
RTU Press
Riga 2022

Katerīna Morozova

PARAMETER ESTIMATION ON HYBRID 
ZENITH CAMERA AND GRAVIMETER DATA  
FOR INTEGRATED GRAVITY FIELD AND  
GEOID DETERMINATION BASED ON  
SPHERICAL-CAP-HARMONICS MODELLING

Doctoral Thesis

K
aterīna M

orozova
D

octoral Thesis

5.8

Katerina Morozova was born on 18 November 1987 in Riga. In 2012, 
she received a Bachelor’s degree in Geomatics and Engineer’s 
Qualification in Geodesy and Cartography, and in 2014, she 
received a Master’s degree in Geomatics. Since 2015, she has 
been a researcher at the Institute of Geodesy and Geoinformatics 
of the University of Latvia and since 2017, an assistant at the 
Department of Geomatics of Riga Technical University. She is 
currently a RIS3 expert at the Department of Higher Education, 
Science and Innovation of Ministry of Education and Science. In 
2016, she was on internship at the Karlsruhe University of Applied 
Sciences, Germany. Her research interests are gravity field and 
geoid determination, GNSS data processing and reference 
frames.



RIGA TECHNICAL UNIVERSITY 
 

  

 

 

K. Morozova 

 

 

 

Parameter Estimation on Hybrid Zenith Camera 

and Gravimeter Data for Integrated Gravity 

Field and Geoid Determination based on 

Spherical-Cap-Harmonics Modelling 
 

 

 

 

 
DOCTORAL THESIS 

 

 
 

 

 

 

 

2022 
  



2 

 

RIGA TECHNICAL UNIVERSITY 

Faculty of Civil Engineering 

Department of Geomatics 

 

 

 

Katerīna MOROZOVA 
PhD Student of Doctoral Study Program “Construction” 

 
PARAMETER ESTIMATION ON HYBRID 

ZENITH CAMERA AND GRAVIMETER 

DATA FOR INTEGRATED GRAVITY 

FIELD AND GEOID DETERMINATION 

BASED ON SPHERICAL-CAP-

HARMONICS MODELLING 
 

Doctoral Thesis 

 

 

 

 
Scientific Supervisors: 

Dr.-ing., prof., 

R. JÄGER,  
Dr. phys., prof. 

J. BALODIS, 
Dr.sc.ing, asoc. prof. 

J. KAMINSKIS 

 

 

Riga     

2022 



3 

 

ANNOTATION 

 
The main objective of the Doctoral Thesis is to develop a new solution for the Earth gravity field 

determination based on spherical-cap-harmonic modelling, using both digital-zenith camera and 

gravimetric measurements’ hybrid data. In first instance digital zenith cameras provide astronomic 

coordinates (Φ, Λ)ast as information to the true gravity potential W of the Earth, in analogy to 

gravity values (g). (Φ, Λ)ast  give the direction vector in the observation point P of the true potential, 

and often called the geometrical information, while g is called physical information on W. Digital 

zenith camera is a new kind of astrogeodetic instruments, employing recent advancements in 

several technology areas (GNSS positioning, digital imaging, extensive and accurate astrometric 

reference star catalogues, and high resolution electronic tiltmeter technology) to obtain direct 

measurements of vertical direction (Φ, Λ)  and derived vertical deflection (ξ, η) values. Over 

several years Institute of Geodesy and Geoinformatics (GGI) was engaged in design of the digital 

zenith camera. Presently the camera and data acquisition control and processing software are 

finished, and field measurements are actively done now. The intention is to use vertical deflection 

measurements along with GNSS/levelling and gravity data to improve a local gravity field and 

thus a local quasi-geoid model computation including both physical and geometrical data.  

The method of Digital Finite Element Height Reference Surface software (DFHRS) is applied for 

this purpose, allowing the use of both physical observations and geometrical observation types. 

Main aspect is concerning the implementation of Spherical Cap Harmonics (SCH) modelling to 

local model of the potential, developing a general parameterization of gravity field related 

coefficients for a least squares’ estimation. Terrestrial gravity measurements, deflections of 

vertical, height fitting points with known ellipsoidal and normal heights, and the use of the 

available global gravity models as additional observations will be used for quasi-geoid model 

determination. One of the aims is regarding the computation of a high precise local potential model  

W with the ability to derive all components related to the potential W. These observation 

components are gravity g, quasi-geoid height , the geoid height N, deflections of the vertical in 

the east and north direction (, ), the fitting points ( ,, h | H) and apriori information in terms 

of coefficients of a local potential model derived from the developed methods of a mapping of a 

global one. There are different types of Spherical Cap Harmonics, such as: Adjusted Spherical Cap 

Harmonics (ASCH), Translated-Origin Spherical Cap Harmonics (TOSCH) and the Revised 
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Spherical Cap Harmonics (RSCH) and the ASCH is chosen for the local gravitational potential 

modelling. The Spherical Cap Harmonics modelling encounters problems on the boundary, 

requiring application of the solution using an oversizing of the cap area with respect to the area of 

interest, but due to a lack of data near the borders, this is complicated task that still exist and should 

be investigated and solved.  

The first chapter provides the fundamental theory of Earth gravity potential and quasi-geoid 

modelling, including the types of gravity data and methods of its processing and adjustment using 

both standard Least Squares and Robust estimation techniques. The height systems are described, 

and its physical differences are explained.  

The second part introduces the development of Digital Zenith Camera at the Institute of Geodesy 

and Geoinformatics (GGI), the basic principle of vertical deflection determination, as well as its 

construction, measurement technique and data postprocessing is widely described in this chapter 

including all stages of data processing.  

In the third chapter the principles of quasi-geoid determination are introduced, starting from 

DFHRS method and its stages of development and finishing with collocation method. 

The fourth chapter concerns spherical harmonics and global gravity modelling, introducing 

spherical cap harmonic modelling and one of its methods – Adjusted Spherical Cap Harmonics 

modelling. The next part of this chapter concerns the basic principle of development of global 

gravity models and its techniques. 

The fifth chapter introduces the results and analysis of quasi-geoid of Latvia based on new solution, 

where both vertical deflection data and gravity data are used. The summary results and conclusions 

of the fulfilled thesis are also discussed in this chapter. 

The Thesis includes 39 figures, 127 formulas, and 7 tables. The total amount of PhD Thesis is 104 

pages.  
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ANOTĀCIJA 

Promocijas darba mērķis ir izstrādāt jauno risinājumu Zemes gravitācijas lauka noteikšanai, 

balstoties uz sfērisko-segmenta harmoniku (SSH) modelēšanas iespējām izmantojot 

gravimetriskos un digitālās zenītkameras hibrīd-datus.  Vertikāles nolieču vērtības, kuras izraisa 

gravitācijas lauka anomālijas, tiek aprēķinātas izmantojot digitālās zenītkameras mērījumus. 

Digitālā zenītkamera ir jaunas paaudzes astroģeodēziskais instruments, kurš apvieno jaunākas 

tendences no dažām tehnoloģiju jomām – GNSS pozicionēšana, digitālā attēla veidošana, 

paplašinātie un augstākās precizitātes astrometriskie zvaigžņu katalogi, un augstākās izšķirtspējas 

elektroniskā līmeņrāža tehnoloģija, ļauj aprēķināt vertikāles nolieču vērtības. Ģeodēzijas un 

ģeoinformātikas institūts pie digitālās zenītkameras izstrādes strādāja vairākus gadus. Šobrīd 

instruments un datu apstrādes programmatūra ir gatava un lauka mērījumi tiek veikti visā Latvijas 

teritorijā. Vertikāles nolieces kopā ar GNSS/nivelēšanas datiem un gravimetriskiem mērījumiem 

tiek izmantotas kvazi-ģeoīda precizitātes uzlabošanai, apvienojot gan fiziskos, gan ģeometriskos 

datus. 

Digitālās galīgo elementu augstumu atbalsta virsmas programmatūra (DFHRS – Digital Finite 

Element Height Reference Surface)  tiek izmantota šim nolūkam, ļaujot izmantot gan fiziskos gan 

ģeometriskos novērojumus. Viens no aspektiem ir sfērisko-segmenta harmoniku modelēšanas 

principa iekļaušana potenciāla lokālajā modelī, pēc mazāko kvadrātu metodes izstrādājot 

koeficientu parametrizāciju, un optimizējot datus, kuri ir nepieciešami koeficientu aprēķinam. 

Gravimetriskie dati, vertikāles nolieces, savietotie punkti ar zināmiem elipsoidāliem un normāliem 

augstumiem, globālie ģeopotenciāla modeļi tiek izmantoti kvazi-ģeoīda noteikšanai. Galvenais 

mērķis ir aprēķināt lokālo potenciāla modeli ar iespēju atvasināt visas komponentes, kas attiecas 

uz W potenciālu. Šīs novērojumu komponentes ir: gravimetriskie dati g, kvazi-ģeoīda augstums , 

ģeoīda augstums N, vertikālas nolieces ziemeļu un austrumu virzienā (, ), savietotie punkti ( 

,, h | H) un primārā informācija par lokālā potenciāla modeļa koeficientiem, kuri ir atvasināti no 

globāliem modeļiem. Pastāv dažādi sfērisko-segmenta harmoniku tipi: izlīdzinātas sfēriskās-

segmenta harmonikas, transformētas izcelsmes sfēriskās-segmenta harmonikas un koriģētas 

sfēriskās-segmenta harmonikas. Izlīdzinātas sfēriskās-segmenta harmonikas tika izvēlētas lokālā 

gravitācijas potenciāla noteikšanai. Šis modelēšanas princips saskarās ar robežproblēmu, un prasa 
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pielietot risinājumu, izmantojot lielāku segmentu, nekā interesējošais reģions, bet ārpus robežām 

datu trūkuma dēļ, tas ir sarežģīts uzdevums, kuru ir jāizpēta.  

Pirmajā nodaļā tiek sniegts fundamentāls teorētisks izklāsts par Zemes gravitācijas potenciālu, 

ietverot gravimetrisko datu tipus, un to apstrādes un izlīdzināšanas metodes, izmantojot standartu 

mazāko kvadrātu metodi un robustas tehnoloģijas. Ir aprakstītas augstumu sistēmas un 

paskaidrotas to fizikālas atšķirības. 

Otrajā nodaļā tiek aprakstīta Ģeodēzijas un ģeoinformātikas institūtā izstrādātā digitālā 

zenītkamera, vertikāles nolieces noteikšanas pamatprincips, zenītkameras konstrukcija, mērījumu 

tehnoloģija un datu apstrāde, kā arī vertikāles nolieču izmantošana kvazi-ģeoīda noteikšanā. 

Trešajā nodaļā tiek demonstrēti kvazi-ģeoīda noteikšanas principi, sākot ar DFHRS metodi, un tā 

izstrādes posmiem, kā arī „remove-compute-restore” un kolokācijas metodes.  

Ceturtā nodaļa skar sfēriskās harmonikas un globālā gravitācijas lauka modelēšanu, aprakstot 

sfērisko-segmenta harmoniku modelēšanu un vienu no tās metodēm – izlīdzinātas sfēriskās-

segmenta harmonikas.  

Piektajā nodaļā tiek atspoguļoti pētījuma rezultāti un Latvijas kvazi-ģeoīda analīze, kurš balstās 

uz jauno risinājumu. Šajā nodaļā tiek aprakstīti kopējie promocijas darba rezultāti un secinājumi. 

Promocijas darbs ietver 39 attēlus, 127 formulas, un 7 tabulas. Darba kopējais apjoms ir 104 

lappuses. 
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ACRONYMS 

ASCH – Adjusted Spherical Cap Harmonics 

BHS-77 – Baltic Height System 1977 

CCD – Charged Coupled Devices 

DTM – Digital Terrain Model 

DTU – Technical University of Denmark 

DoV – Deflection of Vertical 

DZC – Digital Zenith Camera 

DTM – Digital Terrain Model 

DFHRS – Digital Finite-element Height Reference Surface 

EGG97 – European Gravimetric Geoid 1997 

EIGEN6C4 – Global Gravity Field Model by GFZ-Potsdam 

EGM2008 – Earth Geopotential Model 2008 

EGM2020 – Earth Geopotential Model 2020 

ERS-1 - European remote sensing satellite 

ETRS89 – European Terrestrial Reference System 1989 

EVRF2007 – European Vertical Reference Frame 2007 

FFT – Fast-Fourier Transform 

FOD – First-order design problem  

GGI – Institute of Geodesy and Geoinformatics 

GNSS – Global Navigation Satellite System 

GGM – Global Geopotential Model 

GPM – Global Potential Model 

GOGRA – Gravity geoid model developed from GOce and GRAce data 

GLONASS – GLObalnaya NAvigatsionnaya Sputnikovaya Sistema – Global Navigation 

Satellite system by Russian Federation 

GRAVSOFT - GRAVity field modelling SOFTware 

HSKA – HochSchule KArlsruhe – University of Applied Sciences 

HRS – Height Reference Surface 

IAG – International Association of Geodesy 
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KTH – Royal Institute of Technology in Stockholm 

LAS – 2000.5 – Latvijas Augstumu Sistēma – Latvian Height System epoch 2000.5 

LatPos – Latvian Positioning System 

LAV – Local Astronomical Vertical 

LGV – Local Geodetic Vertical 

LGIA – Latvian Geospatial Information Agency 

LV’14 – Latvian Quasi-Geoid Model 2014 

LV98 – Latvian Quasi-Geoid Model 1998 

LS – Least Squares 

LSC – Least Squares Collocation 

LSE – Least Squares Estimation 

LU_GGI’20 – Latvian Quasi-Geoid Model 2020  

NAVSTAR GPS– Navigation Signal Timing and Ranging Global Positioning System 

NGA – National Geospatial-Intelligence Agency 

NKG – Nordic Geodetic Commission 

RTK – Real Time Kinematics 

RWLSE – Robust Weighted Least Squares Estimation 

SH – Spherical Harmonics 

SCH – Spherical Cap Harmonics 

UL – University of Latvia 

VESTA – VErtical by STArs 
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INTRODUCTION 

Subject topicality and formulation of the problem 

The most important theoretical works on geoid determination using gravity observations belong 

to Stokes (1849) who proved that for theoretical studies of the Earth surface it is important to 

determine the gravity potential W on its surface and outer space and the equipotential surfaces,  

which have a form of approximately ellipsoidal shape. According to Stokes’ theory, all the masses 

must be under equipotential surface which is called geoid. Besides, gravity measurements are 

carried out on the physical surface which does not coincide with geoid. The main task was to 

include corrections in measured gravity values, which would move all masses under sea level, 

without changing the equipotential surface, thus referring gravity measurements to the sea level 

(geoid). This problem has been widely discussed in scientific literature and is called the problem 

of the Earth regularization. But it was discovered that it is necessary to know the internal structure 

of the Earth for successful regularization.  

In 1945, the Russian scientist M. S. Molodensky (Molodensky, 1945, Molodensky et al., 1960, 

Molodensky, 2001) proved that all the possible regularization solutions are quite similar but do not 

solve the problem strictly and offered an alternative solution for precise Earth figure and height 

determination. According to his theory, the heights (since than the term of “normal heights” has 

been used) are not determined in relation to the geoid, but to another surface, which is close to the 

geoid, and called it “quasi-geoid”.  

The first quasi-geoid in Latvia was developed in 1998 by Kaminskis (2010), and the 

estimated precision of this quasi-geoid was 6-8 cm. For the computation of this quasi-geoid various 

kind of data were used – satellite altimetry data obtained by ERS-1 as well as ~500 terrestrial 

gravity measurements and ~12000 digitized gravimetric points that were included in modelling.  

In 2014 in Latvia normal height system was changed from BAS-77 to LAS-2000.5, thus the need 

for a new more precise quasi-geoid model was obvious, therefore in the same year, the Latvian 

Geospatial Information Agency (LGIA) developed a new quasi-geoid LV’14 based on the remove-

restore technique which is implemented in GRAVSOFT software. As input data, 4886 relative 

gravity measurements, 84 GNSS/levelling points, free air gravity anomaly model DTU13 from 

satellite altimetry, DTM model and GOGRA02s GGM were used, and it is the only quasi-geoid 
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which can be used in Latvia now, though the estimated precision of this quasi-geoid is 3–4 cm. 

Further (1-3 cm) quasi-geoid model has been computed for Latvia in 2012-2013 (Jäger et al., 

2012, Janpaule et al., 2013). Of course, this precision is not sufficient anymore, e.g. Galileo 

positioning system has been launched and operated now and, as a result, the precision of GNSS 

observations has also been improved; many other satellite missions are also taking place now. 

Many countries have already achieved the precision of up to 1 cm level of quasi-geoid model 

(Ellmann et al., 2019), (Farahani et al., 2017), challenging project has been performed in Colorado 

(Wang et al., 2021) and others. Moreover, with the development of digital zenith camera in the 

institute of Geodesy and Geoinformatics (GGI) it became possible to use vertical deflection data 

for the quasi-geoid improvement, combining the deflection of vertical data, gravity data and fitting 

points.  The solution of combining both geometrical (Φ, Λ)ast and physical data (g) has not been 

implemented yet, and was not found by the author in scientific literature.  

Objective and tasks of the Doctoral Thesis 

Nowadays, due to the fast developments of GNSS techniques, the development of a high accuracy 

(up to 1 cm) quasi-geoid model is very important and actual task because it allows to determine 

normal height (or orthometric height) directly from ellipsoidal height which is performed by GNSS 

and, of course, this method is much faster and easier for land surveyors in comparison to levelling 

measurements. The aim of the PhD Thesis is to offer a new solution for gravity field determination 

in terms of spherical-cap-harmonics modelling as a carrier function of the gravity potential (W) 

and to compute a precise quasi-geoid model, using all available data for it: both vertical deflection 

observations, gravity values and fitting points. Precise quasi-geoid model can be used in civil 

engineering, road and bridge constructions, as well as engineering geodesy and topography, etc.  

So, in order to carry out this research, the following tasks were defined:  

 to investigate all possible terrestrial data for gravity field modelling and quasi-geoid 

determination, such as GNSS/levelling points, astronomical directions (Φ, Λ)ast  and 

derived vertical deflection (ξ, η) observations, as well as gravity values g, and to 

implement them in DFHRS software in terms of integrated geodesy by applying spherical-

cap-harmonics parameterization of W; 
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 to describe the method of vertical deflection determination and data processing using the 

developed in GGI software; 

 to evaluate the results of vertical deflection values in comparison to Global geopotential 

models (GGMs); 

 to investigate different methods for gravity field and quasi-geoid determination and 

compare the modelling methods; 

 to analyse the obtained results using the territory of Latvia as a test area and to make 

conclusions and summarize PhD Thesis. 

Scientific novelty of the Thesis 

 There are different techniques for gravity field and quasi-geoid determination, but all of 

them are based mostly on gravity data as a function of the quasi-geoid based on the theory 

of Stokes. The extended and improved method of Digital Finite element Height Reference 

Surface software (DFHRS) allows to compute Height Reference Surface (HRS) in the 

context of GNSS and in terms of an integrated approach allowing the combination both of 

gravity data (g) and vertical deflection observation data (ξ, η), using in first instance the 

computation of the gravity potential W in its parameterization by spherical-cap-harmonics 

coefficients and then applying Molodensky theory to derive NQG. 

 Digital Zenith Camera (DZC) VESTA (VErtical by STArs) which has been developed in 

Latvia at the Institute of Geodesy and Geoinformatics (GGI) and has acquired an 

operational status allows to determine vertical deflection values. It is also quite a unique 

instrument and at the moment only about 5 such instruments are known in the world (e.g. 

in China, Germany, Switzerland and Turkey). The advantage of VESTA in comparison 

with other cameras is its precision – about 0.1 arcsec, moreover, it is portable, and therefore 

it is convenient for field observations. The measurement technique of vertical deflection 

and data processing software are presented in this Thesis. For the first time terrestrial 

vertical deflections have been used for quasi-geoid determination in Latvia.  

