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ANOTĀCIJA

Darbs ir veltīts augstfrekvences dielektriķu ar maziem zudumiem dielektriskās caurlaidības
mērījumu modeļu izvērtēšanai un tādu mērījumu modeļu izveidošanai, kuru pielietošana sama-
zina mērījumu nenoteiktību, ja tradicionālās metodes to nenodrošina.

Augstfrekvences dielektriķu pielietošana mūsdienu mikroviļņu iekārtās ir tik plaša, ka šajā
jomā ilgus gadus veic pētījumus ne tikai universitātes un pētījumu centri, bet arī firmas, kuras
ražo mēraparatūru un sertificētas testa laboratorijas. Lai gan ir sen nosecināts, ka universālu
metožu un modeļu nav, tomēr bieži vien netiek piegriezta pietiekama vērība mērījumu modeļa
piemērotības izvērtēšanai, it sevišķi gadījumos, kad ir jālieto nesagraujoša metode pie fiksēta
parametru (parauga sagaidāmā dielektriskā caurlaidība, izmēri un ģeometriska forma, frekvence,
izvēlētā mērījumumetode u.c.) kopuma. Nepareiza modeļa izvēle un tā neizvērtēšana ne reti var
dot tik lielu dielektriskās caurlaidības mērījumu nenoteiktību, ka mērījumu rezultāti nav praksē
lietojami. Arī citi modeļi var nedot rezultātus, ja paraugu nesagrauj.

Šajā darbā tiek parādīta nepieciešamība vispirms analizēt vai izvēlētais mērījumu modelis
dod iespējas pietiekami precīzi noteikt dielektrisko caurlaidību pie noteiktā parametru kopuma
un šim mērķim tiek piedāvāta vienkārša un efektīva izvērtēšanas metode – modeļa jūtības
analīzes metode.

Darbā tiek parādīts un ar aprēķiniem pamatots, ka gadījumos, kad tiek noteikts, ka mērī-
jumi ir jāveic pie nemainīga uzdotā parametru kopuma, bet tiek izsecināts, ka modelis nav
piemērots, jo mērījumu nenoteiktība iznāk nepieņemami liela, ir iespējams veidot citu nesagrau-
jošumērījumumodeli, kura lietošana būtiski samazinamērījumu nenoteiktību un ka šādumodeli
var izveidot, ja parauga tuvumā (vai tieši tam blakus) izvieto vienu vai divus modeļa papil-
dus elementus. Var lietot arī citu pieeju, kad tiek mainīti parauga ģeometriskie izmēri, bet tas
nozīmē, ka jāsagrauj paraugs, kas ne vienmēr ir pieļaujams un iespējams. Tā arī parasti dara, ja
lieto rezonanses metodes.

Darbā konkrēti tiek pētīti modeļi, kuri lieto atstarošanās metodi, ja ar to mēra dielektrisko
caurlaidību un lieto modeļus, kuros tiek mērīti plakani dielektriski paraugi taisnstūra viļņvadā
un brīvā telpā un cilindriski dielektriski paraugi taisnstūra viļņvadā.

Mērījumu nenoteiktības izvērtēšanai tiek lietotas starptautiskajos standartos noteiktās
metodes - Kļūdu izplatīšanās metode un Montekarlo metode, kas dod ticamu izvērtējamu arī
nelineāriem modeļiem, bet šī metode prasa ļoti apjomīgu skaitļošanu. Šajā darbā tiek lietota
autora izstrādāta efektīva skaitļošanas metode, kura modeļiem ar dielektriskiem cilindriem
viļņvadā dod augstas precizitātes skaitlisku risinājumu daudzkārt ātrāk, kā līdz šim lietotās
pieejas, kas deva iespēju pielietot Montekarlo metodi mērījumu modeļiem ar cilindru (un ar
cilindriem) viļņvadā, kas bija praktiski neiespējams ar iepriekš lietotajām pieejām.

Darbā ir 128 lappuses, 54 attēli, 13 tabulas, 138 izmantotie literatūras avoti.
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ANNOTATION

The thesis is devoted to evaluating dielectric constant measurement models for high-
frequency low-loss dielectric materials and to constructing measurement models whose
application reduces measurement uncertainty when conventional measurement methods cannot
accomplish it.

