathExplorer // Proc. of 
the 1st International Workshop on Runtime Verification (RV’01), Elsevier Science, Electronic 
Notes in Theoretical Computer Science. No. 55(2), pp. 97–114.

Henzinger T. A. (1991) The temporal specification and verification of Real-Time Systems. 
PhD thesis, Stanford University, 287 p.

Henzinger T. A., Manna Z., Pnueli A. (1993) Towards Refining Temporal Specification into 
Hybrid Systems. Lecture Notes in Computer Science. Springer-Verlag, Vol. 736. pp. 60–76.

HLA (High Level Architecture), Release 3.0, AIOTI WG03 – loT Standardisation. European 
Communities (2017).

Hoare C. A. R. (1985) Communicating Sequential Process. Prentice Hall. 256 p.

Holzmann G. (1997) The model checker Spin . IEEE Trans. on Software Engineering. Vol. 
23, No. 5. pp. 279–295.

Iarovyi S., Mohammed W. M., Lobov A., Ferrer B. R., and Lastra J. L. M. (2016) Cyber-Physical 
Systems for Open-Knowledge-Driven Manufacturing Execution Systems,” Proceedings of the 
IEEE, Vol. 104, No. 5, pp. 1142–1154.

ISA (2020). The International Society of Automation (ISA). Available: https://www.isa.org. 
Accessed on September 2020.

ISA95, International Society of Automation, Enterprise-Control System Integration. 
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/
isa95 (Accessed on September 2020).

ISO 10303-1:2021(en). Industrial automation systems and integration — Product data 
representation and exchange — Part 1: Overview and fundamental principles, https://www.
iso.org/obp/ui/#iso:std:iso:10303:-1:ed-2:v1:en (Accessed in 2021).

ISO 9000:2015 Quality management systems – Fundamentals and vocabulary, https://
www.iso.org/standard/45481.html. Accessed in 2021.



251

ISO 9001:2015 Quality management systems – Requirements. https://www.iso.org/
standard/ 62085.html. Accessed in 2021.

ISO/IEC 31010:2019. Risk management – Risk assessment techniques, https://www.iso.
org/standard/72140.html (Accessed in 2021).

Jakobson G., Buford J., Lewis L. (2007). Situation Management: Basic Concepts and 
Approaches // Information Fusion and Geographic Information Systems. Lecture Notes in 
Geoinformation and Cartography book series (LNGC), pp 18–33. 

Jamshidi M., Ed. (2008) Systems of Systems Engineering, CRC Press, November.

Janicki R., Lauer P. (1992) Specification and Analysis of Concurrent Systems. The COSY 
Approach. Monographs in Theoretical Computer Science. An EATCS Series.

Jansen G., Gollmar P. (2020) Reactive Systems Explained. O’Reilly Media, Inc.

Jensen K. (1981) Coloured Petri Nets and the Invariant Methods. Theoretical Computer 
Science. – Vol. 14, pp. 317–336.

Kagermann, H., Wahlster W., and J. Helbig, eds., (2013): Recommendations for implementing 
the strategic initiative Industrie 4.0: Final report of the Industry 4.0 Working Group.

Kalachev A. (2013) Multi-core configurable computing platform Zynq-7000. Modern 
electronics. No. 1, pp. 22–31.

Kaldewaij A. (1986) A Formalism for Concurrent Process. Eindhowen,168 p.

Kang, H. S, Lee J. Y., Choi S., Kim H., Park J. H., Son J. Y., Kim B. H., and Do Noh S. (2016). Smart 
manufacturing: Past research, presentencing, and future directions. International Journal of 
Precision Engineering and Manufacturing-Green Technology, 3(1), pp. 111–128.

Karnouskos S., Colombo A. W. (2011) Architecting the Next Generation of Service-based 
SCADA/DCS System of Systems, in 37th Annual Conference of the IEEE Industrial Electronics 
Society (IECON 2011), Melbourne, Australia, 7–10 Nov. 2011.

Kazymyr V. V. (2003) Simulation of a synthetic environment for reactive systems. 
Mathematical modeling.  No. 2 (10), pp. 24–32.

Kazymyr V. (2006) Model-Oriented Control of Intelligent Manufacturing Systems: Th. 
Doctor of Sciences.  Kyiv.  301 p.

Kazymyr V, Kondratenko U., Kharchenko V. (2017) University industry cooperation. Volume 
4. Capacity, Building, Trainings. TEMPUS CABRIOLET “Model-oriented approach and Intelligent 
Knowledge-Based System for Evolvable Academia-Industry Cooperation in Electronic and Computer 



252

Engineering” (544497-TEMPUS-1-2013-1-UK-TEMPUS-JPHES),  332 p.