 The above mentioned technique allows to compute up to 1 cm precise quasi-geoid model 

for the whole territory of Latvia, which has not been done before, and, of course, this 

solution can be applied not only in Latvia, but also in any other country or separate territory 
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in the world. It would be especially interesting to use the developed camera in mountain 

areas, where levelling is more expensive and less accurate.  

 The provided results and their analysis are unique, as the presented research which 

combines both physical observations (gravity data) and geometrical data (GNSS/levelling 

points and vertical deflection observations) has not been introduced and implemented 

before. 

Practical relevance of the Doctoral Thesis 

The new developed method allows to compute a high precision quasi-geoid model which can be 

used in civil engineering, road and bridge construction and other similar fields for precise normal 

height determination. According to the legal acts of the Cabinet of Ministers of the Republic of 

Latvia, it is allowed to use any quasi-geoid model the precision of which is higher than the 

precision of LV’14. This means that the developed quasi-geoid model can be officially used, so to 

say, not only for scientific research, but also in practice. It only has to undergo the validation, 

which can be done by LGIA. 

The method can be very valuable in mountain areas, as well as in the regions of inappropriate 

levelling points, or insufficient amount of the points, e.g. Mongolia (Ulaanbaatar), where only one 

1st order line goes through the city, which is not providing the polygons for adequate adjustment. 

But in this case it would be very useful to make observations by DZC, first of all, to check 

independently the levelling data, and secondly, to cover the region of interest by doing a sufficient 

amount of observations.  
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1. THE GRAVITY FIELD OF THE EARTH 

The external gravity field plays a fundamental role in geodesy. This is because the figure of the 

earth has evolved under the influence of gravity, and most geodetic observations refer to gravity. 

Thus, modelling of observations requires knowledge of the gravity field. In addition, the analysis 

of the gravity field yields information on the structure of the earth's interior; in this way geodesy 

contributes to geophysics (Torge, 2001). 

The force acting on a body at rest on the earth’s surface is the resultant of gravitational force (v) 

and the centrifugal force (z) of the earth’s rotation: 

 𝑔 = 𝑣 + 𝑧 (1.1) 

The force of gravity F is obtained by scaling g by the mass m: 

 𝐹 = 𝑚𝑔 (1.2) 

The Earth’s gravitation is obtained by Newton’s law of gravitation: 

 

𝑣(𝑟) = 𝐺 ∭
𝑟′ − 𝑟

|𝑟′ − 𝑟|3
𝑑𝑚

𝐸𝑎𝑟𝑡ℎ

 (1.3) 

where 𝑟′ and r are the geocentric position vectors of the source point 𝑃′ (mass element dm) and 

the attracted point P (unit mass m = 1), respectively. The value of gravitational constant is: 

 𝐺 = 6.673 × 10−11 𝑚3𝑘𝑔−1𝑠−2 (1.4) 

The mass element dm can be expressed by the volume density 𝜌 = 𝜌(𝑟′) and the volume element 

dv as: 

 𝑑𝑚 = 𝜌𝑑𝑣 (1.5) 

The centrifugal acceleration, as an inertial acceleration in a rotating system, is given by the vector 

of Earth rotation 𝜔 and the perpendicular distance to the rotation axis d: 
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 𝑧(𝑟) = (𝜔 × 𝑟) × 𝜔 = 𝜔2𝑑 (1.6) 

Where the angular velocity of the Earth: 

 𝜔 = 7.292115 × 10−5 𝑟𝑎𝑑 𝑠−1 (1.7) 

is known to a high degree of accuracy from astronomy (Torge, 1989). 

1.1. Fundamentals of potential 

The representation of the gravity field and related computations are simplified if we consider the 

scalar quantity “potential” instead of the vector quantity “acceleration”. The corresponding 

potentials V and Z exist for the gravitational and centrifugal fields with the relationships (Torge, 

1989): 

 𝑣 = 𝑔𝑟𝑎𝑑𝑉, 𝑧 = 𝑔𝑟𝑎𝑑𝑍. (1.8) 

 For the gravitational potential of the Earth we have with (1.3) and (1.5) 

 

𝑉(𝑟) = 𝐺 ∭
𝜌(𝑟′)

|𝑟′ − 𝑟|
𝑑𝑣, lim

𝑟→∞
𝑉 = 0

𝐸𝑎𝑟𝑡ℎ

 (1.9) 

and for the centrifugal potential with (1.6) 

 
𝑍(𝑟) =

𝜔2

2
𝑑2, (1.10) 

the sum of the potential functions is the gravity potential of a mass point rotating with the earth: 

 𝑊(𝑟) = 𝑉(𝑟) + 𝑍(𝑟). (1.11) 

The unit of the potential is 𝑚2𝑠−2. The potential may be considered as work required for the 

displacement of a unit mass within the gravity field.  

In analogy to (1.8) the relationship between gravity and gravity potential is: 
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 𝑔 = 𝑔𝑟𝑎𝑑𝑊. (1.12) 

The gravity components in a certain direction are obtained as partial derivatives of W. In the global 

X, Y, Z system we have (Torge, 1989): 

 𝒈𝑇 = (𝑊𝑋 ,𝑊𝑌,𝑊𝑍) 

with 𝑊𝑋 =
𝜕𝑊

𝜕𝑋
,𝑊𝑌 =

𝜕𝑊

𝜕𝑌
,𝑊𝑍 =

𝜕𝑊

𝜕𝑍
  

and |𝑔| = √𝑊𝑋
2 + 𝑊𝑌

2 + 𝑊𝑍
2, 

Φ𝑎𝑠𝑡 = 𝑡𝑎𝑛−1 (
𝑊𝑍

√𝑊𝑋
2 + 𝑊𝑌

2
)  and 

 Λ𝑎𝑠𝑡 = 𝑡𝑎𝑛−1 (
𝑊𝑌

𝑊𝑋
) see (3.18) and (3.19) respectively. 

(1.13) 

1.2. Terrestrial gravity measurements 

Terrestrial gravimetry consists of point measurements of the earth’s gravity field on its physical 

surface. Terrestrial gravity on a complex physical surface contains all spectral information of 

gravity (Yang, 2013). There are two methods for the determination of gravity values – absolute 

and relative one. In this chapter both methods are described, and the determination of gravity 

values are introduced. 

1.2.1. Absolute gravity measurements 

 

Absolute measurements can be done by two different methods. The pendulum method is based on 

measuring the pendulum time T of a pendulum with length l very accurately. The accuracy of this 

observation is increased by observing the pendulum during a long time. The gravity value g is 

found with formula (Ogorodova et al., 1978) (1.14): 
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𝑇 = 2𝜋√
𝑙

𝑔
 (1.14) 

The length of the pendulum and the influence of the suspension point need to be known very 

precisely. With a pendulum it is possible to determine absolute gravity values with a precision of 

some milligal. After 1975 the pendulum method was superseded by the 'free fall method' and the 

“rise-and-fall method”, which is based on a falling prism in a vacuum tube (Crombaghs et al., 

1999). Through the integration of z = g for a free-fall experiment, one obtains the basis formula: 

 𝑧 = 𝑧0 + �̇�0𝑡 +
𝑔

2
𝑡2 (1.15) 

Between the path z and the fall time t. The constants of integration 𝑧0, �̇�0 represent the position 

and velocity of the body at t=0. If the body falls through at least three planes (Figure 1.1a), z and 

�̇�0 can be eliminated. We get: 

 
𝑔 = 2

(𝑧3 − 𝑧1)(𝑡2 − 𝑡1) − (𝑧2 − 𝑧1)(𝑡3 − 𝑡1)

(𝑡3 − 𝑡1)(𝑡2 − 𝑡1)(𝑡3 − 𝑡2)
 . (1.16) 

For a symmetric rise and fall (Figure 1.1b), it is sufficient to measure the crossing times 𝑡1, 𝑡2,𝑡3, 𝑡4 

at only two planes (separated by the distance ∆𝑧). (1.16) then yields: 

 
𝑔 =

8∆𝑧

(𝑡4 − 𝑡1)2 − (𝑡3 − 𝑡2)2
 (1.17) 

 

Figure 1.1. Distance-time diagram a) free-fall method b) symmetrical rise and fall method 

(Torge, 1989) 
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Absolute gravimeters now in use measure the free fall of a body in a vacuum, using lasers and 

optical interferometry, to obtain accuracies of better than 0.01 mGals under favourable conditions 

(i.e. Niebauer et al., 1986 and Torge, 1989). Whereas, these devices are transportable, they are 

still quite bulky and time consuming to set up and read. Typically, only one absolute reading per 

day can be made. Nevertheless, such absolute gravimeters are being routinely employed in 

establishing the absolute values of gravity at selected stations, which then may serve as base 

stations for relative gravity surveys, so that the results of the latter may then be expressed in 

absolute gravity terms, with almost the same accuracy as the values for the absolute stations 

themselves. Absolute gravity measurements are necessary as a base for relative gravity 

measurements, for the calibration of relative gravimeters, and for determining the drift of relative 

gravimeters (Parseliunas et al., 2011). 

1.2.2.  Relative gravity measurements 

 

Relative gravity measurements are based on a completely different principle: the elongation of 

springs with a small weight attached to them is measured. The most popular relative gravimeters 

are Scintrex CG3, CG5, CG6 (Canada) and LaCoste Romberg (The US) (Lobanov, 2017). Taking 

measurements at different locations yields differences in elongation. These differences can be 

converted to gravity differences, on the condition that the instrument is calibrated on stations with 

known absolute gravity values. One relative measurement takes about 15 minutes, while a 

complete absolute measurement takes at least half a day. Well calibrated instruments can measure 

gravity differences with a precision up to 5 microgal (Crombaghs et al., 1999). 

Relative gravity measurements allow to define only the difference of gravity between two stations 

(Δg) and these measurements are fundamental for determination of gravity values (Ogorodova & 

Yuzefovich, 1980). It is a common practice to collect redundant observations to ensure a better 

quality of gravity determination, and then gravity observations must be adjusted using an adequate 

mathematical and stochastic model (Hwang et al., 2002). Gravity measurements may contain gross 

(also called outliers), random and systematic errors. Systematic errors are basically caused by 

gravimeter drift and calibration factor.  
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1.2.2.1. Relative gravity data processing and its adjustment 

There are different ways of gravity network adjustment and in this chapter some methods are 

introduced: the most common is based on least squares and more precise based on robust 

estimation. 

The relative gravity observation equation is written as (Hwang et al., 2002): 

 𝑙(𝑡) + 𝑣 = 𝑔 + 𝑁0 + ∆𝐹(𝑧) + 𝐷(𝑡), (1.18) 

where t is the time of the measurement; l(t) – the observed gravity value (z) multiplied by a 

calibration factor, v – is the residual of l(t); g – gravity value at the reference station; 𝑁0 – constant 

bias; ∆F(z) is the calibration function; z – gravimeter reading, 𝐷(𝑡) – the drift of the gravimeter.   

For the stochastic modelling ∆𝐹(𝑧) and 𝐷(𝑡), in Eq. (1.18) are called systematic errors of the 

gravimeter. Here we model ∆𝐹(𝑧) as in (Torge, 1989): 

 
∆𝐹(𝑧) =  ∑𝑏𝑙𝑧

𝑙

𝑟

𝑙=1

+ ∑(𝑥𝑙𝑐𝑜𝑠𝜔𝑙𝑧 + 𝑦𝑙𝑠𝑖𝑛𝜔𝑙𝑧),

𝑠

𝑙=1

 (1.19) 

where 𝑏𝑙, 𝑥𝑙, 𝑦𝑙 – are the coefficients, 𝜔𝑙 – the frequency of the reading z and r, s are the 

numbers of terms to model.  The drift of gravimeter can be modelled as a polynomial: 

 
𝐷(𝑡) =  ∑ 𝑑𝑝(𝑡 − 𝑡0)

𝑝

𝑎

𝑝=1

 , (1.20) 

where 𝑡0 is an initial epoch and a is a degree of the polynomial. So, the observation equation 

between two stations i and j is: 

 ∆𝑙𝑖,𝑗 + 𝑣𝑖,𝑗 = 𝑔𝑗 − 𝑔𝑖 + (∆𝐹(𝑧𝑗) − ∆𝐹(𝑧𝑖)) + (𝐷(𝑡𝑗) − 𝐷(𝑡𝑖)), (1.21)  

where  𝑣𝑖,𝑗 – is the residual of ∆𝑙𝑖,𝑗 and ∆𝑙𝑖,𝑗 = 𝑙𝑗 − 𝑙𝑖,  𝑡𝑗  and 𝑡𝑖 – measurement times. Assuming 

that n is the number of observations, in matrix form we get the observation equation: 

 𝒍𝑏 + 𝒗 = 𝑨𝒙 (1.22) 

𝒍𝑏 is n ×1 vector of relative observations, weight matrix of constraints is 𝑾𝒈; v - is n ×1 vector of 

residuals; 𝑨𝒈 is design matrix, and x is the vector of unknowns (gravity values and gravimeter 

parameters). By inspecting the structure of A, the solution by least squares method is not possible 
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without constraint because A has rank defect of 1 (Hwang et al. 2002). In order to obtain a unique 

solution in the least squares sense, e.g. method of weighted constraints can be used (Touati et al., 

2009): 

 �̂� = (𝑨𝒈
𝑇𝑾𝒈𝑨𝒈 + 𝑨𝒈

𝑇𝑾𝒈𝑨𝒈)
−𝟏

∙ (𝑨𝒈
𝑇𝑾𝒈𝒍𝒃 + 𝑨𝒈

𝑇𝑾𝒈𝒍𝒈) (1.23) 

Where 

�̂� – estimates of x; 

𝒍𝒈 – absolute gravity vector (Hwang et al., 2002). 

1.3. Introduction to height systems 

The geoid is used in geodesy, cartography, and oceanography as a reference surface for heights 

and depths (continental and ocean bottom topography, as well as sea surface topography). A point 

P can be attributed to a specified level surface by its gravity potential W (Figure 1.2). With respect 

to the geoid potential W0, the “height” of P is given by the negative potential difference to the 

geoid, which is called the geopotential number C. We get from (Hofmann-Wellenhof and Moritz, 

2006):  

 𝑑𝑊 = −𝑔𝑑𝑛 

𝐶 = 𝑊0 − 𝑊𝑃 = − ∫ 𝑑𝑊 = ∫𝑔𝑑𝑛

𝑃

𝑃0

 

(1.24) 

(1.25) 

The integral is independent of the path: hence, P0 is an arbitrary point on the geoid. C can be 

determined from geometric levelling and gravity measurements along any path between P0 and P. 
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Figure 1.2. Geoid, mean sea level, continental and sea surface topography (Torge, 2001) 

The geopotential number is an ideal measure for describing the behaviour of masses (e.g. water 

masses) in the gravity field. It could be used as a “height” in several applications, as in hydraulic 

engineering and oceanography. A more general use is limited by the potential unit m2s-2, which is 

in contradiction to the obvious demand for a metric height system that employs the “meter” unit.  

In order to achieve a certain agreement with the numerical value of the height in meters, the 

geopotential unit (gpu) 10 m2s-2, is also used for the geopotential number. With g≈9.8 m/s-2, the 

values of C are about 2% smaller than the corresponding height values. 

1.3.1. Dynamic heights 

The dynamic height Hdyn is obtained by dividing the geopotential number through a constant 

gravity value. The normal gravity for the surface of the level ellipsoid at certain latitude, usually 

45° latitude is used (Hofmann-Wellenhof and Moritz, 2006): 

 
𝐻𝑑𝑦𝑛 =

𝐶

𝛾0
45 (1.26) 

The surfaces Hdyn = const. remain equilibrium surfaces. Hence, points located on the same level 

surface have the same dynamic height. Unfortunately, a geometric interpretation of the dynamic 

heights is not possible, and larger corrections are necessary to convert levelling results into 

dynamic height differences: 
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 ∆𝐻𝐴𝐵
𝑑𝑦𝑛

= ∆𝑛𝐴𝐵 + 𝑘𝐴𝐵
𝑑𝑦𝑛

 (1.27) 

Where 

 

𝑘𝐴𝐵
𝑑𝑦𝑛

= ∫
𝑔 − 𝛾0

45

𝛾0
45 𝑑𝑛 ≈ ∑

𝑔 − 𝛾0
45

𝛾0
45

𝐵

𝐴

𝐴

𝐵

𝛿𝑛 (1.28) 

is a dynamic correction. 

That is why dynamic heights have not been widely used in Geodesy. National or continental height 

systems, and terrain-data based on them (topographic maps, DTM), use either orthometric or 

normal heights (Hofmann-Wellenhof and Moritz, 2006). 

1.3.2. Orthometric heights 

 

The orthometric height H is defined as the linear distance between the surface point and the geoid, 

reckoned along the curved plumb line (Figure 1.2). This definition corresponds to the common 

understanding of “heights above sea level”. Expanding the right-hand side of (1.25) in H and 

integrating along the plumb line from P0 (H=0) to P (H) we obtain (Hofmann-Wellenhof and 

Moritz, 2006): 

 

𝐻 =
𝐶

�̅�
 , �̅� =

1

𝐻
∫ 𝑔𝑑𝐻

𝐻

0

 (1.29) 

�̅� is the mean gravity along the plumb line; gravity values inside the earth are required for its 

calculation. This is performed by introducing a model of the density distribution of the topographic 

masses. As this distribution is known only imperfectly, the accuracy of computed orthometric 

heights depends on the accuracy of the density model. In addition, points of equal orthometric 

height deviate slightly from a level surface, which is due to the non-parallelism of the level 

surfaces. These drawbacks are compensated by the fact that orthometric heights represent the 

geometry of the topographic masses. Geometric levelling only needs small corrections for the 

transformation into orthometric height differences (Hofmann-Wellenhof and Moritz, 2006). 
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1.3.3. Normal heights 

The normal heights (geometric heights) are not supposed to describe the heights above the geoid 

(Tenzer et al., 2012). They relate the points to another surface known as quasi-geoid, which is 

close to the geoid, but not a level surface (Sjoberg, 2018), in order to avoid any hypothesis on the 

distribution of the topographic masses (Vaniček, 1976; Foroughi & Tenzer, 2017). Normal heights 

HN have been introduced by Molodensky and are used in many countries (Vaniček et al, 2012). 

The mean gravity �̅� in (1.28) is replaced by the mean normal gravity �̅� along the normal plumb 

line, which is only slightly curved: 

 

𝐻𝑁 =
𝐶

�̅�
 , �̅� =

1

𝐻𝑁
∫ 𝛾𝑑𝐻𝑁 

𝐻𝑁

0

 (1.30) 

�̅� can be calculated in the normal gravity field of an ellipsoidal earth model. The quasi-geoid 

deviates from the geoid on the mm to cm order at low elevations and may reach one-meter 

deviation in the high mountains. On the oceans, geoid and quasi-geoid practically coincide 

(Sanchez, 2013).  
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2. DIGITAL ZENITH CAMERA 

The digital zenith camera is a portable astrometric instrument for vertical deflection 

measurements – angular difference between gravity field direction and normal to reference 

ellipsoid that can be used for local quasi-geoid precision improvement, Earth crust movement 

monitoring, local geological structure qualities determination, etc. There are only several DZC 

known in the world, e.g. TZK2-D or DIADEM (Hirt et al., 2005; Hirt et al., 2010a; 2010b), but 

in comparison to these cameras, our camera is portable and more convenient for field observations. 

At present the camera system developments have been completed, and more than 400 observations 

have been done in Latvia. The principle of digital zenith camera is based on the determination of 

plumb line by astronomical coordinates (Φ, Λ). The stars serve as orientation and approximately 

20 stars around zenith frame should be used for observations. The precision of the developed 

digital zenith camera is about 0,1-0,2 arc seconds. The advantage of using deflections of the 

vertical observations for quasi-geoid determination is the provision of terrestrial gravity field 

information, which is independent from errors in local vertical datum (Featherstone & Lichti, 

2008), (Voigt et al., 2009).  GNSS techniques allow to determine geodetic (ellipsoidal) coordinates 

(Celms et al., 2017), as well as the exact time of positioning, which is needed for the astronomical 

zenith camera observations (Φ, Λ) for the modelling of the precession, nutation and Earth rotation 

terms.    