The application of high-frequency dielectrics in modern microwave equipment is so exten-
sive that not only universities and research centers but also companies that manufacture mea-
suring equipment and certified test laboratories have been conducting research in this field for
many years. Although universal methods and models are available, little attention has been
paid to the evaluation of the suitability of the measurement model, particularly in cases where
a non-destructive method is used and the model parameters must be fixed (expected value of
sample dielectric constant, dimensions, shape, frequency, etc.). The use of an inappropriate
model without an a priori evaluation of its suitability may lead to such a high uncertainty that
the measurement results would not be usable in practice. Some models may also fail to give
meaningful results for samples that, for various reasons, may not be altered.

In the thesis, it is demonstrated and justified through calculations that in the case when
the measurements are performed using a model with a fixed set of parameters, and the model
evaluation shows that it is not suitable, it is possible to reduce the measurement uncertainty via
extending this model by adding to it one or more additional dielectric objects. Another approach
is based on altering the dimensions of the sample, leading to its destruction, which is not always
acceptable and possible. The thesis shows the importance of ascertaining if a selected measure-
ment model is capable of providing sufficiently high dielectric constant accuracy for a given set
of model parameters. To that end, a simple and effective measurement model evaluation method
is proposed - the model sensitivity analysis method.

The measurement models investigated in the present thesis employ the reflection method
to retrieve the dielectric constant and involve flat dielectric samples fitting tightly in the cross-
section of a rectangular waveguide, flat dielectric samples located in free-space, and cylindrical
dielectric full-height H-plane samples in a rectangular waveguide.

The measurement uncertainty is estimated using two international standard recommended
methods, namely, the Error Propagation Method and Monte Carlo Method. The latter is highly
computationally demanding while providing reliable uncertainty estimation of nonlinear mod-
els. In the thesis, an efficient computational method developed by the author is used, which
for models involving dielectric cylindrical rods in a waveguide, ensures highly accurate results
while being considerably faster than the existing general-purpose methods, thereby allowing one
to perform the Monte Carlo-based measurement uncertainty estimation for the rod-based mea-
surement models in a reasonable time-frame, which would be impossible if general-purpose
methods were employed due to prohibitively large computational burden.

The thesis contains 128 pages, 54 figures, 13 tables, and 138 citations.
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INTRODUCTION
Nowadays, there are countless applications where electromagnetic fields and waves play a

central role - electronics, telecommunications and radars, computer technology, military tech-
nologies, industrial applications, medicine, biosciences and biotechnologies, geology, agricul-
ture, etc. For most of these applications, it is critical to know how these fields and waves behave
in different media and materials, interact with and propagate in and affect them. In electro-
magnetics, the way the electromagnetic fields interact with materials is described by a set of
constitutive relations, which differ between materials and are characterized by a set of electro-
magnetic constitutive parameters (EMCP), such as dielectric constant, magnetic permeability,
and electrical conductivity. The EMCP, in general, may vary with time, position, frequency, as
well as pressure, and ambient temperature. Additionally, these parameters may exhibit either
linear or non-linear dependence on the aforementioned quantities and even may be dependent
on the direction of the fields they interact with - as it occurs in anisotropic media [1].

In some microwave applications, it is essential to know the EMCP of materials with suffi-
ciently high accuracy. Thus, the measurement of the EMCP has been the subject of many studies
for several decades. A number of attempts have been made to theoretically describe and predict
the EMCP of materials; however, only values obtained through experimental measurements are
valid for applications, and numerous different measurement methods for the measurement of
material EMCP suitable for a wide range of frequencies have been proposed [2].

Although the range of dielectric (including magneto-dielectric) materials used in various
microwave applications is wide [3], a special place in terms of application is occupied by com-
ponents having a specific shape, e.g., slabs, laminated structures, cylindrical [4] rods, which
are extensively employed in microwave devices, including, among others, various microstrip
filters, dielectric and magnetic resonators, dielectric antennas substrates, dielectric waveguides,
etc. [5]. Consequently, in recent years, great attention has been paid to the EMCP measurement
of these materials.