Kazymyr V., Prila O., Usik A., Sysa D. (2019) New Paradigm of Model-Oriented Control in 
IoT / Information and Software Technologies. Part of the Communications in Computer and 
Information Science book series, Springer Verlag. CCIS, Vol. 1078, pp. 605–614.

Кazymyr V. V., Sira G. A. (2011) Distributed Modeling in EMS Based on HLA. Mathematical 
Machines and Systems. No. 4, pp. 125–135. 

Kazymyr, V., Shkarlet, S., Zabasta, A. (2020) Practical-oriented Education in Modeling and 
Simulation for Cyber-Physical Systems. 10th International Conference on Advanced Computer 
Information Technologies, ACIT 2020 – Proceedings, 2020, pp. 691–694, 9208876.

Kerzner H. (2003) Project Management: A Systems Approach to Planning, Scheduling, and 
Controlling (8th ed.). Wiley.

Khoussainov B., Nerode A. (2012) Automata Theory and its Applications. Springer Science 
& Business Media, 432 p. 

Khropatyi O., Lohinov O., Kazymyr, V. (2020) Embedded Models Realization Platform in 
IoT.  IDAACS-SWS 2020 – 5th IEEE International Symposium on Smart and Wireless Systems 
within the International Conferences on Intelligent Data Acquisition and Advanced Computing 
Systems, Proceedings, 9297061.

Kim, K. D. and Kumar P. R. (2013). An overview and some challenges in cyber-physical 
systems. Journal of the Indian Institute of Science, 93(3), 341–352.

Kiran D. (2016) Total Quality Management: Key Concepts and Case Studies. Butterworth-
Heinemann; 1st edition, 580 p.

Kramer B., Schmidt H. (1991) Types and Modules for Net Specifications // In K. Jensen and 
G. Rozeberg, editors, High-Level Petri Nets: Theory and Application. Springer, pp. 171–188.

Kroening D., Strichman O. (2008) Decision Procedures: An Algorithmic Point of View. 
Springer Science & Business Media, 306 p.

Kruschke J. (2014) Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. 
Academic Press; 2nd edition, 776 pages.

Lamport L. (1983) Specifying concurrent program modules. ACM Trans. on Prog. Lang. 
Syst. No. 5. pp. 190–222.

Lanting, C. J. and Lionetto A. (2015) Smart Systems and Cyber Physical Systems paradigms 
in an IoT and Industry/ie4. 0 context. Paper presented at the 2nd International Electronic 
Conference on Sensors and Applications.



253

Latecki L., Gross A. (1995) Digitization constraints that preserve topology and geometry// 
In Proc. Intl. Symp. on Computer Vision. pp. 127–132.

Lee E. A. (2007) Computing foundations and practice for cyber-physical systems: a 
preliminary report, Tech. Rep. UCB/EECS-2007-72, University of California, Berkeley.

Lee J., Bagheri B., Kao H. A. (2015) A Cyber-Physical Systems architecture for Industry 
4.0-based manufacturing”, 3, 18–23.

Lutz P. (1998) Comparison between the OSACA and OMAC API approaches on an Open 
Controller Architecture”, in: “Open Architecture Control Systems”, ITlA Series.

Manna Z., Pnueli A. (1989) The anchored version of the temporal framework. In J.W. de 
Bakker, W.–P. deRoever, and G. Rozenberg, editors, Linear Time, Branching Time, and Partial 
Order in Logics and Models for Concurrency, Lecture Notes in Computer Science. Springer-
Verlag,Vol. 354. pp. 201–284.

McMillan K. L. (1994) Symbolic model checking. Boston, M.A.: Kluwer Academic Publishers, 
234 p.

Microsoft Dynamics AX. ERP for big companies and international organizations, https://
www.isystems-group.com/solutions/microsoft-dynamics-ax/ (Accessed in 2021).

Milner R. (1989) Communication and Concurrency, Prentice Hall, International Series in 
Computer Science.

Mordechai Ben-Ari. (2012) Temporal Logic: Formulas, Models, Tableaux. Mathematical 
Logic for Computer Science, pp. 231–262|.

Model (2020). Structure of the Administration Shell, Apr. 2018. [Online]. Available: 
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/structure-of-
the-administration-shell.pdf. (Accessed in 2020).

Morkevicius A., Bisikirskiene L., and Bleakley G. (2017) Using a systems of systems 
modelling approach for developing Industrial Internet of Things applications, in 2017 12th 
System of Systems Engineering Conference (SoSE), pp. 1–6.