2.1. Basic principle of Vertical Deflections determination 

Astronomical coordinates (Φ, Λ) define positions on earth surface and equatorial coordinates (δ, 

α) define positions of stars on the celestial sphere (Figure 2.1). The relationship of unreduced 

deflections related to the Earth surface, and the quasi-geoid is shown in Figure 2.2. 

Both coordinate systems are linked by Greenwich apparent sidereal time – GAST (the hour angle 

of the vernal equinox) regarding the Earth’s rotation (Hirt & Burki, 2003). The astronomic latitude 

Φ and longitude Λ determine the direction of the tangent to the plumb line and is defined by digital 

zenith camera and the geodetic coordinates (φ, λ) define the direction of the ellipsoid normal using 

GNSS techniques (Halicioglu et al., 2012a, Haliciolgu et al., 2012b).  
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Figure 2.1. Basic principle of the determination of the plumb line (Φ, Λ) by imaging the stars in 

zenith direction (Hirt & Burki, 2003). 

 

 

Figure 2.2. The relationship of unreduced deflections of vertical related to the Earth surface and 

the quasi-geoid (author) 
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Deflection of the vertical is the angular difference between plumb line direction and normal to the 

surface and consists of north and east component (ξ, η) (Ceylan, 2009). Deflections of the vertical 

can be calculated using astronomical coordinates (Φ, Λ) and geodetic (ellipsoidal) coordinates 

reading (Torge, 2001): 

 
ξ = Φ – φ,  

η = (Λ – λ) ∙cosφ 

(2.1a) 

(2.1b) 

The component ε in the azimuth α can be computed using ξ and η components: 

 
ε = ξ cosα+ η sin α 

(2.2) 

Equations (2.1a, b) and (2.2) are valid for all definitions of the deflection of the vertical.  

The differential relationship between geoid height and deflection of the vertical is defined through 

the following formulae (Heiskanen & Moritz, 1984; Vaniček, 1976): 

 

−𝑑𝑁 = 휀 ∙ 𝑑𝑠 𝑜𝑟 휀 = −
𝑑𝑁

𝑑𝑠
 (2.3) 

By combining formulae (2.2) and (2.3) we obtain: 

 
−

𝑑𝑁

𝑑𝑠
= 𝜉𝑐𝑜𝑠𝛼 + 𝜂𝑠𝑖𝑛𝛼 𝑜𝑟 

−
∆𝑁

∆𝑠
≈ 𝜉𝑐𝑜𝑠𝛼 + 𝜂𝑠𝑖𝑛𝛼  

(2.4) 

(2.5) 

 

2.2. Construction of Digital Zenith Camera 

The design of digital zenith camera was started in 2010 by Institute of Geodesy and Geoinformatics 

(Abele et al., 2012). Zenith camera consists of a rotating assembly, placed on a roughly (a few arc 

minutes) levelled platform (see Figure 2.3). Any rotation position can be used. Camera assembly 

is levelled with a few arc second accuracy in each rotation position using 3 linear actuators. After 

that a number of zenith area star images are obtained together with high resolution tiltmeter 

readings. An on-board GNSS receiver is used to obtain geocentric site coordinates and support 

accurate image timing. Hardware control and data acquisition is done by an on-board control 

computer. An observation session typically lasts 20-40 minutes.  
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Figure 2.3. Digital Zenith camera (VESTA – VErtical by STArs) (author) 

2.3. The principle of measurement method 

GNSS provide geocentric coordinates (15-20 cm) in precise UTC time (10 mks) in order to 

compute the direction of normal to reference ellipsoid in astrometric coordinate system. 

Observations of reference stars provide instrument position of main axis relatively to normal of 

reference ellipsoid. Indications of tiltmeter provide corrections of inclination for base axis of the 

instrument relatively to plumb line. The difference between these positions should give vertical 

deflection, in case when all options and zero points of tiltmeter are precise. In practice, range of 

measurements should be done in different positions in order to exclude estimation errors.  

The basic component are imaging sensors (CCD cameras) to track the camera-platform p or an 

object (b), on which p is mounted by stars S. For the unification of Astronomical Directions and 

Deflections of the Vertical by a camera platform p and the attitude determination 𝐑b
LGV(𝑟, 𝑝, 𝑦) of 

the body (b), the imaging sensor system and platform p are taken here as being axe-parallel to the 

body system (b).  In case that the camera system p is not mounted axe-parallel to the body (b) the 
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additional so-called lever-arm matrix 𝐑p
b(𝜖𝑥, 𝜖𝑦, 𝜖𝑧) can always be considered to rotate the 

resulting attitude matrix 𝐑b
LGV(𝑟, 𝑝, 𝑦) of the camera-system (p=b) to the true physical body (b).  

 
 

Figure 2.4. Modern Startracker CT-602 Camera System for Navigation of Aircraft, as produced 

by Ball Aerospace's CT-602  

So we have for the 3D platform-based vector 𝐩 coordinates with p=b and the related normalized 

direction vector 𝒓𝑆
𝑏 of the body system: 

𝐩b,S = [

𝑥 − 𝑥0

𝑦 − 𝑦0

𝑓
]     and so, the direction vector   𝐫b,S =

𝒑

|𝒑|
=

1

|𝒑|
⋅ [

𝑥 − 𝑥0

𝑦 − 𝑦0

𝑓
]     (2.6) 

with 

(𝑥, 𝑦)𝑡_𝑈𝑇𝐶 – observed image coordinates of a star 𝑆(𝛿, 𝛼) at time t_UTC;  

(𝑥0, 𝑦0) – principal point of the image;  

 f – focal length of the sensor (see Figure 2.4) (Hofman-Wellenhof et al., 2003). 

The transformation of the image star image-based vector 𝐫b,S  from the body-system to the local 

astronomical geodetic vertical system (LAV) system reads: 

 𝐫LAV,S = 𝐑b
LAV(𝑟, 𝑝, 𝑦) ⋅ 𝐫b,S (2.7) 

 



31 

 

𝑹𝑏
𝐿𝐴𝑉 = (

𝑐𝑜𝑠 𝑝 𝑐𝑜𝑠 𝑦 𝑠𝑖𝑛 𝑟 𝑠𝑖𝑛 𝑝 𝑐𝑜𝑠 𝑦 − 𝑐𝑜𝑠 𝑟 𝑠𝑖𝑛 𝑦 𝑐𝑜𝑠 𝑟 𝑠𝑖𝑛 𝑝 𝑐𝑜𝑠 𝑦 + 𝑠𝑖𝑛 𝑟 𝑠𝑖𝑛 𝑦
𝑐𝑜𝑠 𝑝 𝑠𝑖𝑛 𝑦 𝑠𝑖𝑛 𝑟 𝑠𝑖𝑛 𝑝 𝑠𝑖𝑛 𝑦 + 𝑐𝑜𝑠 𝑟 𝑐𝑜𝑠 𝑦 𝑐𝑜𝑠 𝑟 𝑠𝑖𝑛 𝑝 𝑠𝑖𝑛 𝑦 − 𝑠𝑖𝑛 𝑟 𝑐𝑜𝑠 𝑦

−𝑠𝑖𝑛 𝑝 𝑠𝑖𝑛 𝑟 𝑐𝑜𝑠 𝑝 𝑐𝑜𝑠 𝑟 𝑐𝑜𝑠 𝑝
)   (2.8) 

where p, y and r are the pitch-, yaw- and roll-angle of the zenith-camera platform p as body with 

respect to the LAV. On the other hand, we get for an observed star 𝑆(𝛼, 𝛿) transformed from its 

Cartesian coordinates from the ECIF inertial system (i)  

 
𝒓𝑖,𝑆 = (

𝑐𝑜𝑠 𝛿 ⋅ 𝑠𝑖𝑛 𝛼
𝑐𝑜𝑠 𝛿 ⋅ 𝑐𝑜𝑠 𝛼

𝑠𝑖𝑛 𝛿
) 

(2.9) 

to the ECEF at time t by  

 𝑹𝒊
𝒆(𝒕_𝑼𝑻𝑪) = 𝑹𝑷𝒐𝒍𝒂𝒓 ⋅ 𝑹𝑬𝒂𝒓𝒕𝒉−𝑹𝒐𝒕𝒂𝒕𝒊𝒐𝒏 ⋅ 𝑹𝑵𝒖𝒕𝒂𝒕𝒊𝒐𝒏 ⋅ 𝑹𝑃𝑟 𝒆𝒄𝒆𝒔𝒔𝒊𝒐𝒏 ⋅ 𝑹𝑬𝒊𝒈𝒆𝒏               (2.10) 

(Xu, 2007), and we get 

 
𝒓𝑒,𝑆(𝑡_𝑈𝑇𝐶) = 𝑹𝑖

𝑒(𝑡_𝑈𝑇𝐶) ⋅ 𝒓(𝛼, 𝛿)𝑖,𝑆 (2.11) 

By the astronomical coordinates (𝛷, 𝛬) and the rotation matrix 

 
𝐑𝑒

𝐿𝐴𝑉(𝛷, 𝛬) =[
− 𝑐𝑜𝑠 𝛬 ⋅ 𝑠𝑖𝑛 𝛷 −𝑠𝑖𝑛 𝛬 ⋅ 𝑠𝑖𝑛 𝛷 𝑐𝑜𝑠 𝛷

−𝑠𝑖𝑛 𝛬 +𝑐𝑜𝑠 𝛬 0
𝑐𝑜𝑠 𝛬 ⋅ 𝑐𝑜𝑠 𝛷 𝑠𝑖𝑛 𝛬 ⋅ 𝑐𝑜𝑠 𝛷 𝑠𝑖𝑛 𝛷

] (2.12) 

we get finally arrive at 

 𝒓𝐿𝐴𝑉,𝑆(𝑡_𝑈𝑇𝐶) = 𝐑𝑒
𝐿𝐴𝑉(𝛷, 𝛬) ⋅ 𝑹𝑖

𝑒(𝑡_𝑈𝑇𝐶) ⋅ 𝒓(𝛼, 𝛿)𝑖,𝑆 .                     (2.13) 

 (2.6) and (2.13) lead to 

 𝐑b
LAV(𝑟, 𝑝, 𝑦) ⋅ 𝐫b,S − 𝐑𝑒

𝐿𝐴𝑉(𝛷, 𝛬) ⋅ 𝑹𝑖
𝑒(𝑡_𝑈𝑇𝐶) ⋅ 𝒓(𝛼, 𝛿)𝑖,𝑆= 0 (2.14) 

The matrix 𝑹𝑒
𝐿𝐴𝑉(𝛷, 𝛬) in (2.14) can be replaced by 

 𝐑e
LAV(Φ,Λ) =  𝐑LGV

LAV ⋅ 𝐑e
LGV (2.15) 

With 
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𝑹𝑒

𝐿𝐺𝑉(𝐵, 𝐿) =[
− 𝑐𝑜𝑠 𝐿 ⋅ 𝑠𝑖𝑛 𝐵 −𝑠𝑖𝑛 𝐿 ⋅ 𝑠𝑖𝑛 𝐵 𝑐𝑜𝑠 𝐵

−𝑠𝑖𝑛 𝐿 𝑐𝑜𝑠 𝐿 0
𝑐𝑜𝑠 𝐿 ⋅ 𝑐𝑜𝑠 𝐵 𝑠𝑖𝑛 𝐿 ⋅ 𝑐𝑜𝑠 𝐵 𝑠𝑖𝑛 𝐵

] (2.16) 

And 

𝑹𝑳𝑮𝑽
𝑳𝑨𝑽 = 𝑹𝒆

𝑳𝑨𝑽 ⋅ (𝑹𝒆
𝑳𝑮𝑽)𝑻= 𝑹𝑳𝑮𝑽

𝑳𝑨𝑽 = 𝑹𝑳𝑮𝑽
𝑳𝑨𝑽(𝑩, 𝑳,Φ, Λ) =

(

sinB sinΦ cos( Λ − L) + cos B cosΦ sin B sin( Λ − L) cos B sinΦ − sinϕ cosΦ cos( Λ − L)
− sinΦ sin( Λ − L) cos( Λ − L) + cosΦ sin( Λ − L)

sin B cosΦ − cosB sinΦ cos( Λ − L) − cos B sin( Λ − L) cos B cosΦ cos( Λ − L) + sin B sinΦ
)

T

 

 (2.17) 

 

𝐑LGV
LAV ≅ (

1 η ⋅ tanB ξ
−η ⋅ tanB 1 −η

−ξ η 1
)

T

  (2.18) 

(Jekeli, 2001) 

With (2.15) to (2.18) we get from (2.14): 

 𝐑b
LAV(𝑟, 𝑝, 𝑦) ⋅ 𝐫b,S − 𝐑LGV

LAV(B, ξ, η) ⋅ 𝐑𝑒
𝐿𝐺𝑉(𝐵, 𝐿) ⋅ 𝑹𝑖

𝑒(𝑡_𝑈𝑇𝐶) ⋅ 𝒓(𝛼, 𝛿)𝑖,𝑆= 0 (2.19) 

and, as an alternative in the LGV:  

 𝐑b
LGV(𝑟, 𝑝, 𝑦) ⋅ 𝐫b,S −  𝐑𝑒

𝐿𝐺𝑉(𝐵, 𝐿) ⋅ 𝑹𝑖
𝑒(𝑡_𝑈𝑇𝐶) ⋅ 𝒓(𝛼, 𝛿)𝑖,𝑆= 0 (2.20) 

Use of the equations (2.14) and (2.19), (2.20): 

1) The equation (2.14) can be used for the determination of the astronomical position and 

absolute vertical directions (𝛷, 𝛬) at position P by zenith camera measurements 𝐫b,S to 

stars S. Here an inclinometer is needed to determine the tilts (𝑟, 𝑝). The yaw angle is (also) 

common to the measurements of all stars S, and can remain as an unknown in the equation. 

The GNSS position (P) is only needed for a georeferencing, namely to relate (𝛷, 𝛬) to a 

gravity field model V (W = V(P) + Z(P)) in case of a further use of (𝛷, 𝛬) for gravity field 

determination V(r,𝜑, 𝜆) as (B,L,h)  (B,L,h)  (r,𝜑, 𝜆). 
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2) The equation (2.19) can be used - like (2.14) but now together with an early use of the 

GNSS georeferencing P(B,L,h) - to determine the vertical deflections (ξ, η) at location P 

for gravity field determination and quasi-geoid determination by astronomical levelling.  

3) Equation (2.20) can be used for navigation, namely attitude determination (r,p,y), as (r,p,y) 

in navigation are related to the LGV = n-frame (n-frame = Navigation frame). Here (B,L,h), 

more precisely only (B,L) for GNSS are actively used.  

2.4. Control Software  

The data and control processing software is designed as a single program under Windows system. 

It can be run either in measurement or post-processing mode. Difference between modes is mainly 

in data acquisition hardware treatment. On-board control process is monitored and controlled by 

remote terminal via “RemoteDesktop” connection. Though data processing and vertical deflection 

determination can be done in real time, this kind of mode is time-consuming and not practical. 

Generally, measurement data are saved in file system and processed later using post-processing 

mode. Exceptions are some critical data quality indicators, such as tiltmeter data dispersion and 

quality of star images on CCD image, which always are calculated in real time. Several control 

parameters, involved in measurement process, are stored in software configuration file and can be 

adjusted by operator (Zarins et al., 2016). 

2.5. Raw data processing 

Though the post-processing can be carried out within the control computer, downloading of the 

raw observation data to a safe location on a hard disk for a post-processing is a better option. 

Results of the observation session are stored in a numerous text and image files, contained in a 

specific directory of the session.  

Technically, post-processing consists of: 

• complementing the data with the Earth Orientation Parameters (EOP) and site coordinates; 

• setting of the processing modes and parameters; 

• execution of astrometric reduction of frames; 

• calculation of ellipsoidal zenith position on frames; 

• calculation of tiltmeter corrections; 
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• calculation of session model parameters. 

Though the reasonable predicted values of EOP are available only in some days after measurement 

session, e.g.  ftp://cddis.gsfc.nasa.gov/pub/products/iers/  the use of corrected values is beneficial 

for accuracy and credibility of the results. Therefore, post-processing is better to be done after this 

period of observations. 

2.5.1. Processing settings 

Raw data contain site coordinates, available to the control program, but they can be replaced by 

more accurate values in several ways: 

• Site coordinate values can be edited directly in the session information file; 

• Site coordinates can be entered in a sites database entry; 

• Average values of site coordinate messages, obtained from on-board GNSS, can be set to 

session data.  

Following processing settings are most likely to be modified: 

• Batch processing mode includes such options as: 

 what kind of data subset should be processed: astrometric and/or leveling; 

 if the existing star image and identification data should be used or ignored; 

 if the existing solutions should be cleared (both astrometric and leveling; no any 

calculations in this mode); 

 which frame subset must be recalculated: all / those without astrometric solution / those, 

for which number of identified stars is less than indicated; 

• star image recognition settings; 

• autoImg and autoID modes: if set, star image recognition and/or identification will be 

performed on frame loading, if have not been done successfully before. For batch processing this 

mode is set by default; 

• Identification mode – first option:  

 solution of the previous frame is attempted first. May make process considerably faster, 

but may also promote false identification to all subsequent frames of a position; 

Second option:  

 geometric similarity identification is attempted. It is the basic choice, but in some cases 

may produce false identification. 

ftp://cddis.gsfc.nasa.gov/pub/products/iers/
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• Identification and star association tolerances: minimum star number, number of brightest 

images, used in ID, which accept RMS star association tolerance (“star from image”), ID timeout; 

• Reference star selection parameters:  

 maximum magnitude: generally, value of 13.5 to 14 is optimal, but in case of bad sky 

conditions or bad focusing quality may be beneficial to decrease it to 11-13. 

 radius of star selection area: generally, 0.23 dg is enough, but if zenith is far away from the 

center of frame, it should be slightly increased to ensure full coverage of image. It can be 

changed by slider or in radius edit field of the main dialog.  

• Focus distance value, especially if focusing has been significantly changed. The value is 

taken from the configuration, and it can be adjusted for the session needs by entering the value; 

• Level correction settings: linear drift can be estimated, and it slightly improves the 

accuracy, but tiltmeter timing must be accurate at least within one second. 

• Model residual outlier rejection limits (separate for stars and tiltmeter); values 2 - 2.5 are 

found to be optimal. 

2.5.2. Frame processing 

Frame processing can be done manually, frame by frame, or in batch mode (all frames below the 

current frame list selection, satisfying batch settings). In regular situation, batch mode is the first 

choice, after batch calculations are done; unsuccessful or suspicious frames can be reviewed 

individually, selecting a frame in the list for processing. When frame data is loaded, the image file 

should be displayed with star image and reference star marks on top. If there are more than 6 stars 

on the image and no major errors in data, automatic identification should be successful. If it fails, 

comparison with the other frames of the same position can reveal the problem. Often, trying 

astrometric solution of one of nearby frames for the same position is enough for identification. If 

identification is successful, frame astrometric model parameters are calculated by described below 

algorithm. 

The purpose of astrometric reduction of star field images is to find the transformation, linking 

CCD coordinate system with inertial reference frame, defined by star positions. When such 

transformation is found, geocentric zenith point can be projected to CCD coordinate system, 

providing data for calculations of vertical deflection value. 