Different methods for the EMCPmeasurements of materials, as well as their reliability eval-
uation, have been developed [6]. Companies manufacturing high-precision measurement instru-
mentation also investigate and describe measurement methods, their advantages, and disadvan-
tages, and develop newmeasurement equipment and software for the EMCPmeasurement [7, 8].
However, most of the papers and guidelines concerning the EMCP measurements published to
date do not properly reflect such an important aspect that the measurement model sensitivity
depends on the shape and dimensions of the sample, as well as frequency and even the measure-
ment method itself, even though there are internationally accepted standards defining how the
sensitivity of the model should be evaluated, which shows how the output (measurable quantity)
estimate varies with changes in the values of the input estimates, and there are methods for the
measurement uncertainty estimation [9].

While there are a number of standard measurement methods developed for use in testing lab-
oratories, most of them are destructive ones (typically resonant methods), especially when mea-
suring MUT with small losses. In addition, these methods are very expensive, time-consuming,
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require very careful sample preparation and well-equipped laboratories, and are not well suited
for testing ready-to-use products [10]. These test methods are mandatory for manufacturers [11],
but due to the rapidly growing number of new dielectric materials possessing properties that
make them very attractive for the application in microwave technologies, researchers are forced
to seek other measurement models, preferably non-destructive ones (or at least low-destructive)
that would be well suited for measurement of these new materials [12]. The main reason the
non-destructivemethods aremore attractive than their destructive counterparts is that they do not
require a complex sample preparation procedure, especially in the case of fragile and difficult-
to-handle materials, such as various ceramics extensively used at microwave frequencies [13].
Moreover, ceramic materials with low losses [14], and high dielectric constant [15] might be of
particular interest in a variety of current applications, as well as some future applications, since
their use results in more compact microwave components and devices.

Even in a seemingly simple case when the dielectric constant of non-magnetic solid ma-
terial with very low losses and simple geometric shape, which are widely used in microwave
technologies, needs to be determined, there is no simple, easy-to-use methodology for verifica-
tion of the validity of the measurement models. Furthermore, in the vast majority of reported
studies, only comparison of different measurement methods, as well as the results obtained with
them, are presented, while little or no attention has been paid to the sensitivity of the models to
the measured EMCP ofMUT and the suitability of the models for the EMCPmeasurements with
a specific set of model parameter values or value ranges [16]. Only in a few studies comparison
and evaluation of the existing models are made, as well as new models are proposed, e.g., [17],
[18] and [19], where more accurate dielectric constant measurement results for specific cases
and some models are also evaluated from the point of view of uncertainty reduction.

In most papers, the problem of the suitability of a measurement model involving a specific
MUT with a specific set of model parameter values is mentioned or superficially described but
not thoroughly investigated, and no attempt has been made to resolve it so far. Often, method-
ologies for the reduction of the measurement uncertainty are developed without an a priori eval-
uation of the measurement model in terms of the suitability [20]; however, such a reduction may
not be achievable when an unsuitable measurement model is selected.

Aim of the Thesis and Defended Theses

In order to address the problems mentioned above related to the effective evaluation of the
suitability of dielectric constant measurement models, the selection of models, and the devel-
opment of measurement models that ensure sufficiently small measurement uncertainty, the
following main objectives of the thesis are put forward:

- Develop a methodology for simple evaluation of the measurement model sensitivity;

- Develop improved measurement models ensuring a sufficiently high model sensitivity in
cases where conventional measurement models cannot accomplish it.

In order to achieve the main objectives of the thesis, the following defended theses were defined:
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1. The sensitivity of the measurement model depends on the selected measurement method,
and for a sample with a specific shape and dimensions at a specific measurement fre-
quency, the sensitivity strongly depends on the expected value of the dielectric constant
and takes values in the range from 0 to 20;

2. The sensitivity of the measurement model is related to the measurement uncertainty, and
if the model sensitivity is less than 1, then the relative uncertainty of the dielectric constant
measurement is greater than 1%;

3. To evaluate the suitability of the measurement model, it is not necessary to solve the time-
consuming inverse problems for the measurement uncertainty estimation, as it suffices to
evaluate the sensitivity of the model from a solution to the forward problem using the
Error Propagation Method, which reduces the model evaluation time by at least an order
of magnitude;

4. If the classical measurement model has a measurement sensitivity of less than 1, such
a model is considered not suitable for the dielectric constant measurements, and an ex-
tended measurement model must be constructed by adding a dielectric slab or rod, the
dimensions, position, and dielectric constant of which are calculated in such a way as to
ensure the sensitivity of the measurement model greater than 1;

5. To be able to perform the dielectric constant measurement uncertainty estimation for mod-
els involving dielectric rods, it is necessary to develop a fast numerical method that is at
least 50 times faster than currently existing methods.