Morozov A. A., Litvinov V. V., Kazymyr V. V. (2003) Adaptive control with models in electron 
beam welding // Mathematical machines and systemsNo. 3,4, pp.170–180.

Murata T. (1989) Petri Nets: Properties, Analysis and Applications. Proceedings of the 
IEEE, Vol. 77, No. 4, pp. 541–580.

Nan Wu and Xiangdong Li (2011). RFID Applications in Cyber-Physical System, Deploying 
RFID - Challenges, Solutions, and Open Issues. InTech.



254

Nazarenko O.K., et al. (1993) Observation of the process of electron beam welding and automatic 
tracking of the joint. Automatic welding. The Paton welding journal.  No. 5. pp. 35–38.

Laube U., Nebel M. (2016) Maximum Likelihood Analysis of the Ford–Fulkerson Method on 
Special Graphs. Algorithmica, Vol. 74, pp. 1224–1266.

Nic, N. (2008) Disruptive civil technologies: Six technologies with potential impacts on US 
interests out to 2025. Technical Report.

Noe J. D. (1980) Nets in Modeling and Simulation. Brauer W. (ed.) Net Theory and 
Applications. Berlin: Springer, pp. 347–368.

Nutt G. J. (1972) Evaluation Nets for Computer Systems Performance Analysis. FJCC, AFIPS 
PRESS. – Vol. 41. pp. 279–286.

Olano, M., Mukherjee, S., Dorbie, A. (2001). Vertex-based anisotropic texturing. Proceedings 
of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware. pp. 95–98.

OPC Unified Architecture Interoperability for Industry 4.0 and the Internet of Things, 
https://opcfoundation.org/ (Accessed in August 2020).

Opanasenko V. N., Kryvyi S. L. (2012) Partitioning the full range of boolean functions based 
on the threshold and threshold relation. Cybernetics and Systems Analysis. Springer New York 
Publishers. Vol. 48, No. 3. pp. 459–468.

Oracle E-Business Suite,  https://www.oracle.com/uk/applications/ebusiness/ (Accessed 
in 2021).

Palagin A., Yakovlev Y. (2017) Design Features of Computer Systems on an FPGA Crystal // 
Mathematical Machines and Systems, No. 2, pp. 3–14.

Palagin A., Opanasenko V., Kryvyi S. (2013) The structure of FPGA-based cyclic-code converters. 
Optical Memory & Neural Networks (Information Optics). Vol. 22, No. 4. pp. 207–216.

Parker J. R. (1999) Algorithm for Image Processing and Computer Vision // Wiley Computer 
Publishing. pp. 176–188.

Paton B. E., Nazarenko O. K., Nesterenkov V. M., Morozov A. A., Litvinov V. V., Kazymyr V. V. 
(2004) Computer control of electron beam welding with multi-coordinate displacements of 
the gun and workpiece. The Paton welding journal. No. 5. pp. 2–5.

Paulson L. C. (1998) The Inductive Approach to Verifying Cryptographic Protocols. Journal 
of Computer Security. No. 6. pp. 85–128.

Peled D., Pnualy A. (1994) Proving partial order properties. Theoretical Computer Science.  



255

Vol. 126, pp. 143–182.

Penczek W. (1990) A concurrent branching time temporal logic.  Lecture Notes in Computer 
Science. Vol. 440, pp. 337–354.

 Phillips D., Garcia-Diaz A. (1990) Fundamentals of network analysis. Publisher: Prospect 
Heights, Ill.: Waveland Press.

PNML. http://www.pnml.org/ (Accessed in Marth 2021).

Pnueli A. (1986) Applications of temporal logic to the specification and verification 
of reactive systems: a survey of current trends. In J. W. de Bakker, W.–P. de Roever, and G. 
Rozenberg, editors, Current Trends in Concurrency, Lecture Notes in Computer Science. 
Springer-Verlag, Vol. 224. pp. 510–584.

PMBOK Guide – Sixth Edition (2017), https://www.pmi.org/pmbok-guide-standards/
foundational/pmbok (Accessed in 2021).

Pollini L., Innocenti M. (2000) A Synthetic Environment for Dynamic Systems Control and 
Distributed Simulation. IEEE Control Systems Magazine. –pp. 49–61.

Portico project. http://www.porticoproject.org (Accessed in Marth 2021).

 Pritsker A. (1995) Introduction to Simulation and SLAM II. Wiley; 4th edition, 839 p.

Pritschow G. (2001). Open Controller Architecture – Past, Present and Future. CIRP Annals – 
Manufacturing Technology50(2), -pp. 463–470.