Turner transformation with 6 or 4 parameters is used: 
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𝑋 = 𝑋0 + 𝐴 ∙ 𝑥 + 𝐵 ∙ 𝑦  

𝑌 = 𝑌0 + 𝐶 ∙ 𝑥 + 𝐷 ∙ 𝑦  

(2.22a) 

(2.22b) 

where X, Y – CCD coordinates,  

x, y – topocentric apparent places of stars: 

 𝑥 = 𝑧 ∙ sin(𝐴)  

𝑦 = −𝑧 ∙ cos(𝐴) 

(2.23𝑎) 

(2.23𝑏) 

where z – apparent zenith distance,  

A – apparent azimuth,  

𝑋0, 𝑌0, A, B, C, D –  parameters of transformation. In case of 4-parameter transformation A= –D 

and C=B. 

Interpretation of parameters is: 

𝑋0, 𝑌0 – offset; 

𝐹𝑥=√(𝐴2 + 𝐵2) – image scale (focus distance) along x axis; 

𝐹𝑦= √(𝐶2 + 𝐷2) – image scale (focus distance) along  y axis; 

𝑡𝑔(𝐴𝑥 − 𝜋) =
𝐵

𝐴
 – CCD X-axis orientation azimuth; 

 𝑡𝑔(𝐴𝑦 − 𝜋) = −
𝐶

𝐷
 – CCD Y-axis orientation azimuth.  

The values of transformation parameters are calculated using Least Squares algorithm on the set 

of normal equations (2.22a, 2.22b), composed of data for all identified stars and images.  

As, because of shutter and star movement, there is small difference of scales along X and Y axes, 

6–parameter model fits a little better then otherwise quite sufficient 4-parameter variant. 

When transformation is acquired, ellipsoidal zenith point coordinates on CCD can be calculated, 

inserting x=0, y=0 in (2.22a, 2.22b), respectively, Xz=𝑋0; Yz=𝑌0. For convenience Xz and Yz are 

reduced to the center of CCD. 

Frame model calculation process is controlled and visualized in Astrometric groupbox of Session 

dialog (Figure 2.5).   
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Figure 2.5. Astrometric groupbox of Session dialog 

2.5.3. Tiltmeter data processing 

As processing of tiltmeter data is much simpler than astrometric, a variant of residual tilt 

corrections (interpolated tilt values for exposure moment) is calculated already during frame 

acquisition and saved in frame information file along with raw tiltmeter readings. It can be used 

as it is or can be recalculated during the post-processing. Controls for manual operations with 

tiltmeter data are located in “Level” groupbox of Session dialog (Figure 2.6).  

 

Figure 2.6. Level groupbox session dialog 

The listbox contains list of tiltmeter readings (copy of it is located in the frame information file). 

“Calculate” button starts approximation of tilt values with 1-parameter (average value) or 2-
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parameter (linear dependency on time; if checkbox “lin” is checked) model. Residual rejection 

tolerance in field “rej.lim” (in rms units) is used to discard outliers.  “all” button can be used to 

reverse all rejections. “remove 0” checkbox is meant for discarding all near-zero values for case 

of malformed data exchange. “-<>+” button inverts status of the selected reading. Resulting 

average values and RMS are displayed next to listbox. “Plot” button opens model visualization 

dialog (Figure 2.7). Two modes of visualization are supported: XY plot and time dependency. In 

case of time dependency (“drift” checkbox checked) horizontal (X) coordinate is time from the 

first reading of the frame (range indicated below graph, usually 4-8 seconds); Y coordinate shows 

tilt values (channel X: red, Y: blue) in arc seconds, exposure moment is marked with vertical line, 

interpolated tilt values for  that moment are marked by horizontal lines. Approximated linear trends 

are shown by lines of respective color. Marks for rejected outliers have thinner lines. 

 

Figure 2.7. Model visualization dialog 

2.5.4. Residual tilt corrections 

To find corrected ellipsoidal zenith coordinates dX and dY measured residual tilt values x, y must 

be transformed to CCD coordinate system. For that purpose, model of CCD and tiltmeter relative 

orientation (Figure 2.10) is used. It assumes, that CCD axes are fairly orthogonal; tiltmeter axes 

are oriented in some angles (dAx, dAy) relative to corresponding CCD axes.  The transformation 

is: 

 
𝑑𝑋 = 𝑋 ∙ 𝑆 − (𝑥 ∙ 𝑆𝑥 ∙ 𝑐𝑜𝑠𝑑𝐴𝑥 − 𝑦 ∙ 𝑆𝑦 ∙ 𝑠𝑖𝑛𝑑𝐴𝑦) (2.24𝑎) 
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𝑑𝑌 = 𝑌 ∙ 𝑆 − (𝑦 ∙ 𝑆𝑦 ∙ 𝑐𝑜𝑠𝑑𝐴𝑦 + 𝑥 ∙ 𝑆𝑥 ∙ 𝑠𝑖𝑛𝑑𝐴𝑥) (2.24𝑏) 

where 

X, Y – zenith coordinates on CCD (in pixels); 

x, y – tiltmeter readings; 

S – CCD scale factor (pix. size / focus distance); 

Sx, Sy – tiltmeter scale factors, introduced because of approximate nature of their factory 

calibration. 

 

Figure 2.8. Model of CCD and tiltmeter relative orientation 

Scale factor S is obtained by astrometric processing of the frame. Sx, Sy, dAx and dAy are 

instrument calibration constants, determined by special calibration measurement procedure (see 

2.8).  

Values of x, y, X, Y and S are stored in frame information file. Other calibration constants are stored 

both in session information file and program configuration. The transformation (2.24 a, b) is 

performed every time when processing of the session is requested.  
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2.5.5. Calculation of session model parameters 

In order to find vertical deflection value, an approximating model is used, describing dependency 

of ellipsoidal zenith coordinates (corrected for residual tilt) on rotation angle (instrument 

orientation azimuth) in rotating CCD coordinate system: 

 
𝑑𝑌 = 𝑌0 + 𝑑𝑍𝑦 ∙ 𝑐𝑜𝑠𝐴 + 𝑑𝑍𝑥 ∙ 𝑠𝑖𝑛𝐴 + 𝑌𝑡 ∙ 𝑑𝑇  

𝑑𝑋 = 𝑋0 − 𝑑𝑍𝑦 ∙ 𝑠𝑖𝑛𝐴 + 𝑑𝑍𝑥 ∙ 𝑐𝑜𝑠𝐴 + 𝑋𝑡 ∙ 𝑑𝑇 

(2.25a) 

(2.25b) 

where 

dX, dY – corrected ellipsoidal zenith coordinates; 

𝑋0, 𝑌0 – center of trajectory, representing location of plumb line projection on CCD; 

dZy, dZx – components of vertical deflection (same as ξ in North-South and η in West-East 

directions respectively; positive if geoid height increases in S and E directions); 

A – frame orientation (negative direction of CCD Y axis) azimuth; 

Xt, Yt – drift, represents linear part of dependency of 𝑋0, 𝑌0 on time; 

dT – time (from the first frame exposure moment); 

Drift is included in model only on request (“drift” checkbox checked). 

A Least Squares algorithm is used to determine model parameters 𝑋0,𝑌0, dZx, dZy, Xt, Yt. As 

always, outliers are removed, and model calculation repeated until all residuals are smaller than 

rejection tolerance. 

Button “Model” of Session dialog is used to initialize model calculation. It opens Model dialog, 

calculation results and more control elements are located there. Mode “diff a-l” must be selected 

to use model (2.24 a, b), the other two modes are meant for approximation of only astrometric or 

only tiltmeter data for calibration or diagnostic purposes. 

2.6. Model visualization and controls 

The model (2.25 a, b) represents circle on CCD coordinate plane, moving in time if drift 

components are included. In order to visualize it (Figure 2.9), marks of corrected zenith points are 

connected with residual lines to corresponding places on solution trajectory, forming bunches of 

measurement positions along model trajectory. For model itself only one circle, corresponding to 

driftless situation at the moment of the first position, is drawn.  From the center of this circle 
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(representing projection of plumb line in that moment) a line is drawn to the point, representing 

model position with CCD orientation azimuth 0. As it can be seen from formulas (2.25 a, b), 

relative placement of such point illustrates value of vertical deflection (but in topocentric, non-

rotating coordinate system, which might be a little confusing to comprehend with other contents 

being in rotating CCD system. Axes of topocentric system are drawn in the center of circle). 

Drift, if present, can be easily visualized only in the case if orientation azimuth has been linear 

function of time, what practically never happens. In real situation, orientation azimuth is wildly 

jumping along session. Nevertheless, an evenly moving spiral, representing linear dependency 

case, can be drawn (checkbox “drift”), however, it will coincide with real positions only 

occasionally. 

There is a number of drawing options, controlled by checkboxes in the upper right corner of dialog 

window: 

• “residuals” (by default on): drawing of residual lines and lines, connecting consecutive 

positions; 

• “E-W”: lines are drawn for all measurements, indicating E-W direction on CCD; 

• “astro & lvl”: marks for raw measurements (both astrometric and tiltmeter); 

• “connect”: lines, connecting consecutive measurements are drawn; 

• “all”: also measurements, not included in current subset, are drawn; 

• “frame #” (by default on): frame numbers are indicated beside marks; 

• “pos #”:  position numbers and azimuth values are indicated beside corresponding places; 

• “outline”: draws solution outline for astro/level model types; 

• “drift”: draws model spiral; number of turns must be indicated; 

“Redraw” button redraws the picture with actual options. 
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Figure 2.9. Model visualization and controls 

The text block contains site and date information, used calibration constants, Earth rotation 

parameters, number of measurement points and model residual RMS, CCD coordinates of model 

center (place of plumb line projection at the time of the first position), drift values and estimated 

vertical deflection components. 

Initially the graph is scaled and located so, that it fits in the area, available for painting. Sliders 

along upper and left edges of the window support changing scale and location of graph; “center” 

button places the graph close to window center. Parameters of screen coordinate system (scale in 

pixels per arc second, zero point in pixels) are shown in the upper left corner. 

Controls of model calculation are located in the “model” groupbox. “Calculate” button repeats 

calculations (with drift option if “drift” checkbox is checked), using outlier rejection tolerance as 

specified in “reject” field. “+” button activates all rejected outliers. 
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2.7. Data subset selection 

The model (2.25 a, b) incorporates only that part of effects of several essential perturbations of 

measurement process (most notably, effect of anomalous refraction variability and thermal 

expansion effects in instrument construction), which can be described as linear dependency on 

time. Approximation of long sequences of measurements often show presence of unlinearity and 

other influences, manifesting as systematic trends in residuals and increase of residual RMS value. 

In order to outline effect of model inadequacy on vertical deflection estimates and, possibly, find 

out nature of these influences, approximation of various subsets of full session data have proved 

useful. Such approach is also efficient in identifying and isolating occasional measurement errors. 

Mechanism of subset selection is implemented using frame status flags. If a frame is currently 

active, it is marked with “+” in the first column of frame list (Figure 2.10).  

 

Figure 2.10. Frame list dialog 

Processing (“Model” button in Session dialog; “Calculate” buttons in Model dialog) uses only 

active frames. Controls for manipulating frame statuses are located in the “session results” 

groupbox: 

• “-<” button makes all frames inactive; 

• “>+”button makes all frames active; 

• “N=0 ->-“ button makes inactive all frames without astrometric or leveling solution; 

• “-<>+” button reverses status of the selected frame (or selected position if “curr pos” is 

checked); 

• “>+ frm/pos #” activates frames or positions within number interval, indicated in the fields 

to the right (initial #; number of frames/positions); 
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• “->” button moves the above interval ahead one step; it (and the previous as well) also 

invokes “Process” button. 

2.8. Multi-model mode 

In order to make analysis of different subsets of data more convenient, the multi-model calculation 

mode is implemented. In this mode models for a number of data subsets of different extent and 

time location are calculated. Results are presented as series of graphs (Figure 2.11), showing 

dependency of estimated vertical deflection components on subset parameters – number of 

included positions and represented time interval.  

 

Figure 2.11.  Visualisation of results 

To complement the picture, also dependencies on time of drift estimates, approximation accuracy, 

source data accuracy, number of stars in frames and ambient temperature are shown.  
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Controls for multi-model mode in “multiModel” groupbox of Model dialog (Figure 2.12) consist 

of “Calculate” button and series of checkboxes for represented model sizes (number of represented 

consecutive positions).  

 

Figure 2.12. MultiModel dialog 

For each requested size model parameters are calculated for a number of data subsets and 

visualized in specific color. Time moments are average for included positions, for smallest subsets 

they span almost all session duration while for largest – only middle interval; the subset, including 

all positions, is only one and is represented on graphs with one point. 

On vertical deflection values graphs the area +/-0.1 arcsec around average is colored light-red. 

Except for cases of really big anomalous refraction variations, most of results for models with 

more than 6 positions should be inside that area. 

All multiModel calculations are done using full model (2.25 a, b), including drift estimations. 

Duration of calculation depends on number of positions in session and selected set of model sizes, 

it can reach several seconds. 

When interpreting the results, following considerations should be regarded: 

• Small subsets are prone to big random fluctuations of model parameters, ranging up to 

~arcsec for 2 positions; 

• Random component decreases with more positions and longer time interval; systematic 

effects start to dominate typically at 8 positions (~15 minutes);  

• Longer subsets show increasing of approximation errors due to unabsorbed systematic 

differences from model, mainly with non-linear drift and anomalous refraction origin. 

• Value of drift often is big (tens of “/h) at the beginning of a session, especially, if instrument 

before session was stored at conditions, noticeably different from ambient. Drift rapidly decreases 

and after 10-20 minutes typically is down to a few “/h.  

• Effect of variability of anomalous refraction on approximation errors is relatively small 

(~0.1 arcsec) and becomes noticeable only in conditions of low and stable drift.  
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• Variations of anomalous refraction have typical amplitude of up to 0.1-0.2” with periods 

of 0.5-2 hours, amplitude decreases for longer periods. Variability with shorted periods probably 

has bigger amplitudes, but it is difficult to estimate because of little number of measurement 

positions, each having systematic shift caused by variability with even shorter periods. 

• Model accuracy starts to deteriorate if frame astrometric and/or leveling RMS increases 

above ~0.5 arcsec level. Possible reasons of that may be bad focusing, high microseismics level, 

wind, etc. Risk factor is also small (below ~10) number of stars per frame, especially if it is 

consequence of bad focusing quality.  

• If attachment of some component of the instrument has become loose and some extent of 

free movement is present, measurement results can split into several subsets, each with own model 

(differient mainly in parameters X0, Y0). Indication of such situation is rejection of data for whole 

positions or solution with huge RMS and opposite directions of residuals for different positions.  

2.9. Results of vertical deflection determination 

A multitude of approximating models can be obtained from the results of an observation session, 

representing, besides vertical deflection value itself, also behavior of anomalous refraction and 

thermal expansion of instrument components during session. Which of these models is the best 

representation of actual vertical deflection value, is a matter of some assumptions and speculations. 

Presently it seems, that, although thermal drift increases the value of model residuals, it is fairly 

well averaged across session and do not contribute much in systematic shift. The main concern is 

about variations of anomalous refraction, causing apparent time dependency of estimated vertical 

deflection values. Typically oscillations with period around one hour and amplitude of 0.1-0.2 

arcsec are found. Observations, covering at least half of that period are needed for averaging. Even 

then, shift of average value for up to about half-amplitude is possible. Therefore, we consider that 

~0.1 arcsec accuracy for this kind of vertical deflection measurements with short (an hour or less) 

observation time is a reasonable estimation, even if formal dispersion of results is smaller. Longer 

sessions can reveal behavior of anomalous refraction more fully, possibly giving several times 

more accurate vertical deflection estimates. However, possibility of presence of anomalous 

refraction effects of very long period (e.g., seasonal) or even permanent nature, cannot be ruled 

out. 
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In order to obtain on the basis of an observation session data a reliable estimation of vertical 

deflection, average values for models of all sizes, included in multiModel mode are calculated. On 

the results graphs, these values are marked with crosses of corresponding color. Finally, an average 

of averages is calculated, marked on graphs with a bigger, slanted red cross, and component values 

of it shown above XY graph. Also a list of average component values for all model sizes is shown, 

along with variability (half of max-min). 

When “Save” button in multiModel groupbox of Model dialog is pushed, a text line with results 

of current calculations (average of averages in case of multiModel mode) in format:  

#=Kolka_#1  DATE=2019-09-18_21:44  F=57.751164  L=22.595641  H=25.3   ZX= 3.377  ZY= 1.804  ERR=0.10 

 is added to file. 

The time corresponds to the first frame of the session. Site coordinates are those, which were 

present in session information file (unless changes were made after reading it). Error estimate is 

fixed at 0.1 arcsec and should be changed manually if that is deemed necessary. 

2.10. Calibration session 

A special observation session is needed to determine instrument calibration constants: orientation 

of tiltmeter axes relative to CCD and scale of tiltmeter readings. For that purpose, star observation 

are performed in a number of instrument leveling positions along trajectories, close to tiltmeter 

axes, so that readings of one axe are changing as little as possible in the process. In this way, tilt 

change along the other axis can be compared with zenith point projection trajectory on CCD, and 

both relative axes orientation and scale factor calculated. 

In order to calculate movements of leveling actuators for such trajectory, approximate orientation 

of tiltmeter A1 is necessary (Figure 2.13). It is supplied in configuration constant Az #1: 

orientation of the 1st actuator radius relative to tiltmeter X (radial) axis. To keep readings of one 

axis constant, actuator positions should be proportional to: 𝑐𝑜𝑠 ∙ (𝐴1 + 120° ∙ (𝑖 − 1)) for x and  

𝑠𝑖𝑛 ∙ (𝐴1 + 120° ∙ (𝑖 − 1)) for y, where i – number of actuator. 
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Figure 2.13. Scheme of actuators  

 

Figure 2.14. Tiltmeter close to X axis (xl); zenith close to CCD Y axis (Ya). Coordinate system 

of tiltmeter is left-handed. Trajectory of tiltmeter zero is matched with trajectory of zenith. 

 

Calibration observation session is performed starting from leveled position. As the first step 

actuators are moved along the selected tiltmeter channel almost to the limit of tiltmeter range. Then 

a series of observation positions are visited moving back along the same trajectory, until tilt is 

close to the opposite end of tiltmeter range.  Scenario of such sesssion must contain symbols DA_X 

or DA_Y; what in normal scenario is rotation angle, is here interpreted as tilt step (in arc seconds).  
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Processing of DA session results includes calculation of zenith point CCD coordinates and 

tiltmeter corrections just like for any other sessions.  After that, however, process is quite different. 

Session data must be processed first in “astro” mode, calculating parameters of zenith trajectory 

on CCD, then in “level” mode, calculating parameters of tilt trajectory. When both trajectories are 

got, relative angle between them and tiltmeter scale factor is calculated. 

The result of processing of DA session are parameters of line 𝑌 = 𝑌0 + 𝑘 ∙ 𝑋, approximating 

trajectory of zenith projection or tiltmeter zero-point.  Formula 𝑡𝑔(𝑑𝐴) = 𝑘 gives angle 𝑑𝐴 of this 

line to X axis. When these angles for both zenith and tiltmeter zero are obtained they must be 

combined so, that trajectories coincide, to get relative orientation of CCD and tiltmeter. Figure 

2.15 illustrates the geometrical disposition; perpendicularity of respective axes and mixing of right 

and left coordinate systems can make the process a little confusing. 

 

Figure 2.15. Trajectory of tiltmeter close to yl axis (direction negative); trajectory of zenith close 

to Xa axis. 

 

The result of calibration calculations are two orientation angles between respective axes of CCD 

and tiltmeter. Due to inaccuracies in tiltmeter axes direction adjustment, difference between them 

can reach several dg. Other result is tiltmeter scale, it may quite noticeably (up to ~10%) differ 

from passport value, possibly can depend on time and/or other external factors, like ambient 

temperature, humidity, pressure, voltage of power source. Due to this, it is desirable to perform 
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measurements as close to the tiltmeter zero-point (or any other fixed value), as possible, avoiding 

scale or orientation error transfer to tilt corrections in coordinate transformation (2.24 a, b). 