Main Tasks

1. To show that one can quickly and easily estimate and evaluate the sensitivity of the mea-
surement model for any specific set of model parameter values to determine whether the
model is suitable for the measurement or whether the measurement uncertainty will be un-
acceptably high. Additionally, the evaluation procedure allows for determining whether
the model can ensure a specific measurement uncertainty.

2. To prove that the dielectric constant measurement uncertainty is closely related to themea-
surement model sensitivity and, therefore, the uncertainty can be reduced by increasing
the model sensitivity.

3. To show that it is possible to increase the sensitivity of the measurement model for a
specific set of model parameters by extending a conventional measurement model, which
is accomplished by placing an additional object (or objects) or by altering the dimensions
of the MUT or the frequency, provided that such alterations are permitted.

4. Develop amethodology and computer programs for constructing optimal extendedmodels
for specific cases.
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5. To develop a numerical method for the calculation of the scattering matrix elements for
dielectric constant measurement models involving dielectric rods in a rectangular waveg-
uide, which provides at least 50 times faster measurement uncertainty estimation than
currently existing methods.

Research Methods

During the development of the thesis, analytical and numerical calculations, as well as com-
puter modeling, are employed to achieve the objectives of the thesis and perform problem anal-
ysis.

For calculating the scattering parameters of the dielectric constant measurement model with
dielectric rods in a rectangular waveguide, the fast calculation method developed by the author,
namely, the method of surface integral equations, is used.

Commercially available software Ansys HFSS is also used to check the accuracy and ef-
ficiency of the Improved Boundary Integral Equation Method developed by the author. The
inverse problems are solved by means of the Newton-Rafson method.

Computer programs implemented in Python and C++ programming languages were devel-
oped for the calculation of the scattering parameters of the measurement models studied in the
thesis, as well as for the evaluation of the dielectric constant measurement uncertainty.

The programs intended for solving time-consuming tasks, for example, the calculation of
Schlömilch series using the Ewald method, were implemented in C++ language, and the parallel
data processing libraries OpenMP and OpenMPI are used to speed up the calculations.

The other programs were implemented in the Python programming language, including pro-
gram packages for drawing graphs developed by the author.

Scientific Novelty

• A simple Error Propagation Method based methodology for evaluating the sensitivity of a
measurement for quick evaluation of the suitability of a specific measurement model for
achieving a certain measurement uncertainty in dielectric constant measurements without
extensive computing under non-destructing fixed frequency measurement scenario when
the MUT in the measurement model is a slab or a rod in a waveguide or a dielectric slab
in free space.

• A new two-slab waveguide or free-space measurement model to reduce the uncertainty in
the dielectric constant measurements via increasing the measurement model sensitivity.

• A new three-slab waveguide or free space measurement model to reduce the dielectric
constant measurement uncertainty via increasing the measurement model sensitivity.

• A new measurement model, composed of two dielectric rods in a rectangular waveguide,
reducing the dielectric constant measurement uncertainty by increasing the measurement
model sensitivity.
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• A new efficient numerical method for calculating the dominant waveguide mode scatter-
ing matrix elements for multi-layered full-height rods in a rectangular waveguide. The
rods can have an arbitrary number of dielectric inclusions.

Main Results of the Thesis
1. The developed measurement model sensitivity evaluation methodology for determining

whether the range of possible dielectric constant values is in a measurement model low-
sensitivity range, giving measurement uncertainty too large to ensure acceptable measure-
ment accuracy under a non-destructive fixed frequency waveguide or free space measure-
ment scenario.