Qin S. J., Badgwell T. A. (1997) An overview of industrial model predictive control technology 
/ In J.C. Kantor, C.E. Garcia, and B. Carnahan, editors, AIChE Symposium Series: Fifth Int. Conf. on 
Chemical Process Control. Vol. 316. pp. 232–256.

QNX Software Development Platform 6.5.0: Release Notes. (2017) (Accessed http://www.
qnx.com/developers/articles/rel_4222_10.html)

Rajashekaran S., Vijayalksmi G. A. (2004) Neural Networks, Fuzzy Logic and Genetic 
Algorithms. Publisher: Prentice-Hall of India Pvt. Ltd, 456 p.

Razem B. SAP R3 & SAP S/4 HANA. SAP, (2020) (Accessed https://answers.sap.com/
questions/13087191/sap-r3-sap-s4-hana.html)

Ravn A. P., Rischel H., Hansen K. M. (1993) Specifying and Verifying Requirements of Real–
Time Systems // IEEE Trans. Softw. Eng. – Vol. 19, No. 1, pp. 41–55.

Reising W. (1985) Petri Nets: An Introduction. Springer-Verlag, 161 р.



256

Romanovs, A., Pichkalov, I., Sabanovic, E., Skirelis, J. (2019). Industry 4.0: Methodologies, 
Tools and Applications. In: 2019 Open Conference of Electrical, Electronic and Information 
Sciences (eStream 2019): Proceedings, Lithuania, Vilnius, 25-25 April, 2019. Piscataway: IEEE, 
2019, pp.7-10. Available from: doi:10.1109/eStream.2019.8732150.

 Sawada C., Akira O. (1997). Open controller architecture OSEC-II: architecture overview 
and prototype systems // IEEE 6th International Conference on Emerging Technologies and 
Factory Automation Proceedings, EFTA ‘97.

Scholten B. (2007) The Road to Integration: A Guide to Applying the ISA-95 Standard in 
Manufacturing. ISA.

Schulze, Klaus-Rainer. (2007) Electron Beam Technologies. DVS Media, Düsseldorf.

Schweichhart K. (2018) Reference Architectural Model Industrie 4.0 (RAMI4.0), An 
Introduction, [Online]. Available: https://scholar.google.lv/scholar?q=Reference+Architectu
ral+Model+Industrie+4.0&hl=en&as_sdt=0&as_vis=1&oi=scholart. Accessed on September 
2020.

Schyn A., Palanque P., Nedel L.P. (2003) Formal description of a multimodal 
interaction technique in an immersive virtual reality application,  Proceedings of the 
15th Conference on l’Interaction Homme-Machine, pp. 150–157. https://dl.acm.org/doi/
abs/10.1145/1063669.1063690.

Sheng Z., Mahapatra C., Zhu C., and Leung V. C. M. (2015) Recent Advances in Industrial 
Wireless Sensor Networks Toward Efficient Management in IoT, IEEE Access, Vol. 3, pp. 622–
637.

Silbert N., Hawkins R.  (2016) A tutorial on General Recognition Theory. Journal of 
Mathematical Psychology. Vol. 73, – pp. 94–109.

Simanta S., Morris E., Lewis G., Smith D. (2010) Engineering Lessons for Systems of 
Systems Learned from Service-Oriented Systems, in. Proc. of IEEE Systems Conference, 4th 
Annual IEEE.

Skyttner L. (2001) General Systems Theory: Ideas and Applications. University of Gävle, 
Sweden, 472 p.

Smid P. (2007) CNC Programming Handbook, Third Edition. Industrial Press, Inc., 600 
pages.

Staggs K. and et.al., ISA 62443-4-2 security for industrial automation and control systems 
technical security requirements for IACS components, https://www.isa.org.  Accessed on 
September 2020.



257

Sultanovs, E., Skorobogatjko, A., Romаnovs, A. (2016) Centralized Healthcare Cyber-
Physical System’s Architecture Development. In: Proceedings of the 2016 57th International 
Scientific Conference on Power and Electrical Engineering of Riga Technical University, Latvia, 
Riga, 13–14 October, 2016. Riga: RTU Press, pp. 153–158. Available from: doi:10.1109/
RTUCON.2016.7763155

Staggs K. et.al. ISA 62443-4-2 security for industrial automation and control systems 
technical security requirements for IACS components, https://www.isa.org. Accessed on 
September 2020.

Tajima K. (1996) Genetic algorithms and their practical application. FUJITSU Sci. Tech. 
Journ. – Vol. 32, No. 2. pp. 271–286.