Resulting angles and scales must be entered in configuration data in order to be saved in session 

information file for subsequent sessions. At processing of a session, values, stored in that file are 

used. However, if necessary, they can be edited in Session dialog (angles) and Model dialog 

(scale). Modified values will be used in subsequent calculations and written to session information 

file, if it is saved. 

2.11. The use of vertical deflections in Riga region 

In case of the DFHRS software v. 4.3 the height reference surface is modelled by mesh-

wise (i= mesh index), but overall continuous polynomials pi. So, we have (Jäger, 2010): 

 
𝑁𝑖 = [1|𝐵, 𝐿|𝐵2, 𝐵𝐿, 𝐿2|𝐵3, 𝐵2𝐿, 𝐵𝐿2, 𝐿3|. . ] ∙ 

[𝑝00|𝑝10, 𝑝01|𝑝20, 𝑝11, 𝑝02|𝑝30, 𝑝21, 𝑝12, 𝑝03]𝑖
𝑇 = 𝒇(𝐵, 𝐿)𝑇 ∙ 𝒑𝑖 

(2.26) 

 

In (2.26) the parameters (B, L) mean the ellipsoidal latitude and longitude at position P.  

Considering that in case of computing a quasi-geoid (NQG), we have to use surface vertical 

deflections instead of the Helmert type. These are related - according to the Molodensky theory - 

to the so-called Telluroid point Qj, which is in a height hQ,j = hP,j - NQG,j below the surface point Pj. 

For the j-th couple of vertical deflections measured in the i-th mesh, we arrive at the the following 

observation equations: 

 
𝜉𝑗,𝑖 = −

𝜕𝑁𝑄𝐺

𝜕𝐵𝑗
∙
𝜕𝐵𝑗

𝜕𝑆𝑁
= −

𝜕𝐵𝑗

𝜕𝑆
∙
𝜕𝑁𝑄𝐺

𝜕𝐵𝑗
=

−1

(𝑀𝑗 + ℎ𝑗)
∙ 𝒇𝐵𝑗

𝑇 ∙ 𝒑𝑖   

𝜂𝑖,𝑗 = −
𝜕𝐿𝑗

𝜕𝑆
∙
𝜕𝑁𝑄𝐺

𝜕𝐿𝑗
=

−1

(𝑁𝑗 + ℎ𝑗) ∙ 𝑐𝑜𝑠𝐵𝑗
∙ 𝒇𝐿𝑗

𝑇 ∙ 𝒑𝑖 

(2.27𝑎) 

(2.27𝑏) 

M and N mean the radius of the curvature of the ellipsoid to the direction of the meridian and the 

prime vertical, respectively.  

The Riga region was chosen as test area and includes 35 GNSS /levelling points (h,H) and 

10 deflections of the vertical data points (η,ξ) observed by the developed digital zenith camera.  

The GNSS observations were partially provided by Latvian Geospatial Information Agency, as 

well as being carried out in 4 hours sessions and processed using Bernese GNSS software v 5.2 
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(Dach et al., 2015) as fiducial stations using the EUREF Permanent Network (EPN) stations 

(Haritonova et al., 2015) The postprocessed results were transformed to epoch 2017.0 using 

Helmert transformation (Balodis, et al., 2017). Besides field data observations from the developed 

zenith camera and GNSS/levelling points, quasi-geoid data N and vertical deflections data (η,ξ) 

were derived from EGM2008 (Pavlis et al., 2008a; Pavlis et al., 2008b, Pavlis et al., 2012) and 

EIGEN6C4 (Förste et al., 2014; Kostelecky et al., 2014) geopotential models http://icgem.gfz-

potsdam.de/ICGEM/ (Ince et al., 2019) Both models are of the same degree and order n=m=2159. 

The graphical display of the polynomial mesh (thin blue lines) and patch design (thick blue lines) 

and the observed data (fitting points and deflections of the vertical) of the DFHRS software 4.3 

are depicted in Figure 2.16.  

 

Figure 2.16. Riga region observations (green triangles – GNSS/levelling points, black squares – 

deflections of the vertical). 

Different computation results are depicted in Figure 2.17, Figure 2.18 and Figure 2.19. Figure 2.17 

shows the difference of the quasi-geoid models N based on EGM2008 and EIGEN6C4 

geopotential models. In most parts of Riga region, the amplitude of difference in geoid heights is 

in range from -1 up to +1 cm. The difference in the north of Riga region can reach up to 3 cm. The 

Figure 2.18 depicts the use of deflections of vertical data derived from EGM2008 model and its 

impact on geoid heights determination. This difference can reach from -3 up to +3 cm. Figure 2.19 

shows the differences of deflections of vertical observations from digital zenith camera in 

comparison without using this data. The range of differences varies from -7 up to +5 cm, what 

proves significant impact of the use of deflections of the vertical (η, ξ) on a quasi-geoid 
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determination. The standard deviation of the deflections of vertical data is equal to 0.09 arcsec for 

ξ (North- South) component and 0,14 arcsec for η (East-West) component. Other statistics is 

performed in Table 1. 

Table 1 

Statistics of vertical deflections observations (arcsec). 

 Mean RMS Min Max 

ξ 0.072 0.09 -0.100 0.162 

η 0.091 0.14 -0.311 0.226 

The calculations based on the preliminary results of vertical deflections observations approve the 

successful use of digital zenith camera and instrument readiness for further collection of 

observations. The computations using the DFHRS software v.4.3 allowed to carry out additional 

control and software’s check for modelling and data errors in the frame of the data processing. 

 

Figure 2.17. The difference of quasi-geoid model for Riga region in comparison to EIGEN6C4 

and EGM2008 geopotential models. 
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Figure 2.18. The difference between using derived deflections of vertical data and without this 

data. 

 

Figure 2.19. The impact of vertical deflections data from digital zenith camera. 
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The residuals of standard deviations are depicted in Table 2. As it is seen from the Table 2 the 

difference of the solutions is equal to 0.0001 m if we compare the results computed using 

EGM2008 model and EIGEN6C4 model. It can be explained by the fact that the same terrestrial 

data for these models were used in the territory of Latvia. The use of vertical deflection 

observations from digital zenith camera improves standard deviation twice. This shows favourable 

tendency for quasi-geoid improvement and also sustainability of digital zenith camera.  

Table 2 

 Different solutions for Riga region quasi-geoid 

Used data Standard 

deviation (m) 

EGM2008 model + observations from digital zenith camera 0.0050 

EGM2008 model 0.0109 

EIGEN6C4 model 

EGM2008 model with derived vertical deflections 

0.0110 

0.0127 

 

The residuals of some vertical deflection measurements are depicted in Table 3. 

Table 3 

 The values of VD and its residuals. 

Point 

number 

ξ(") ε(ξ") 

η(") ε(η") 

Riga 1.40 -0.060 

5.60 -0.086 

Daug -0.45 0.075 

6.30 0.226 

Iks1 -1.40 -0.100 

5.00 -0.014 

Iks2 -1.15 0.029 
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5.15 -0.009 

Luni 1.80 0.162 

6.30 -0.311 

Kang -0.40 -0.016 

6.72 0.059 

Ceku -1.72 -0.094 

6.55 0.108 

Salp -1.18 -0.087 

5.88 0.011 

Vaiv 2.90 0.042 

8.20 -0.022 

Zalv 1.55 0.053 

6.20 -0.059 

 

The mean standard deviation after estimation is found to be about 0.11”. The observations from 

digital zenith camera were continued in order to cover whole territory of Latvia and all 

“suspicious” places were checked and are discussed in the further chapter of this PhD thesis.  
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3. METHODS FOR QUASI-GEOID DETERMINATION 

In this chapter several methods of quasi-geoid determination are introduced, as well as stages of 

development of DFHRS software, as well as new method of DFHRS including both vertical 

deflections and gravity measurements. Examples of quasi-geoid determination for Ulaanbaatar and 

Riga cities are introduced and the obtained results are performed. In order to compare the 

performed method of DFHRS and “classical” method performed by GRAVSOFT Riga region has 

been chosen and the results are introduced. 

3.1. Geoid determination by DFHRS v 4.3. 

DFHRS (Digital Finite element Height reference surface (HRS)) v4.3. software has been 

developed by Karlsruhe University, Institute of Applied Research. It is based on parametric 

modeling of the HRS as a continuous polynomial surface. The access to the parametric HRS model 

is enabled by DFHRS_DB data-bases and access-software, which allow direct conversion of 

GNSS-heights h into physical normal heights H. DFHBF_DB stores HRS polynomial parameters 

p and the scale difference (p, ∆m) together with the mesh-design information. The principle of a 

GNSS-based height determination H requires submitting the GNSS-height h to the DFHRS (B, L, 

h)-correction N, reading (Jäger, 2000-2022): 

 H=h-N=h-DFHRS (p|B, L, h) =h-NFEM (p|B, L, h) (3.1) 

 

 

Figure 3.1. The principle of GNSS-based height determination (Jäger, 2000-2022) 
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The mathematical model for observation groups in a common least squares computation (Gauß-

Markov-Model) for the evaluation of the DFHRS_DB parameters p and ∆m is given by formulas 

(3.2 – 3.5) (Jäger, 2000-2022; Jäger et al., 2012, Schneid, 2006)) where functional model for 

uncorrelated ellipsoidal heights h: 

 ℎ = 𝑣 = 𝐻 + ℎ ∙ ∆𝑚 + 𝑁𝐹𝐸𝑀(𝑝|𝑥, 𝑦) (3.2) 

with 𝑁𝐹𝐸𝑀(𝑝|𝑥, 𝑦) =: 𝐟(𝑥, 𝑦)𝑇 ∙ 𝐩. 

Functional model for correlated geoid height observations: 

 𝑁𝐺(𝐵, 𝐿)𝑗 + 𝑣 = 𝐟(𝑥, 𝑦)𝑇 ∙ 𝐩 + 𝜕𝑁𝐺(𝐝𝑗) (3.3) 

With a given real covariance matrix 𝐶𝑁𝐺
 or 𝐶𝑁𝐺

 evaluated from a synthetic covariance function. 

Functional model for correlated observations of deflections from the vertical (,). 

 

𝜉𝑗 + 𝑣 =
−𝐟𝐵

𝑇

𝑀(𝐵) + ℎ
∙ 𝐩 + 𝜕𝜉 (𝐝𝜉,𝜂

𝑗
) 

𝜂𝑗 + 𝑣 =
−𝐟𝐿

𝑇

(𝑁(𝐵) + ℎ) ∙ cos(𝐵)
∙ 𝐩 + 𝜕𝜂(𝐝𝜉,𝜂

𝑗
)  

(3.4a) 

(3.4b) 

Pairwise correlated or uncorrelated in case of astronomical observations. Correlated if derived 

from a gravity potential model. 

Uncorrelated standard height H observations: 

 𝐻 + 𝑣 = 𝐻 (3.5) 

with covariance matrix: 

 𝐶𝐻 = 𝑑𝑖𝑎𝑔(𝜎𝐻𝑖

2 ) (3.6) 

Continuity condition equations introduced as uncorrelated so-called pseudo observations with ac-

cordingly small variances and high weights: 

 𝐶 + 𝑣 = 𝐶(𝐩) (3.7) 

With 𝐟𝐵 and 𝐟𝐿we introduce the partial derivatives of f(x(B, L), y(B, L)) (3.4 a, b) with respect 

to the geographical coordinates B and L. M(B) and N(B) mean the radius of meridian and normal 

curvature at a latitude B. The continuity of the resulting HRS representation 𝑁𝐹𝐸𝑀(𝐩|𝑥, 𝑦) =

𝐟(𝑥, 𝑦)𝑇 ∙ 𝐩 over the meshes (Figure 3.2, thin blue lines) is automatically provided by the 



58 

 

continuity equations C(p) (3.7). A number of identical fitting-points (B, L, h; H) are introduced by 

the observation equations (3.2) and (3.5) (Figure 3.2, green triangles). In the practice of 

DFHRS_DB evaluation, one or a number of different geoid-/GPM such as the EGG97 or 

EGM2008 are used in a least squares estimation related to the mathematical model (3.2 – 3.7), 

which is implemented in the DFHRS-software 4.4. To reduce the effect of medium- or long-wave 

systematic shape deflections, namely the natural and stochastic “weak-shapes”, in the observations 

N and (, )  from geoid- or GPM models, these observations are subdivided into a number of 

patches (Figure 3.2, thick blue lines). These patches are related to a set of individual parameters, 

which are introduced by the datum parameterizations 𝜕𝑁𝐺(𝐝𝑗) (3.3) and 

𝜕𝜉(𝐝𝑗
𝜉,𝜂);  𝜕𝜂(𝒅𝑗

𝜉,𝜂) (3.4 a, b). In this way, it is of course possible to introduce geoid height 

observations and vertical deflections from any number of different geoid- or GPM models in the 

same area, or observed vertical deflections (Jäger, 2000-2022; Jäger et al., 2012). 

Continuity conditions should also be considered, boundaries between two meshes should be the 

same, so that meshes represent the whole continuous area (Younis, 2013). DFHRS v4.3 includes 

all types of geometrical input data: both ellipsoidal and normal/orthometric heights, geoid/quasi-

geoid heights, vertical deflections, derived from Earth Gravity Model (EGM2008) or grids, and 

observed vertical deflection measurements from digital zenith camera, as well as gravity data 

derived e.g. from EGM2008.  

As an example, in order to compute the DFHRS_DB for Ulaanbaatar 94 Identical points 

(ellipsoidal heights h and normal heights H in Baltic Height system) together with the EGM2008 

geopotential model data were used. EGM2008 is a spherical harmonic model of the earth’s external 

gravitational potential in degree and order of 2160, with additional spherical harmonic coefficients 

extending up to degree of 2190 and order of 2160 that offers a spatial resolution of 9 km. EGM2008 

incorporates improved 5x5 min gravity anomalies, altimetry-derived gravity anomalies and has 

benefited from the latest GRACE based satellite solutions (Pavlis et al., 2008a; Pavlis et al., 

2008b). 
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Figure 3.2. Computation design of DFHRS (meshes – thin blue lines, patches – thick blue lines, 

fitting points – green triangles) 

For meshing the area, mesh size of 5x5 km was chosen. Total amount of meshes – 1536. The 

total number of patches is 5 (Figure 3.2). One patch must contain at least 4 fitting points. As points 

of the region are not homogenously located, patches, were not introduced in approximately the 

same size, but according to the location of the points. As geoid datum 3 translations and 3 rotations 

were introduced, additionally derived deflections of the vertical from the EGM2008 model were 

used. 

The identical points and the EGM2008 geoid undulations were introduced together with the 

continuity conditions into a least squares estimation of the so-called “DFHRS production”. The 

calculation has been done using the DFHRS v. 4.4 software. 88 normal height points H of the 

Baltic heights system could be used and were confirmed in the statistical testing (data-snooping) 

with the assumed standard deviation of 1 cm. 6 points – 4039, 216, 230, 5051, 509 and 22 were 

excluded from the computations because of gross errors. For 4 points (270, 1710, 1757 and 

GR70/70) the normal heights H were changed in comparison to the previous data package provided 

in 2017, the normal height for one point (1682) was used from previous data package. The partial 

adjustment protocol of the DFHRS-software 4.4 with the observation residuals, statistical testing 

of the height fitting points is depicted in Figure 3.3. (Morozova et al., 2018). 
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Characteristics: 

   EV:     Redundancy factor 

   NV:     Normalized residuals, test size a priori 

   t_post: Test size a posteriori 

   GF:     Estimated gross error is issued in case of exceeding 

           the critical value by NV, bzw. T_post. 

 Probability of error Alpha: 5 % 

 Critical value a priori:        3.841552  degrees of freedom:  infinity 

 Critical value a posteriori:    3.841549   degrees of freedom:     102887 

Point number  Height/Target sys.     Res.      EV       NV    t_post   REPRO 

                           [m]         [m]     [%] 

           137       1168.601      0.00009     18.88     0.0     0.5  -0.001 

           253       1441.619      0.00449     22.69     1.3    22.2  -0.020 

           268       1459.774     -0.00176     21.66     0.5     8.9   0.008 

           282       1318.717     -0.00275     19.97     0.9    14.5   0.014 

           505       1433.682     -0.00366     22.85     1.1    18.0   0.016 

          1598       1418.122      0.00106     16.46     0.4     6.1  -0.006 

          1710       1478.901      0.00345     22.20     1.0    17.3  -0.016 

          1731       1608.961      0.00347     20.96     1.1    17.9  -0.017 

          1747       1313.276     -0.00114     23.60     0.3     5.5   0.005 

          1757       1220.986      0.00231     20.85     0.7    11.9  -0.011 

          2324       1263.574     -0.00330     23.20     1.0    16.1   0.014 

          2329       1246.173     -0.00198     23.35     0.6     9.6   0.008 

          4750       1456.719     -0.00098     21.87     0.3     4.9   0.004 

          5006       1419.172      0.00655     23.67     1.9    31.8  -0.028 

          5019       1425.403      0.00617     23.32     1.8    30.2  -0.026 

 

 

Figure 3.3. Final DFHRS software adjustment protocol at the example of Ulaanbaatar 

The present DFHRS was calculated on the basis of the EGM2008 geoid and 88 identical reference 

points. The accuracy of the identical points was confirmed with 1.0 cm, so the geoid of the 

Ulaanbaatar region has an estimated 1-3 cm accuracy within the area of the outer ring polygon-

line of the fitting-points. The DFHRS_DB can be used by the software DFHBF-Tools to compute 

the geoid height N, and so the normal heights H from the input of a 3D GNSS-position (B, L, h) or 

(X, Y, Z), and in order to set up a respective geoid 2018 grid for the Baltic Height System (BHS-

77) in the Ulaanbaatar Region. Especially for the borders of the Region (Figure 3.2) additional 

vertical deflection observations made by digital zenith camera (Zarins et al., 2016), (Morozova et 

al., 2017) are recommended. In that way, the 1-3 cm accuracy will hold for the whole area. 

3.2. Geoid determination by DFHRS v. 5.0 

The DFHRS software 5.0 can process in addition also gravity observations. The mathematical 

model of the integrated adjustment approach of the DFHRS software, version 5.0 parameterizes 

the gravity potential W in a regional Spherical Cap Harmonic (SCH) representation, namely by 

the SCH-coefficients (𝐶𝑛𝑚
′ , 𝑆𝑛𝑚

′ ). As observation data the input the coefficients (𝐶𝑛𝑚,  𝑆𝑛𝑚) of a 
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global geopotential model (GGM), such as e.g. EGM2008 can be used, which are mapped to 

regional SCHA-coefficients (𝐶𝑛𝑚
′ , 𝑆𝑛𝑚

′ ) (Younis et al., 2011). Further observations of the least 

squares adjustment with the parameters p = (𝐶𝑛𝑚
′ , 𝑆𝑛𝑚

′ ) are observed gravity values g(B, L, h), 

vertical deflection observations (ξ, η), e.g. from zenith-cameras, and identical points (B, L, h | H). 

The HRS results from the computed SHA parameters p = (𝐶𝑛𝑚
′ , 𝑆𝑛𝑚

′ ) and W(𝐶𝑛𝑚
′ , 𝑆𝑛𝑚

′ ), 

respectively basically by the theorem of Bruns, namely as quasi-geoid. Quasi-geoid can be further 

evaluated to a geoid N model. The results of quasi-geoid heights and geoid heights can be mapped 

again to the HRS, which is represented by the above polynomial parameters p or by a traditional 

HRS Grid. 