2. The use of the extended dielectric constant measurement models, in some instances, pro-
vides model sensitivity that is significantly higher than that of the conventional model,
which contains only the object under test (rod or slab), resulting in smaller measurement
uncertainty. The measurement models investigated in the thesis are:

• a dielectric slab, the constant of which is determined from the measured value of the
modulus of the scattering matrix element S11 measured for the dominant rectangular
waveguide mode (in the case of waveguide measurements) or a plane wave (in the
case of the free-space measurement model) and extended models with two or three
dielectric slabs, one of which is a slab made of the material under test (MUT);

• a dielectric rod in a rectangular waveguide with a dielectric constant to be deter-
mined from the measured absolute value of the scattering matrix element S11 for the
dominant waveguide mode and extended models with an auxiliary dielectric rod of
known constitutive properties and dimensions;

3. The developed numerical methods for solving integral equations, which use the Ewald
method for the calculation of slowly converging Schlömilch series, allows for calculating
scattering parameters for structures consisting of multiple full-height dielectric rods in a
rectangular waveguide, up to 500 times faster than commercially available finite element
method based software.

Structure of the Thesis

The thesis is composed of six chapters, conclusion and bibliography. Chapter 1 presents an
introductory overview of the measurement uncertainty estimation methods used for the mea-
surement model evaluation. Additionally, several terms for quantities and objects frequently
referred to throughout the thesis are defined, and a brief overview of the state-of-the-art in the
field of dielectric permittivity measurements is provided. Chapter 2 is devoted to a discussion of
three conventional dielectric constant measurement models. Also, the role of the model sensi-
tivity in the dielectric constant measurements is described, and viable approaches to improving
the model sensitivity are outlined. In chapter 3 a methodology for improving the measurement
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model sensitivity is described and applied to a conventional model involving a flat dielectric slab
made of MUT in a rectangular waveguide. The resulting extended model is evaluated by means
of the MCM with a view to finding an optimal set of model parameters to reduce the measure-
ment uncertainty. Chapter 4 discusses the application of the proposed sensitivity improvement
methodology to a conventional free space measurement model and presents the results of the
uncertainty analysis of the resulting extended model. In chapter 5, the proposed sensitivity
improvement methodology is applied to the waveguide-based rod measurement model, and the
relevant model evaluation results are presented and discussed. Chapter 6 addresses the improved
integral equation-based method proposed and developed by the author to considerably reduce
the uncertainty estimation time for the models involving dielectric rods.

Publications and Approbation of the Thesis
The results of the Doctoral Thesis have been presented at 5 scientific conferences and

workshops, whose full-length paper proceedings are indexed in in SCOPUS, WoS, and
IEEE databases.

1. Kushnin, R., Semenjako, J. and ”Determination of the Optimal Value of the Radius of
a Circular Cylindrical Post in a Rectangular Waveguide for Measurement of the Dielec-
tric Permittivity,” presented at Progress in Electromagnetic Research Symposium(PIERS
2013), Sweden, Stockholm, 12-15 August, 2013.

2. Kushnin, R., Semenjako, J., and Solovjova, T. ”Determination of Optimal Pairs of Radii
of Dielectric Samples for Complex Permittivity Measurement of Dispersive Materials,”
presented at Progress in Electromagnetics Research Symposium (PIERS2015), Czech Re-
public, Prague, 6-9 July, 2015.

3. Kushnin, R., Semenjako, J., and Shestopalov, Y. ”Accelerated Boundary Integral Method
for Solving the Problem of Scattering by Multiple Multilayered CircularCylindrical Posts
in a Rectangular Waveguide,” presented at Progress in Electromagnetics Research Sym-
posium - Spring (PIERS 2017), Russia, Saint Petersburg, 22-25 May, 2017.

4. Kimsis, K., Semenjako, J., Kushnin, and R., Viduzs, A. ”Numerical Implementation of Ef-
ficient Cross-Section Method for the Analysis of Arbitrarily Shaped Dielectric Obstacles
in Rectangular Waveguide,” presented at Progress in Electromagnetics Research Sympo-
sium - Spring (PIERS 2017), Russia, Saint Petersburg, 22-25 May, 2017.

5. Kushnin, R., Semenjako, J., and Shestopalov Y. “Fast Method for Analysis of Multiple
H-Plane Cylindrical Posts with Multiple Cylindrical Inclusions in a Rectangular Waveg-
uide,” presented at the 2020 IEEE Microwave Theory and Techniques in Wireless Com-
munications (MTTW), Oct. 2020.