Taylor C. et al. (1998) Open, Modular Architecture Controls at GM Powertrain – Definition 
of OMAC Concept in GMPTG. Control Engineering, https://www.controleng.com/articles/
open-modular-architecture-controls-at-gm-powertrain-definition-of-omac-concept-in-
gmptg/. Accessed in 2021.

Thiebaux S. et al. (2006) Decision-Theoretic Planning with non-Markovian Rewards. 
Journal of Artificial Intelligence Research 25, pp. 17–74.

Travica B. (1997) The Design of the Virtual Organization: A Research Model in Gupta, 
Jatinder N. D., Association for Information Systems Proceedings of the Americas Conference 
on Information Systems, August 15–17, 1997, Indianapolis, IN, pp. 417–19.

Ungerer G. (2005) uClinux -- Micro-Controller Linux. https://elinux.org/images/b/bb/
Uclinux.pdf () (Accessed in Marth 2021).

Vafeiadis T., Ioannidis D., Ziazios C., Metaxa I., and Tzovaras D. (2017) Towards Robust 
Early Stage Data Knowledge-based Inference Engine to Support Zero-defect Strategies in 
Manufacturing Environment,” Procedia Manufacturing, Vol. 11, pp. 679–685.

Valiant L. G. (1990) A bridging model for parallel computation. Commun. ACM. – Vol. 33, 
No. 8. pp. 103–111.

Visser W., Pasareanu C., Khurshid S. (2004) Test Input Generation with Java PathFinder. 
Proc. ISSTA 2004: Int’l SymP. on Software Testing and Analysis. – Boston, MA, Vol. 29, No. 4. 
pp. 97–107.

Voropayev V., Gelrud Y. (2013) Cyclic stochastic alternative network models for project 
management. PM World Journal. Vol. II. Issue VIII, pp. 1–18.

Wang F. (1996) Parametric Timing Analysis for Real–Time Systems // Information and 
Computation, 130(2): 131–150.



258

Wang Q., Spronck P., Tracht R. (2003). An overview of genetic algorithms applied to control 
engineering problems // Proceedings of the Second International Conference on Machine 
Learning and Cybernetics, Xi’an, 2–5 November 2003. pp. 1651–1656.

Wardy M. Y., Wolper P. (1994) Reasoning about infinite computation. Information and 
Computation. No. 115. pp. 1–37.

Wiest J., Levy F. (2011) Management Guide To Pert/Cpm, A, With Gert/Pdm/Dcpm And 
Other Networks. Prentice hall.

Wiesner, S., Marilungo E., and Thoben K. D. (2017). Cyber-physical product-service systems — 
challenges for requirements engineering. International Journal of Automation Technology, 11(1), 
17–28. doi: 10.20965/ijat.2017.p0017.

Wooldridge M. (2002). An Introduction to Multiagent Systems. John Wiley & Sons Ltd, 
2002.  349 p.

Zabasta, A., Peksa, J., Kondratjevs, K., Kunicina N. (2017). MQTT Enabled Service Broker 
for Implementation Arrowhead Core Systems for Automation of Control of Utility’ Systems. In: 
2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering 
(AIEEE’2017). Piscataway: IEEE, 2017, PP.1-6. doi:10.1109/AIEEE.2017.8270543.

Zabasta, A., Kuņicina N., Kondratjevs K., Patlins A., Ribickis L., Delsing J. (2018). MQTT 
Service Broker for Enabling the Interoperability of Smart City Systems. International 
Conference on Energy and Sustainability in Small Developing Economies – ES2DE18. Funchal, 
Spain, 9 – 11 July 2018. Publisher: Institute of Electrical and Electronics Engineers Inc. pp. 
81–87, DOI: 10.1109/ES2DE.2018.8494341.

Zheng P. et al. (2018) Smart manufacturing systems for Industry 4.0: Conceptual 
framework, scenarios, and future perspectives, Frontiers of Mechanical Engineering, Review, 
Vol. 13, No. 2, pp. 137–150.

Zhou, K., Liu T., and Zhou L. (2015) Industry 4.0: Towards future industrial opportunities 
and challenges. In 2015 12th Int. Conf. Fuzzy Systems and Knowledge Discovery (FSKD), pp. 
2147–2152, IEEE.

Zlatanov N. (2016) ARM Architecture and RISC Applications.

Zuburek W. M. (1980) Timed Petri Nets and Preliminary Performance Evaluation. Proc. 
EEE 7th. Annual. Symp. On Computer Architecture, pp. 88–95.