 

Figure 3.4. Scintrex CG-6 relative gravimeter (author) 

The extension of DFHRS concept and software to physical observation types – such as terrestrial, 

air- or space-borne gravity measurements (for terrestrial gravity meter see Figure 3.4), or physical 

observation types taken from geopotential models, e.g. EGM2008 – is based on a regional 

spherical cap harmonic parameterization (SCH) of the Earth’s gravitational potential (V). The 

benefit of an SCH-parameterization (3.8) with a local cap pole and a limited cap size area, instead 

of an ordinary global spherical harmonic (SH), is that the same resolution of V can be achieved 
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with SCH by a much smaller number of parameters than with SH. Thus, for a 2 mm resolution for 

the HRS, a degree of 7200 for the SH parameterization by (𝐶𝑛𝑚,  𝑆𝑛𝑚) is required, while for a cap 

size area of 100 km a degree of only 𝑘𝑚𝑎𝑥=80 is enough in the case of an SCH parametric model. 

Therefore, SCH is the key model for enabling the computation of high resolution HRS in the 2nd 

stage of the DFHRS research and development, meaning an integrated over-determined HRS-

computation for all types of geometrical and physical observations. The representation of 

gravitational potential V of the Earth in terms of SCH with parameters (𝐶𝑛(𝑘),𝑚
′ , 𝑆𝑛(𝑘),𝑚

′ ) reads: 

 

𝑉(𝑟, 𝜆′, 𝜃′) = ∑ (
𝑎

𝑟
)𝑛(𝑘)+1

𝑘 𝑚𝑎𝑥

𝑘=0

∑(𝐶𝑛(𝑘),𝑚
′ ∙ 𝑐𝑜𝑠𝑚𝜆′ + 𝑆𝑛(𝑘),𝑚

′ ∙ 𝑠𝑖𝑛𝑚𝜆′)

𝑘

𝑚=0

∙ 𝑃𝑛(𝑘),𝑚
′ (𝑐𝑜𝑠𝜃′)  

(3.8) 

Here the space position refers to the triple of spherical cap coordinates (r, λ’, θ’). In the following, 

the observation equation for terrestrial and air- or space-borne gravity observations 𝑔𝑝 is briefly 

worked out.  

The gravity observation 𝑔𝑝 at the Earth surface point P (taken with a gravity meter, see (Figure 

3.4) is referring to the local astronomical vertical (LAV) system, and, therefore, for the respective 

observed 3D gravity vector we have in total: 

 𝐠𝐿𝐴𝑉= [0, 0, −𝑔𝑃] 𝑇 (3.9) 

– Original gravity observation and vector. 

The astronomical vertical (Φ=B+ξ, Λ=L+
𝜂

cos (𝐵)
 )is set up by the ellipsoidal vertical (B, L) and the 

deflections – from the vertical (ξ, η). The original vector 𝑔𝐿𝐴𝑉 (3.9) is first rotated to the Earth-

centered Earth-fixed system (ECEF) using the astronomical direction (Φ, Λ) from a geopotential 

model. In that coordinate frame, the centrifugal part of 𝐠𝐿𝐴𝑉 (3.9) is removed. 

 𝑔𝑟𝑜𝑡
𝐿𝐺𝑉 = [𝑔𝑁 , 𝑔𝐸 , 𝑔𝑟]

𝑇 (3.10) 
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The observation vector 𝑔𝑟𝑜𝑡
𝐿𝐺𝑉 (3.10) is then further rotated in 3 components of the sphere as 𝑔𝑔𝑟𝑎𝑣

𝑆𝐶𝐻  

to the SCH-representation frame (3.8). The SCH-related representation of the gravity vector (3.10) 

reads: 

 
𝑔𝑔𝑟𝑎𝑣

𝑆𝐶𝐻 = [
1

𝑟
∙
𝜕𝑉

𝜕𝜃′
,

1

𝑟 ∙ 𝑠𝑖𝑛𝜃′
∙
𝜕𝑉

𝜕𝜆
,
𝜕𝑉

𝜕𝑟
] 𝑇 (3.11) 

The principal component of the rotated observed gravity observation  𝑔𝑟𝑜𝑡
𝐿𝐺𝑉 (3.10) is related to the 

third component of (3.11), and the accuracy of the vertical component of the SCH-transformed 

observation vector (3.10) is nearly unaffected. So, in the so-called integrated DFHRS approach we 

have the following observation equation for a gravity observation: 

 
𝑔𝑔𝑟𝑎𝑣𝑟

𝑆𝐶𝐻 + 𝑣𝑔 =
𝐺𝑀

𝑟2 ∙ ∑ (
𝑎

𝑟
)
𝑛(𝑘)+1

(𝑛(𝑘) + 1) ∙ ∑ (𝐶𝑛(𝑘),𝑚
′ ∙ 𝑐𝑜𝑠𝑚𝜆′ +𝑘

𝑚=0
𝑘 𝑚𝑎𝑥
𝑘=0

+𝑆𝑛(𝑘),𝑚
′ ∙ 𝑠𝑖𝑛𝑚𝜆′) ∙ 𝑃𝑛(𝑘),𝑚

′ (𝑐𝑜𝑠𝜃′)  

(3.12) 

With 𝑣𝑔 (3.12) we describe the observation correction of the gravity observation in the integrated 

adjustment approach. By introducing the disturbance potential: 

 𝑇𝑃 = (𝑉(�̂�𝑛(𝑘),𝑚
′ , �̂�𝑛(𝑘),𝑚

′ ) − 𝑉𝑟𝑒𝑓)𝑃 (3.13) 

applied to the Bruns theorem and Molodensky’s theory, we obtain the observation equation for 

fitting-points (h – H) converted to quasi-geoid heights (see 3.14) and vertical deflections 

(ξ, η)𝑃 (3.15 a, b) observed at point P as: 

 
ℎ − 𝐻𝑁𝑜𝑟𝑚𝑎𝑙 = 𝑁𝑄𝐺 =

(𝑉 − 𝑉𝑟𝑒𝑓)𝑃

𝛾𝑄
=

𝑇𝑃

𝛾𝑄
  

𝜉 = −
𝜕𝑁𝑄𝐺

𝜕𝐵
∙

𝜕𝐵

𝜕𝑆𝑁
= −

𝜕𝐵

𝜕𝑆
∙
𝜕𝑁𝑄𝐺

𝜕𝐵
=

−1

(𝑀+ℎ)
∙

1

𝛾𝑄
∙

𝜕

𝜕𝐵
𝑇𝑃 =

−1

𝛾𝑄∙(𝑀+ℎ)
∙ (

𝜕𝑇

𝜕𝐵
)𝑃 + 

𝛿𝜉𝑛𝑜𝑟𝑚.𝑐𝑢𝑟𝑣. 

𝜂 = −
𝜕𝐿

𝜕𝑆
∙
𝜕𝑁𝑄𝐺

𝜕𝐿
=

−1

(𝑁 + ℎ) ∙ 𝑐𝑜𝑠𝐵
∙

1

𝛾𝑄
∙

𝜕

𝜕𝐿
𝑇𝑃 =

−1

𝛾𝑄 ∙ (𝑁 + ℎ) ∙ 𝑐𝑜𝑠𝐵
∙ (

𝜕𝑇

𝜕𝐿
)𝑃  

(3.14) 

(3.15a) 

(3.15b) 
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𝛿𝜉𝑛𝑜𝑟𝑚.𝑐𝑢𝑟𝑣. is the difference between between the ellipsoidal normal and the tangential vector to 

the normal gravity vector �̅� grad (U) at a point P and 𝛾𝑄𝑗 
 is the ellipsoidal normal gravity value 

for the point Q, the so called telluroid point, associated to P by the same latitude and longitude and 

an ellipsoidal height ℎ𝑄 = ℎ𝑃 − 𝑁𝑄𝐺, see Figure 3.5, Figure 3.7. The telluroid is not an 

equipotential surface and defined as the surface whose normal potential is equal to the actual 

potential at point P (see Figure 3.7). In Younis et al (2011) a new adjustment-based approach is 

given, which enables the estimation of the coefficients (𝐶𝑛(𝑘),𝑚
′ , 𝑆𝑛(𝑘),𝑚

′ ) for regional SCH model 

V (3.8) as functions of coefficients (𝐶𝑛𝑚,  𝑆𝑛𝑚) of a GGM. The estimated coefficients 

(𝐶𝑛(𝑘),𝑚
′ , 𝑆𝑛(𝑘),𝑚

′ ) (Younis et al., 2011) can be introduced as so-called direct observations in the 

integrated approach, and we thus have: 

 𝐶𝑛(𝑘),𝑚
′ + 𝑣 = �̂� 𝑎𝑛𝑑 𝑆𝑛(𝑘),𝑚

′ + 𝑣 = �̂� (3.16) 

The integrated DFHRS approach, represented by formulas (3.9 – 3.16), is a far-reaching alternative 

to the model described by (3.1-3.8), because it allows both “geometrical” and “physical” 

observations and is free from a reduction. The integrated approach is presently being investigated 

and implemented in the DFHRS software version 5.0.  

The DFHRS v. 5.0 needs no reduction on topography or interior masses, and (3.9) can be directly 

modelled as: 

 
𝑔𝑃 + 𝑉𝑔𝑃

= √𝑊𝑥
2 + 𝑊𝑦

2 + 𝑊𝑧
2

= √(𝑉𝑥(𝐶𝑛𝑚
′ , 𝑆𝑛𝑚

′ ) + 𝑍𝑥)2 + (𝑉𝑦(𝐶𝑛𝑚
′ , 𝑆𝑛𝑚

′ ) + 𝑍𝑦)2 + (𝑉𝑧(𝐶𝑛𝑚
′ , 𝑆𝑛𝑚

′ ) + 𝑍𝑧)2 

(3.17) 

and direct relation of (Φ, Λ)astr from zenith cameras also reads reduction-free: 

 
𝛷𝑎𝑠𝑡𝑟 + 𝑉𝛷𝑃

= 𝑡𝑎𝑛−1(
𝑊𝑧

√𝑊𝑥
2 + 𝑊𝑦

2
) 

Λ𝑎𝑠𝑡𝑟 + 𝑉Λ𝑃
= 𝑡𝑎𝑛−1(

𝑊𝑦

𝑊𝑥
) 

(3.18) 

(3.19) 
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Formula (3.14) is used to derive the quasi-geoid from the estimated SCH-parameters. The quasi-

geoid model or a grid (computed by the DFHRS approaches (3.1-3.8) or (3.9-3.16), respectively) 

can be transformed to a geoid-model by the equation: 

 
𝑁𝐺 = 𝑁𝑄𝐺 +

�̅� − �̅�

�̅�
∙ 𝐻 (3.20) 

The mean true gravity: �̅� along the plumb line can be taken from a density model or a geopotential 

model, while the mean reference gravity value: �̅� - from the closed formulas related to the GRS80 

(Younis, 2013). 

In case of orthometric heights as a national vertical height system (e.g. NAVD88 – North American 

Verical Datum 1988), the transformation equation between orthometric height Horth and normal 

height Hnorm can be used: 

𝐻𝑛𝑜𝑟𝑚 − 𝐻𝑜𝑟𝑡ℎ = 𝑁𝐺 − 𝑁𝑄𝐺 =
�̅� − �̅�

�̅�
∙ 𝐻 (3.21) 

The difference between normal height and orthometric height is depicted in Figure 3.5: 

 

Figure 3.5. Orthometric height vs. normal height (Younis, 2013). 
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3.3. Development of the DFHRS v. 5.1 software 

The next development step of the software concerns the use of spherical-cap-harmonics as the 

designed carrier function for the DFHRS v.5.1. It enables – in the sense of the strict integrated 

geodesy approach, holding also for geodetic network adjustment – both a full gravity field and 

geoid determination. In addition, it allows the inclusion of gravimetric measurements, together 

with deflections of the vertical from digital zenith cameras, and all the other types of observations. 

The advantage of spherical-cap-harmonics (SCH) modelling in comparison to spherical harmonics 

(SH) that less parameters are needed in order to compute local area instead of whole sphere (Younis 

et al., 2011), (Younis, 2013). This method was developed by (Haines, 1985a), (Haines 1985b). 

The gravitational potential V in terms of SCH for a point P (r, α, θ) within the cap reads (Haines, 

1988): 

 

𝑉(𝑟, 𝛼, 𝜃) =
𝐺𝑀

𝑅
∑ (

𝑅

𝑟
)
𝑛(𝑘)𝑘 𝑚𝑎𝑥

𝑘=0

∑(𝐶𝑛𝑚
′ 𝑐𝑜𝑠𝑚𝛼 + 𝑆𝑛𝑚

′ 𝑠𝑖𝑛𝑚𝛼)�̅�𝑛(𝑘),𝑚(𝑐𝑜𝑠𝜃)

𝑘

𝑚=0

 (3.22) 

The 𝐶𝑛𝑚
′  and 𝑆𝑛𝑚

′  coefficients are unknowns and have to be determined by least square estimation.  

The basic concept behind SCH is to expand gravity potential V in two sets of basis functions 

which satisfies Laplace’s equation (De Santis &Torta, 1997), (De Santis et al., 1999) within the 

spherical cap and are mutually orthogonal in each set.  The Legendre functions are chosen in order 

to satisfy the following boundary conditions (Haines, 1985a); 

 𝑑𝑃𝑛𝑘
𝑚 (𝜃=𝛼)

𝑑𝜃
= 0 for k – m = even,    

𝑑𝑃𝑛𝑘
𝑚(𝜃 = 𝛼) = 0 for k – m =odd,    

(3.23) 

(3.24) 

where a is the cap half-angle, and k is used to index (in ascending order) the roots nk of (3.23) and 

(3.24) at a given value of m (De Santis, 1991). 

The local coordinate system is defined by cap opening angle and local pole is depicted in Figure 

3.6.  
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Figure 3.6. Spherical cap area with its own pole located at the origin of area of interest 

(Younis, 2013). 

 

The starting point for the quasi-Geoid based theory of Molodensky implemented in the 

DFHRS-approach and software 5.0 reads with: 

 𝑇𝑃 = (𝑉 (𝑟, 𝛼, 𝜃|𝐶𝑛𝑚,
′ 𝑆𝑛𝑚

′
) + 𝑍(𝑥, 𝑦) − 𝑈(𝛽,𝛼, 𝑢))

𝑃
   

𝑁𝑄𝐺 =
(𝑉 + 𝑍 − 𝑈)

𝑃

𝛾𝑄

=
𝑇𝑃

𝛾𝑄

 

(3.25) 

              (3.26) 

 

Figure 3.7. Deflection of vertical at point P (author) 
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Consistent with the above quasi-geoid theory of Molodensky and the Bruns theorem, we have 

zenith-camera based measured surface vertical deflections at surface point P, referring to the 

telluroid point Q (see Figure 3.7): 

 𝜉𝑃 = 𝜑𝑎𝑠𝑡𝑟,𝑃 − 𝐵 

𝜂𝑃 = (𝛼𝑎𝑠𝑡𝑟,𝑃 − 𝐿) ∙ 𝑐𝑜𝑠𝐵. 

(3.27 a) 

(3.27 b) 

Starting with the quasi-geoid formula and introducing again the potential model related TP we 

get the vertical deflections at the Earth Surface P as (see Figure 3.7). 

 
𝜉𝑃 = −

𝑑𝑁𝑄𝐺

𝑑𝑠𝑁𝑜𝑟𝑡ℎ
= −

𝜕𝑁𝑄𝐺

𝜕𝐵

𝜕𝐵

𝜕𝑠𝑁
= −

𝜕𝐵

𝜕𝑠

𝜕𝑁𝑄𝐺

𝜕𝐵
=

−1

(𝑀 + ℎ)

1

𝛾𝑄

𝜕

𝜕𝐵
𝑇𝑃

=
−1

𝛾𝑄
(𝑀 + ℎ)

(
𝜕𝑇

𝜕𝐵
)
𝑃
+ 𝛿𝜉𝑛𝑜𝑟𝑚.𝑐𝑢𝑟𝑣. =

= −
−1

𝛾𝑄𝑗
∙ (𝑀𝑗 + ℎ𝑗)

∙ (
𝜕𝑇(𝐶

𝑛(𝑘),𝑚,
𝑆𝑛(𝑘),𝑚))

𝜕𝐵𝑗
)

𝑃𝑗

+ 𝛿𝜉𝑛𝑜𝑟𝑚.𝑐𝑢𝑟𝑣. 

(3.28 a) 

 
𝜂𝑃 = −

𝑑𝑁𝑄𝐺

𝑑𝑠𝐸𝑎𝑠𝑡
= −

𝜕𝐿

𝜕𝑠

𝜕𝑁𝑄𝐺

𝜕𝐿
=

−1

(𝑁 + ℎ)𝑐𝑜𝑠𝐵

1

𝛾𝑄

𝜕

𝜕𝐿
𝑇𝑃

=
−1

𝛾𝑄
(𝑁 + ℎ)𝑐𝑜𝑠𝐵

(
𝜕𝑇

𝜕𝐿
)
𝑃

=

=
−1

𝛾𝑄𝑗
∙ (𝑁𝑗 + ℎ𝑗) ∙ 𝑐𝑜𝑠𝐵𝑗

∙ (
𝜕𝑇(𝐶

𝑛(𝑘),𝑚,
𝑆𝑛(𝑘),𝑚))

𝜕𝐿𝑗
)

𝑃𝑗

,    

(3.28 b) 

For above differentiation of TP in the direction of the ellipsoidal latitude B and longitude L 4 

different coordinate systems in TP have to be handled, as we have (3.25) the solution at first we 

bring together the local CAP system and the spherical system, we have: 

 r = r (3.29 a) 

 
𝑡𝑎𝑛𝛼 =

𝑐𝑜𝑠𝜑sin (𝜆 − 𝜆0)

𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑0 − 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑0cos (𝜆 − 𝜆0)
 (3.29 b) 

 𝑐𝑜𝑠𝜃 = 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜑0 − 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜑0 cos(𝜆 − 𝜆0) (3.29 c) 

 

For the remaining 3 systems for the position of the point P, the common denominator are the 

Cartesian 3D coordinates (x, y, z) (Jäger, R. 2002-2022): 
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[
𝑥
𝑦
𝑧
] = [

𝑟𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆
𝑟𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆

𝑟𝑠𝑖𝑛𝜑
] (3.30) 

 

[
𝑥
𝑦
𝑧
] =

[
 
 
 
 
(𝑁(𝐵) + ℎ)cos (𝐵)𝑐𝑜𝑠(𝐿)
𝑁(𝐵) + ℎ)cos (𝐵)𝑠𝑖𝑛(𝐿)

(
𝑏2

𝑎2
𝑁(𝐵) + ℎ) sin (𝐵)

]
 
 
 
 

 
(3.31) 

 

[
𝑥
𝑦
𝑧
] =

[
 
 
 
 
 𝑢√1 + 휀2/𝑢2 𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝜆

𝑢√1 + 휀2/𝑢2 𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝜆

𝑢𝑠𝑖𝑛𝛽 ]
 
 
 
 
 

 (3.32) 

   

With (3.29 a, b, c), (3.30), (3.31) and (3.32) and the common relation to (x, y, z) we have 

consistency in the georeferencing and we can set up the derivatives (
𝜕𝑇

𝜕𝐵
) 

𝑃
 (3.27a) and (

𝜕𝑇

𝜕𝐿
) 

𝑃
 

(3.27b) by applying the chain rule to (3.29 a, b, c) to (3.32). 

So the vertical deflections parameterize now in DFHRS 5.x the carrier function of the spherical 

Cap harmonics potential and respective Cnm‘, Snm‘ coefficients instead of polynomial coefficients 

used in the DFHRS approach and software 4.x. By DFHRS 5.x also surface gravity measurements 

gP can be included, in opposite the DFHRS 4.x. 

From the final potential computed in a least squared adjustment the quasi-geoid can be computed 

again by using (3.29) and (3.30). A geoid can be computed afterward by applying: 

 
𝑁𝐺 = 𝑁𝑄𝐺 +

�̅� − �̅�

�̅�
𝐻 

(3.33) 

The method of spherical-cap-harmonics modelling in terms of integrated geodesy allows to 

compute precise quasi-geoid model to be used for GNSS measurements. Combination of all data 

gives an opportunity to define height reference surface using independent measurements (both 

geometrical and physical observations). The use of vertical deflections measurements allow to 

check/control reliability of heights computed by GNSS/levelling points. SCH in comparison to 

ordinary SH is fast method and does not need so much memory for computations (Torge, 2001), 

(Vaniček, 1976). The realization of this method combining all data and implementation in DFHRS 

v 5.0 version is developed under Visual Studio 2015 using C++ programming language. 
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3.4. Geoid determination based on the Stokes Approach 

In this chapter the basic principle of Stokes approach is discussed. Though this method is neither 

an integrated approach nor Gauss-Markov approach, this method was used for Riga region in order 

to compare the results of two methods. 

 The GRAVSOFT Fortran software for the determination of a regional or local approximation to 

the anomalous gravity potential is based on the 3D Least-Squares Collocation (LSC) developed 

by (Krarup, 1969; Moritz, 1972) and its principle is described in this chapter. The software also 

implements the remove-compute-restore (Hofmann-Wellenhof and Moritz, 2006) method so that 

gravity variations outside the region of computation are accounted for by subtracting the 

contribution of a Global Geopotential Model (GGM) and so that statistical homogenization is 

achieved by removing the contribution of topographic short wavelength features (Tscherning, 

2008).  

In the RCR technique, the contribution of the long-wavelength component and the terrain effect 

are removed from terrestrial gravity anomalies (3.34). Accordingly, the reduced gravity are 

obtained by: 

 ∆𝑔𝑟𝑒𝑠 = ∆𝑔𝐹𝐴 − ∆𝑔𝐺𝐺𝑀 − ∆𝑔𝑅𝑇𝑀 (3.34) 

where ∆𝑔𝐹𝐴 – the free-air gravity anomaly on the geoid surface; 

∆𝑔𝐺𝐺𝑀 – the contribution of the GGM (e.g. EGM2008) to gravity anomaly; 

∆𝑔𝑅𝑇𝑀 – the terrain effect on gravity.  

Then the reduced gravity anomalies are processed to obtain the geoid undulation, and finally the 

long-wavelength contribution and the effect of the topography are restored to the undulation (3.35).  

The geoid undulation with restored long-wavelength term and topographical effect can be 

summarized by: 

 �̃� = 𝑁𝐺𝐺𝑀 + 𝑁∆𝑔𝑟𝑒𝑠
+ 𝑁𝑅𝑇𝑀 (3.35) 

where 𝑁𝐺𝐺𝑀 –  the contribution of the GGM; 

𝑁∆𝑔𝑟𝑒𝑠
 – the residual geoidal height; 

𝑁𝑅𝑇𝑀 – the indirect effect of the terrain on the geoidal height. 
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The contributions of the GGM on the geoidal height and gravity anomaly are: 

 

𝑁𝐺𝐺𝑀 =
𝐺𝑀

𝛾𝑟
∑ (

𝑎

𝑟
)
𝑛

𝑛𝑚𝑎𝑥

𝑛=2

∑(𝑐�̅�𝑚𝑐𝑜𝑠𝑚𝜆

𝑛

𝑚=0

+ �̅�𝑛𝑚𝑠𝑖𝑛𝑚𝜆)�̅�𝑛𝑚(𝑐𝑜𝑠𝜃) (3.36) 

 

And 

 

∆𝑔𝐺𝐺𝑀 =
𝐺𝑀

𝑟2
∑ (𝑛 − 1) (

𝑎

𝑟
)
𝑛

∑(𝑐�̅�𝑚𝑐𝑜𝑠𝑚𝜆

𝑛

𝑚=0

+ �̅�𝑛𝑚𝑠𝑖𝑛𝑚𝜆)�̅�𝑛𝑚(𝑐𝑜𝑠𝜃)

𝑛𝑚𝑎𝑥

𝑛=2

 (3.37) 

can be calculated by the GGM coefficients (Heiskanen and Moritz, 1967). In equalities, GM is the 

product of the Earth’s mass and the gravitational constant, g is the normal gravity on the reference 

ellipsoid, r is the radial distance to the computation point, a is the semi-major axis of the reference 

ellipsoid, Cnm and Snm are the fully normalized harmonic coefficients of the anomalous potential, 

Pnm is the fully normalized Legendre function, y and l are the geodetic co- latitude and longitude 

of the computation point P, respectively. In the RCR application of the study, a grid of reduced 

free-air anomalies, Dgred, obtained with the subtraction of GGM contributions from the mean 

free-air gravity anomalies, inputs to Stokes’ kernel, then the residual geoid height is calculated by: 

 
𝑁∆𝑔𝑟𝑒𝑑

=
𝑅

4𝜋𝛾
∬ 𝑆(𝜓)∆𝑔𝑟𝑒𝑑𝑑𝜎

𝜎

 (3.38) 

where σ denotes Earth’s surface, 𝑆(𝜓) is the original Stokes’ function. In gravity reduction, 

Helmert’s second method of condensation can be applied. Accordingly, the terrain effect on 

gravity is computed as follows (Heiskanen and Moritz, 1967): 

 
∆gH = −

GρR2

2
∬

(HQ − HP)
2

l0
3 dσ

σ

 (3.39) 

and the terrain contribution on geoid height (𝑁𝑡𝑜𝑝𝑜) is calculated with spherical FFT (Schwarz et 

al., 1990) evaluation of Stokes’ kernel using ∆𝑔𝐻 in “Compute” step (Erol et al., 2009). Also the 

indirect effect on the geoid heights for Helmert’s second condensation method can be computed 

(Sideris, 1994): 

 
∆Nind = −

πGρH𝑃
2

γ
−

GρR2

6γ
∬

(𝐻𝑄
3 − 𝐻𝑃

3)

l0
3 dσ

σ

 (3.40) 

where  

ρ – the topographic density,  
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𝑙0 – the planar distance between the points P and Q, HQ, HP are the heights of the computation and 

running points, respectively. Finally the gravimetric geoid height is restored as the summation of 

the constituents in the “compute step”. 

The Riga region has been computed using the above mentioned method in terms of supervised 

master’s thesis. For the computation of Riga quasi-geoid model such data sets were used: 

1. Free-air gravity anomaly data provided by LGIA for the region from 56° 45' 00'' to 57° 15' 

00'' latitude and  23° 30' 00'' to 24° 45' 00'' longitude; 

2. Spherical harmonic model of the Earth's gravitational potential EGM2008; 

3. Digital terrain model DTM developed by LGIA; 

4. 15 Fitting GNSS/levelling points for Riga administrative territory and its close 

surroundings and 6 GNSS postprocessed points for checking the model. 

Using GRAVSOFT software quasi-geoid model RĪGA’20 (see Figure 3.7.) (Pahtusovs, 2021) has 

been computed with a standard deviation of 1σ (68 %) probability – 6mm. To check quasi-geoid 

model 6 GNSS postprocessed points (ellipsoidal heights) were used and in the result normal height 

differences in range of -0.015 m to -0.007 m, with a mean difference -0.002 m were computed. 

 

Figure 3.7. Quasi-geoid model for Riga region computed by GRAVSOFT software 

(Pahtusovs, 2021) 

Quasi-geoid model has been checked also in RTK (Real Time Kinematics) mode and in the 

result normal height differences using LatPos (Zvirgzds, 2007; Zvirgzds, 2012) were in range 

of -14 mm to 26 mm, with a mean difference of 8 mm, and in case of EUPOS-Rīga (Balodis 
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et al., 2009) system – the differences were obtained in a range of 23 mm to 27 mm, and a mean 

difference equal to 5 mm. 

RĪGA’20 has been compared with LU_GGI’20 quasi-geoid model at 40 GNSS/levelling 

points. The results are depicted in Figure 3.8. and Table 4. 

 

Figure 3.8. Comparison of RĪGA’20 and LU_GGI’20 at levelling points (author). 

 

The differences vary from -0.016 m to 0.019 m, and the mean difference is equal to 0.006 m. 

As it can be seen from the Figure 3.8. the majority of differences are positive, what means that 

quasi-geoid model computed by GRAVSOFT is higher in a mean, especially it can be well 

seen from the left bank of the Daugava river. 

Table 4 

The differences of RĪGA’20 and LU_GGI’20. 

 

Nr. Point  B L Δξ 

1 1 56.857980 24.305300 0.005 

2 37 57.008250 24.244450 -0.012 

3 75 57.050550 24.172550 0.003 

4 173 56.950900 23.984010 0.015 

5 249 56.938420 24.097310 0.013 
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6 393 57.014300 24.311940 -0.015 

7 435 56.845520 24.048640 0.019 

8 728 56.887760 24.334430 0.007 

9 824 56.998530 24.077240 0.015 

10 1128 57.037940 24.038190 0.008 

11 1176 56.978440 24.185100 -0.001 

12 1277 56.928160 24.003810 0.016 

13 1837 56.902110 24.133100 0.011 

14 1870 56.956140 24.165860 0.004 

15 1960 57.063800 24.032320 -0.003 

16 2885 57.070690 24.102160 -0.002 

17 3336 56.942870 24.242950 -0.002 

18 3389 56.891000 24.075380 0.017 

19 3389 56.891000 24.075390 0.017 

20 4407 56.965740 24.057210 0.019 

21 4416 56.998010 24.029370 0.019 

22 5340 56.974650 24.254680 -0.011 

23 5715 56.905610 24.211070 0.005 

24 6330 56.972420 24.341700 -0.004 

25 6475 56.946650 24.154340 0.007 

26 6475 56.946670 24.154290 0.007 

27 6709 56.959380 24.097970 0.015 

28 6980 57.029300 23.998350 0.012 

29 7705 57.034820 24.125140 0.007 

30 8000 56.989990 24.158840 0.003 

31 8584 56.994430 24.258350 -0.016 

32 024C 56.828400 24.272770 0.010 

33 0753i 57.075410 24.117050 -0.001 

34 114B 56.961080 24.302520 -0.002 

35 1272i 57.000900 23.936600 0.016 

36 366A 56.937010 24.225330 0.002 
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37 661A 56.994800 23.920690 0.017 

38 872i 56.910530 24.145840 0.008 

39 875A 56.920950 24.299100 0.009 

40 RUTK 56.918000 23.993950 0.017 

3.5. Geoid determination by KTH method 

The geoid calculation by KTH method was developed at the Royal Institute of Technology (KTH) 

in Stockholm. It is also well known method and is used in many countries (e.g. Abdalla et al., 

2016). This method is based on the modification of Stoke's formula (Sjöberg 1986; 1991; 2003a; 

2003b): 

 
𝑁 =

𝑅

4𝜋𝛾
∬ 𝑆(𝜓)𝛥𝑔𝑑𝜎 

𝜎

 (3.44) 

where  

R – the mean Earth radius; 

γ – the normal gravity on the reference ellipsoid; 

ψ – the geocentric angle; 

Δg – the gravity anomaly;  

dσ – an infinitesimal surface element of the unit sphere σ;  

S(ψ) – the Stokes function which can be expressed as a series of Legendre polynomial 

𝑃𝑛(𝑐𝑜𝑠𝜓) over the sphere (Heiskanen and Moritz, 1967): 

 
𝑆(𝜓) = ∑

2𝑛 + 1

𝑛 − 1
𝑃𝑛(𝑐𝑜𝑠𝜓)

∞

𝑛=2

 (3.45) 

Where n is the spherical harmonics degree. 

For geoid determination the surface integral in Stokes’ formula (3.45), has to be applied over the 

whole Earth. Nonetheless, in practice, the area is limited to a small spherical cap so around the 

computational point due to limited coverage of available gravity anomaly. In this case the integral 

has to be truncated at the borders of the study area 𝜎0. Due to the neglection of gravity anomalies 

in the remote zone, a truncation error takes place. Molodensky et al. (1962) proposed that this 

truncation error can be reduced when Stokes’ formula combines the terrestrial gravity anomalies 
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and long-wavelength information from the GGM. The method is called modification of Stokes’ 

formula (Abbak et al., 2012). The KTH method combines terrestrial gravity data and 

longwavelength components of the gravity field in a stochastically modified Stokes’ kernel. 

Accordingly, the stochastic KTH method uses the least squares principle to minimize the expected 

global mean square error of the modified Stokes formula (Sjoberg, 1984; 1991; 2003b)  

 

�̃� =
𝑅

4𝜋𝛾
∬ 𝑆𝐿(𝜓)𝛥𝑔𝑑𝜎 +

𝑅

2𝛾𝜎0

∑ 𝑏𝑛𝛥𝑔𝑛

𝑀

𝑛=2

 (3.46) 

where 

𝑆𝐿(𝜓) – modified Stokes’ function; 

L – Maximum degree of the arbitrary parameters 𝑆𝑛 of the modification; 

𝛥𝑔𝑛 – gravity anomaly derived from GGM; 

M – upper limit of the GGM. 

The modified Stokes’ function is: 

 

𝑆𝐿(𝜓) = ∑
2𝑛 + 1

𝑛 − 1
𝑃𝑛(𝑐𝑜𝑠𝜓) −

∞

𝑛=2

∑
2𝑛 + 1

𝑛 − 1
𝑆𝑛𝑃𝑛(𝑐𝑜𝑠𝜓)

𝐿

𝑛=2

 

(3.47) 

where the first part of the right side of the equation is the original Stokes function, 𝑆(𝜓), in terms 

of Legendre polynomials. Generally the upper bound of the harmonics to be modified in Stokes’ 

function, L, is arbitrary and may not necessarily be equal to M, the upper limit of the GGM. 

In addition to the least-squares modification, the KTH approach also applies specific additive 

corrections. Thus the geoidal height �̃� can be summarized by the following formula (Sjoberg, 

2003b): 

 �́� = �̃� + 𝛿𝑁𝑐𝑜𝑚𝑏
𝑡𝑜𝑝 + 𝛿𝑁𝐷𝑊𝐶 + 𝛿𝑁𝑐𝑜𝑚𝑏

𝐴𝑡𝑚 + 𝛿𝑁𝑒𝑙𝑙 (3.48) 

where �̃� is the approximate geoid undulation defined in equation (3), and the additive corrections 

are: 𝛿𝑁𝑐𝑜𝑚𝑏
𝑡𝑜𝑝  –  combined topographic correction including the sum of direct and indirect 

topographical effects on the geoid; 

 𝛿𝑁𝐷𝑊𝐶 – downward continuation (DWC) effect; 

𝛿𝑁𝑐𝑜𝑚𝑏
𝐴𝑡𝑚  – combined atmospheric correction including the sum of the direct and indirect 

atmospherical effects; 
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𝛿𝑁𝑒𝑙𝑙 – ellipsoidal correction for spherical approximation of the geoid in Stokes’ formula to 

ellipsoidal reference surface. 

The combined topographic correction 𝛿𝑁𝑐𝑜𝑚𝑏
𝑡𝑜𝑝

 can be computed by (Sjoberg, 2007): 

 
𝛿𝑁𝑐𝑜𝑚𝑏

𝑡𝑜𝑝 = −
2𝜋𝐺𝜌𝐻2

𝛾
(1 +

2𝐻

3𝑅
) (3.49) 

Where G – the Newton gravitational constant; 

𝜌 – Earth’s crust density; 

H – the elevation of the topography. 

The downward continuation (DWC) effect 𝛿𝑁𝐷𝑊𝐶 in its terms can be computed by the sum of its 

components: 

 𝛿𝑁𝐷𝑊𝐶 = 𝛿𝑁𝐷𝑊𝐶
1 + 𝛿𝑁𝐷𝑊𝐶

𝐿1 + 𝛿𝑁𝐷𝑊𝐶
𝐿2  (3.50) 

where  

 
𝛿𝑁𝐷𝑊𝐶

1 =
∆𝑔𝑃

𝛾
𝐻𝑃 + 3

�̃�

𝑟𝑃
𝐻𝑃 −

1

2𝛾

𝜕∆𝑔

𝜕𝑟
|
𝑃
𝐻𝑃

2 

, 

𝛿𝑁𝐷𝑊𝐶
𝐿1 =

𝑅

2𝛾
∑ 𝑏𝑛 [(

𝑅

𝑟𝑃
)𝑛+2 − 1] ∆𝑔𝑛

𝑀

𝑛=2

 

and  

𝛿𝑁𝐷𝑊𝐶
𝐿2 =

𝑅

4𝜋𝛾
∬ 𝑆𝐿(𝜓) [

𝜕∆𝑔

𝜕𝑟
|
𝑃
(𝐻𝑃 − 𝐻𝑄)] 𝑑𝜎0

𝜎0

 

(3.51) 

 

(3.52) 

 

(3.53) 

Where rp=R+Hp is the spherical radius of the point P, HP is the orthometric height of point P. The 

gravity gradient at point P is calculated based on (Heiskanen and Moritz, 1967): 

 𝜕∆𝑔

𝜕𝑟
|
𝑃

=
𝑅2

2𝜋
∬

∆𝑔𝑄 − ∆𝑔𝑃

𝑙0
3 𝑑𝜎0 −

2

𝑅
∆𝑔𝑃

𝜎0

  (3.54) 

where  

𝑙0 = 2𝑅𝑠𝑖𝑛(
𝜓𝑃𝑄

2
) 

is the spherical distance between the computation point P and running point Q. 

In the KTH scheme, the combined atmospheric effect can be approximated to topographic height 

H (Sjoberg and Nahavandchi, 2000). 
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𝛿𝑁𝑐𝑜𝑚𝑏
𝐴𝑡𝑚 = −

2𝜋𝐺𝑅𝜌𝑎

𝛾
∑ (

2

𝑛 − 1
− 𝑏𝑛)

𝑀

𝑛=2

𝐻𝑛 −
2𝜋𝐺𝑅𝜌𝑎

𝛾
∑ (

2

𝑛 − 1
−

𝑛 + 2

2𝑛 + 1
𝑄𝑛

𝑀)

𝑀

𝑛=𝑀+1

𝐻𝑛 (3.55) 

where 𝜌𝑎  is the density of the atmosphere at sea level. An ellipsoidal correction calculated by 

simple formula (Ellmann and Sjoberg, 2004): 

 𝛿𝑁𝑒𝑙𝑙 ≈ [(0,0036 − 0,0109𝑠𝑖𝑛2φ)∆g + 0.0050�̃�𝑐𝑜𝑠2φ]𝑄0
𝐿 (3.56) 

where 𝑄0
𝐿 denotes the Molodensky truncation coefficient. 
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4. SPHERICAL HARMONICS AND GLOBAL MODELS 

This chapter is devoted to the construction and manipulation of so-called global models of the 

anomalous potential. These are basically truncated series of spherical or ellipsoidal harmonics. 

These functions are so important in physical geodesy that they need to be carefully introduced and 

their mathematical properties have to be known by everyone dealing with gravity field 

representations (Pavlis et al., 2006; Barnes et al., 2020). In this chapter the definition of spherical 

harmonics definition, Legendre functions, development of global geopotential models are 

represented. New global model EGM2020 is about to release soon, and in order to contribute this 

model the collected vertical deflection data which were observed on the territory of Latvia has 

been provided to NGA. 

4.1. Legendre functions 

The definition of 𝑃𝑛(𝑡) as coefficients of the Taylor series of the function: 

 
𝐺(𝑠, 𝑡) =  

1

√1 + 𝑆2 − 2𝑠𝑡
 (4.1) 

Also called the generating function of Legendre polynomials. 

So, we have 

 
𝐺(𝑠, 𝑡) = ∑ 𝑆𝑛𝑃𝑛(𝑡) 

+∞

𝑛=0

 (4.2) 

The series being convergent in the interval 

 0≤ s <1.  

Note that in the end we want to substitute 𝑡 = 𝑐𝑜𝑠𝜓, so we can restrict ourselves to study 𝑃𝑛(𝑡) 

in the interval: 

 -1 ≤ t ≤1  
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Corresponding to  

 0≤ψ≤π.  

Since (4.2) is a Taylor series, we can compute  𝑃𝑛(𝑡) from  

 
𝑃𝑛(𝑡) =  

1

𝑛!
𝐷𝑠

𝑛𝐺(𝑠, 𝑡)|𝑠=0. (4.6) 

In this way for instance we can get: 

 
𝑃0 ≡ 1,  𝑃1(𝑡) ≡ 𝑡,  𝑃2(𝑡) =

1

2
(3𝑡2 − 1),  𝑃3(𝑡) =

1

2
(5𝑡3 − 3𝑡),  (4.7) 

Suggesting that 𝑃𝑛(𝑡) are polynomials of degree n, with the same parity as n, i.e. even for n even 

and odd for n odd. We shall soon see that this is the case, however we will need a more handy tool 

than formula (4.6). In fact consider that G(s,t) satisfies identically the relation  

 (1 + 𝑆2 − 2𝑠𝑡)𝐷𝑠𝐺(𝑠, 𝑡) = (𝑡 − 𝑠)𝐺(𝑠, 𝑡).  (4.8) 

If we insert series (4.2) into (4.8) and equate the coefficients of the same powers in s, we find the 

remarkable recursive relation: 

 (𝑛 + 1) 𝑃𝑛+1(𝑡) = (2𝑛 + 1)𝑡 𝑃𝑛(𝑡) − 𝑛 𝑃𝑛−1(𝑡) (4.9) 

Since we already know that 𝑃0 ≡ 1,  𝑃1(𝑡) ≡ 𝑡, (4.9) allows the direct computation of  𝑃𝑛(𝑡) for 

any t. 

Furthermore, not only (4.9) provides us with a rule for a very fast computation of 𝑃𝑛 up to n equal 

to several thousands, but also gives us the possibility of better understanding the nature of  𝑃𝑛(𝑡). 

First of all we now see that if  𝑃𝑛−1,  𝑃𝑛 are polynomials of degree n-1 n respectively, that  𝑃𝑛+1 is 

a polynomial of degree n+1; furthermore, if  𝑃𝑛−1 has a certain parity and  𝑃𝑛 the opposite parity, 

then  𝑃𝑛+1 has the same parity as  𝑃𝑛−1.  

Moreover, by taking t=±1, (i.e. ψ=0 or π) in (4.1) and (4.2) we find: 
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∑ 𝑠𝑛

+∞

𝑛=0

𝑃𝑛(±1) =
1

(1 ± 𝑠)
= ∑(∓𝑠)𝑛

+∞

𝑛=0

 ; (4.10) 

(4.10) has to be an identity in s, so we have proved that 

 𝑃𝑛(1) = 1, 𝑃𝑛(−1) = (−1)𝑛. (4.11) 

4.2. Fully normalized Legendre functions 

The fully normalized associated Legendre functions �̅�𝑚𝑛(𝑡) sometimes also called fully 

normalized harmonics, can be computed from the conventional associated Legendre functions 

𝑃𝑛,𝑚 by (Torge, 1991): 

 

�̅�𝑛,𝑚(𝑡) =  √𝑘(2𝑛 + 1)
(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
𝑃𝑛,𝑚(𝑡),  

𝑤𝑖𝑡ℎ 𝑘 = {
1 𝑓𝑜𝑟 𝑚 = 0;
2 𝑓𝑜𝑟 𝑚 ≠ 0.

 

(4.12) 

The associated Legendre functions can be computed with the following recursive formulas (e.g., 

Bronstein and Semendjajew, 1991; Abramowitz and Stegun, 1972): 

 𝑃𝑛+1,0(𝑡) = (2𝑛 + 1)𝑡𝑃𝑛,0(𝑡) − 𝑛𝑃𝑛−1.0(𝑡) 

𝑃𝑛,𝑛(𝑡) = (2𝑛 − 1)𝑢𝑃𝑛−1,𝑛−1(𝑡) 

𝑃𝑛,𝑚(𝑡) =  𝑃𝑛−2,𝑚(𝑡) + (2𝑛 − 1)𝑢𝑃𝑛−1,𝑚−1(𝑡) 

(4.13a) 

(4.13b) 

(4.13c) 

With the starting values if we assume 𝑡 = 𝑠𝑖𝑛�̅� and 𝑢 = 𝑐𝑜𝑠�̅�: 

 

𝑃0,0(𝑡) = 1 

𝑃1,0(𝑡) = 𝑡, 

𝑃1,1(𝑡) = 𝑢, 

𝑃2,0(𝑡) =
3

2
𝑡2 −

1

2
, 

𝑃2,1(𝑡) = 3𝑢𝑡, 
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𝑃2,2(𝑡) = 3𝑢2 

However, these recursion formulas become numerically unstable for large m and n (>120) and you 

may have to use more sophisticated formulas (Moore, 1999). As example, one method from 

(Holmes and Featherstone, 2002) is introduced: 

For the fully normalized non-sectorial (i.e., n > m) �̅�𝑛,𝑚(𝑡) you can use the following recursion: 

 �̅�𝑛,𝑚(𝑡) = 𝑎𝑛,𝑚𝑡�̅�𝑛−1,𝑚(𝑡) − 𝑏𝑛,𝑚𝑡�̅�𝑛−2,𝑚(𝑡), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 𝑚 (4.14) 

 

Where 

𝑎𝑛,𝑚 = √
(2𝑛 − 1)(2𝑛 + 1)

(𝑛 − 𝑚)(𝑛 + 𝑚)
 

𝑏𝑛,𝑚 = √
(2𝑛 + 1)(𝑛 + 𝑚 − 1)(𝑛 − 𝑚 − 1)

(𝑛 − 𝑚)(𝑛 + 𝑚)(2𝑛 − 3)
 

The sectorial (i.e. n=m) �̅�𝑚,𝑚(𝑡) serve as seed values for the recursion in Formula 4.14. Starting 

from �̅�0,0(𝑡)=1 and �̅�1,1(𝑡)=√3𝑢, it can be computed from (Moore, 1999): 

 

�̅�𝑚,𝑚(𝑡) = 𝑢√
2𝑚 + 1

2𝑚
�̅�𝑚−1,𝑚−1(𝑡) (4.15) 

 

For all m>1, so, that: 

 

�̅�𝑚,𝑚(𝑡) = 𝑢𝑚√3∏√
2𝑖 + 1

2𝑖

𝑚

𝑖=2

 (4.16) 

4.3. Spherical Harmonics 

The solid spherical harmonics are an orthogonal set of solutions of the Laplace equation 

represented in a system of spherical coordinates, e.g. (Hobson, 1931; Freeden, 1985; Hofmann-

Wellenhof and Moritz, 2005). Thus, each harmonic potential, i.e. which fulfils Laplace’s equation, 

can be expanded into solid spherical harmonics and can be solved e.g. using MATLAB (Bucha 

and Janak, 2013; Trauth, 2006). The spherical harmonic (or Stokes’) coefficients represent in the 
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spectral domain the global structure and irregularities of the gravity field of the Earth (Barthelmes, 

2013). 

The equation relating the spatial and spectral domains of the geopotential is as follows: 

 

𝑊𝑎(𝑟, 𝜆, 𝜑) =
𝐺𝑀

𝑟
∑ ∑(

𝑙

𝑚=0

𝑙𝑚𝑎𝑥

𝑙=0

𝑅

𝑟
)𝑙𝑃𝑙𝑚(𝑠𝑖𝑛𝜑) ∙ (𝐶𝑙𝑚

𝑊 𝑐𝑜𝑠𝑚𝜆 + 𝑆𝑙𝑚
𝑊 𝑠𝑖𝑛𝑚𝜆) (4.17) 

Where: 

𝑟, 𝜆, 𝜑 – spherical geocentric coordinates of computation point (radius, longitude, latitude); 

R – reference radius; 

GM – product of gravitational constant and mass of the Earth; 

l, m – degree and order of spherical harmonic; 

𝑃𝑙𝑚 – fully normalised Lengendre functions; 

𝐶𝑙𝑚
𝑊  , 𝑆𝑙𝑚

𝑊  – Stokes’ coefficients (fully normalised). 

Formula represents the Earth’s gravity field with an accuracy depending on the accuracy of 

the coefficients 𝐶𝑙𝑚
𝑊  , 𝑆𝑙𝑚

𝑊  and a spatial resolution depending on the maximum degree 𝑙𝑚𝑎𝑥. 

4.4. Data and missions for the development of Global Geopotential 

models 

The recent developments of GGMs have been based on satellite-only solutions or solutions that 

combine satellite and terrestrial measurements and, they have been produced in the form of 

spherical harmonic expansions (Torge, 2001). Three kinds of gravitational information are 

available for the development of high-degree combination models (Pavlis, 1997): 

1. Information obtained from the analysis of satellite orbit perturbations, which is necessary for 

the accurate determination of the low degree part of the model. The European Space Agency (ESA) 

launched the Gravity field and steady-state Ocean Circulation Explorer (GOCE) in order to map 

the earth’s gravity field. It carried a full-tensor gradiometer consisting of 6 three-degree-of-

freedom accelerometer pairs oriented in three orthogonal directions over a very short baseline. All 

nine components of the differential acceleration tensor were measured independently, though not 

all with equal precision. The gravitational gradients are derived from them and angular 

accelerations and velocities derived from symmetry properties and star tracker data (Rummel et 

al., 2011). The other well known satellite missions for measuring gravity field are CHAllenging 
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Minisatellite Payload (CHAMP) (Reigber et al., 1999) and Gravity Recovery and Climate 

Experiment (GRACE) (Tapley et al., 2004). 

2.  In order to solve both long and short wavelength features of the gravity field surface and 

airborne gravimetric data are used. This however requires global coverage with dense gravity data 

of high accuracy (which is problematic in some regions (Marchenko and Dzhuman, 2015). Though 

gravity anomaly data are susceptible to various systematic errors (Heck, 1990) and these errors, in 

conjunction with the non-uniformity of coverage, degrade the long wavelength integrity of the 

gravitational information which can be extracted from surface gravimetry, nevertheless, surface 

and airborne gravimetry presently provide the only data that can resolve short wavelength gravity 

features over land. In addition, ship borne gravity measurements help to separate the geoid from 

the dynamic ocean topography (DOT) signal when used in combination with satellite altimetry. 

3. Satellite altimetery data (Eshagh, 2021) allows to perform the mapping of the field over the 

oceans, both in terms of accuracy and in terms of resolution. Satellite altimetry missions began at 

1991 by launching ESA satellite ERS-1. The U.S.-French Topex/Poseidon (T/P) (Fu et al., 1994) 

was launched from Kourou in August 1992. T/P routinely provides measurements of the sea 

surface which, for the first time, are not significantly contaminated by radial orbit error (RMS 

radial orbit error at the ± 2 to 3 cm level). However, altimetric measurements are confined over 

the ocean areas bounded by the satellite's inclination, and furthermore provide a mapping of the 

sum of the geoid undulation plus the DOT. These aspects weaken somewhat the contribution of 

altimeter data in the determination of the long wavelength gravitational field and necessitate the 

appropriate modeling of the DOT when altimeter data are used in combination solutions. The 

complimentary character (both in a spectral as well as in a geographic sense) of satellite tracking, 

altimetry and surface gravimetry data, enables the determination of the gravitational field in 

combination solutions, over a wider band of its spectrum, with improved accuracy than can be 

obtained by using any of the three data types alone (Pavlis, 1997).  

  



85 

 

5. TESTS AND ANALYSIS 

The three solutions of the quasi-geoid model for Latvia were prepared using different data sets: 

global geopotential model EGM2008 (Pavlis et al., 2008a; Pavlis et al., 2008b; Pavlis et al., 2012) 

and GNSS/levelling points; EGM2008, GNSS/levelling points and VD observed by DZC; and 

EGM2008 using additionally VD derivatives from the model, GNSS/levelling points and VD 

observed by DZC. The results of 3 solutions can be found in the Table 4. 

Table 4 

The statistical results of 3 solutions for quasi-geoid model evaluation using 3 data sets [in units 

of m]. 

 

 

Figure 5.1. LU_GGI’20 quasi-geoid model (author) 

Data set SD Min Max Mean 

GNSS/levelling points + VD derivatives 

from EGM2008 + observed VD by DZC 
0.006 -0.012 0.012 0.000 

EGM2008 (without VD)+GNSS/levelling 

points + VD by DZC 
0.017 -0.068 0.074 0.001 

EGM2008 (without VD)+GNSS/levelling 

points 

0.038 -0.106 0.246 0.006 
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The developed quasi-geoid model is depicted at Figure 5.1. The quasi-geoid heights vary from 

18.94 m in the North and North-East at Estonian and Russian borders and 24.44 m in the South-

West near the Baltic Sea and the Lithuanian border. The computed quasi-geoid model (A solution) 

has been compared with the national Latvian model LV’14 (LGIA homepage) and quasi-geoid 

model NKG2015 (Ågren et al., 2016) computed by the Nordic Geodetic Commission. 

 

Figure 5.2. The comparison of LU_GGI20 quasi-geoid and LV’14 

Figure 5.3. The comparison of LU_GGI20 quasi-geoid and NKG2015 
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The comparison of LU_GGI’20 and LV’14 is depicted in Figure 5.2. The differences between 

LU_GGI’20 and NKG2015 are depicted in Figure 5.3. The average differences and standard 

deviations are depicted in Table 5. 

Table 5  

The comparison of LU_GGI’20 quasi-geoid model with LV’14, NKG2015 models. 

 Min Max Avg STDEV 

LV’14 -0.098 0.073 0.009 0.020 

NKG2015 -0.065 0.086 0.008 0.017 

 

The comparison of the quasi-geoid heights and geodetic (h) minus normal heights (H) from LGIA 

database has also been performed for LU_GGI20 (Figure 5.4), LV’14 (Figure 5.5) and NKG2015 

(Figure 5.6). The summary of these differences is depicted in Table 6. 

 

Figure 5.4. The difference between LU_GGI’20 quasi-geoid heights and h-H values from LGIA 

database (author) 
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Figure 5.5. The difference between LV’14 quasi-geoid heights and h-H values from LGIA 

database (author). 

 

Figure 5.6. The difference between NKG2015 quasi-geoid heights and h-H values from LGIA 

database (author). 
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Table 6 

The comparison of quasi-geoid heights and h-H values from LGIA database [in units of m]. 

 Min Max Avg STDEV 

LU_GGI20 -0.026 0.025 0.000 0.012 

LV’14 -0.081 0.082 -0.017 0.026 

NKG2015 -0.070 0.040 -0.010 0.021 

Terrestrial VDs observed by DZC were compared with VD derivatives from global geopotential 

models (see Table 4), e.g. GGMplus (Hirt et al., 2013) and EGM2008, and computed the quasi-

geoid model LU_GGI20. The results show a better correspondence with the GGMplus model by 

evaluating the standard deviation: 0.314 and 0.307 arcsec for ξ and η components respectively in 

comparison to 0.346 and 0.358 arcsec for ξ and η components for the EGM2008 model. The 

correspondence of terrestrial VD to derivatives computed from the LU_GGI20 quasi-geoid model 

is significantly better: the standard deviation is 0.055 and 0.046 arcsec for ξ and η respectively. 

More statistics can be found in Table 7. The comparison of terrestrial VD observations to 

EGM2008 and GGMplus are depicted in Figure 5.7 and Figure 5.8 respectively. 

Table 7 

 The comparison of terrestrial VD observations observed by DZC to GGMs, and LU_GGI20 [in 

units of arcsec].

 Min Max Avg STDEV 

ξ η ξ η ξ η ξ η 

LU_GGI’20 -0.348 -0.190 0.216 0.162 0.007 -0.002 0.055 0.046 

GGMplus -1.300 -1.370 1.105 1.194 0.008 -0.025 0.314 0.307 

EGM2008 -1.351 -1.031 1.747 2.509 0.013 -0.024 0.346 0.358 
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Figure 5.7. The comparison of terrestrial VD and EGM2008 (author)  

 

Figure 5.8. The comparison of terrestrial VD and GGMplus (author)
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For the first time a high number of observations of terrestrial vertical deflections (VD) have been 

done on the territory of Latvia. The application of VD observations for the quasi-geoid model 

determination has shown the significant improvement of the computed quasi-geoid model. The 

standard deviation of the observation residuals after the adjustment, considering both VD 

derivatives from GGMs and terrestrial VD observed by DZC is equal to 0.006 m. Terrestrial VD 

observations fit the developed quasi-geoid model well, and the standard deviation for ξ and η 

components are equal to 0.055 and 0.046 arcsec respectively. Comparing the terrestrial VD 

observations to GGMs: no significant difference in standard deviation between GGMplus and 

EGM2008 was found, though the maximum difference for η component was 2 times less for 

GGMplus model. The final LU_GGI20 quasi-geoid model corresponds better to the NKG2015 

model: the average difference is equal to 0.008 m in comparison to the LV’14 model, where this 

difference is equal to 0.009 m.  The quasi-geoid heights have also been compared to ellipsoidal 

minus levelling heights: the standard deviation is equal to 0.012 m with minimum and maximum 

differences -0.026 m and 0.025 m respectively. As astrogeodetic deflections of the vertical are an 

additional observation group, being independent from gravimetric geoid models and gravity 

observations, the combination of both gravity data and terrestrial VD observations, together with 

the stochastic prior information of the SCH coefficients from a global gravity field model, give a 

complete integrated approach for quasi-geoid determination. In this context, the next research step 

should deal with the 1st order design problem of the optimal positions of VD and gravity 

observations for regional gravity field determination. 

The next research step concerning the DZC, is to test the DZC in various environments for the 

investigation of anomalous refractions in zenith. It will include long-term observations for seeking 

characteristics of anomalous refraction in several test sites during various weather conditions. 

Simultaneous observations with two adjacent DZCs will be a method to distinguish instrument-

attributed variations from changes in the measured quantity itself and find the spatial properties of 

anomalous refraction effects. 

Further in-depth study will be involved aiming at a comprehensive characterization of the DZC 

VESTA; it will include testing of various instrumental settings, such as analyses of the CCD 

binning parameter, star magnitude and star colour impacts on accuracy. 
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MAIN CONCLUSIONS 

 

1) The improved methodology and software allowed to conclude: 

a) The use of terrestrial vertical deflection observations or (Φ, Λ)ast  instead for quasi-

geoid determination significantly improves the precision of it: the achieved precision 

is equal to 0.017 m in comparison to 0.038 m when vertical deflections were ignored. 

b) The standard deviation of the observation residuals after the adjustment, considering 

both VD derivatives from GGMs and terrestrial vertical deflections observed by Digital 

Zenith Camera is equal to 0.006 m. 

c) Terrestrial VD observations fit the developed quasi-geoid model well, and the standard 

deviation for ξ and η components are equal to 0.055 and 0.046 arcsec respectively. 

d) The final LU_GGI’20 quasi-geoid model corresponds better to the NKG2015 model: 

the average difference is equal to 0.008 m in comparison to the LV’14 model, where 

this difference is equal to 0.009 m. 

e) The quasi-geoid heights have also been compared to ellipsoidal minus levelling 

heights: the standard deviation is equal to 0.012 m with minimum and maximum 

differences −0.026 m and 0.025 m respectively. 

2) The carried out and post-processed 414 vertical deflection observations fit well the global 

geopotential models:  

a) no significant difference in standard deviation between GGMplus and EGM2008 was 

found: 0.314 arcsec and 0.346 arcsec for ξ component; 0.307 arcsec and 0.358 arcsec 

for η component respectively. 

b) average differences are equal to 0.008 arcsec and 0.013 arcsec for ξ component, and -

0.025 arcsec and -0.024 arcsec for η component respectively. 

3) The used methodology was compared with GRAVSOFT algorithms based on collocation 

method and remove-restore technique. The region of Riga was compared and the results 

showed the average difference between the LU_GGI2’0 quasi-geoid heights and ellipsoidal 

heights minus normal heights from data base equal to 0.017 m in comparison to RIGA’20 

quasi-geoid computed with GRAVSOFT equal to 0.022 m, what proves that developed 

methodology fits better than remove-restore technique. 
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