The results of the Doctoral Thesis are presented in 9 out of 14 author’s scientific ar-
ticles and in publications in conference proceeding indexed in SCOPUS, WoS, and IEEE
databases.
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1. MODEL EVALUATION AND UNCERTAINTY
ESTIMATION

1.1 Model Evaluation and Uncertainty Estimation

In this thesis, the measurements of the dielectric constant of low-loss cylindrical samples
(rods) and dielectric slabs are investigated. The dielectric constant is determined with the aid of
a reflection-only method (only the magnitude of scattering matrix element |S11| is measured).
The measurement models examined in the present study account for the MUT losses, which are
assumed to be known a priori.

For the sake of convenience, several terms used throughout the thesis are introduced. The
term measurement model throughout this thesis applies to a measurement procedure together
with the mathematical relations relating the quantity of the interest (measurable quantity) that
in the present case is dielectric constant, and other quantities whose values are required to de-
termine the value of the measurable quantity.

For a specific shape and dimensions of the MUT sample (including the dimensions and the
position of the auxiliary model elements, if any), the measurement frequency, and the MUT
dielectric constant, the measurement uncertainty may be acceptable but may also be so large
that the results of such measurements would be absolutely useless from the practical point of
view. It is shown that a considerable measurement uncertainty results from a low sensitivity of
the measurement model, which shows how sensitive the magnitude of S11, hereinafter denoted
by |S11|, to small variations in the dielectric constant. Not only |S11|, which is the quantity that
is being measured directly, but also the aforementioned parameters are subject to uncertainties
and therefore contribute to the total measurement uncertainty. There are myriad random factors
affecting measurement accuracy, but in practice, it suffices to take into consideration only those
that make the most significant contribution to the overall accuracy [21]. These factors include,
among others, limited resolution, residual systematic error, connection mismatch, and geomet-
rical imperfections of the sample, such as a slight shift in the position of the sample and the
accuracy of the measurement of the sample dimensions.

Measurement uncertainty estimation methods are employed to determine the total measure-
ment uncertainty for a given model. The most extensively used are the EPM and MCM [9, 22].
The simpler one is the EPM, which, however, is applicable only to models amenable to an
adequate linear approximation, which is a severe limitation of the method. Alternatively, to
estimate the measurement uncertainty for the range of the measurement model parameter val-
ues for which the dependence of the output quantity (measurable quantity) on the parameters
is highly nonlinear, the application of the EPM method may result in a considerable over- or
under-estimation of the uncertainty, that may lead to highly undesirable consequences if such
inaccurate data is used. Another commonly used uncertainty estimation method is the MCM,
which is more reliable as it accounts for the non-linearity of the measurement model. Addition-
ally, the uncertainty estimation using the MCM was recently shown to be an effective means of
finding optimal dimensions (radius) of a measurement model composed of a cylindrical dielec-
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tric MUT in a cylindrical resonant cavity [23] that gives the lowest measurement uncertainty.
However, due to its stochastic nature, the uncertainty estimation with the MCM, in many cases,
is quite computationally demanding.

As far as sources of measurement uncertainty [24] are concerned, the measurement uncer-
tainty associated with the measurable quantity |S11|, as well as other quantities (measurement
model parameters) that are not measured directly but affect the value of |S11| and therefore also
contribute to the total uncertainty are considered in the present study. In general, however, it is
highly desirable to account for the following uncertainties [22]:

• accuracy of the instruments used in the measurements

• effect of the measuring instrument resolution

• repeatability of the results

• reproducibility of the measurement setup

In the present study, all of these sources are considered except the last two (repeatability and
reproducibility) are taken into account since it is very difficult to quantify them. There is another
type of uncertainty that is also difficult to estimate - systematic uncertainty. Unfortunately, it
cannot be removed entirely - even a complex calibration procedure cannot completely eliminate
this type of uncertainty, only reduce it.

Systematic uncertainties encountered in microwave waveguide or free space measurements
are related to signal leakage, signal reflections, and frequency response. There are six types of
systematic errors associated with the measurement by means of VNA [25].

• directivity and cross-talk errors relating to signal leakage

• source and load impedance mismatches relating to reflections

• frequency response errors caused by reflection and transmission tracking within the test
receivers

In the present study, the dielectric constant of the MUT is extracted from a measured |S11|
by solving the inverse problem. It is assumed that the expected value of the dielectric constant is
approximately known. Although the measured |S11| is the only source of information available
to retrieve a dielectric constant, it is enough provided that the dielectric constant of the MUT is
approximately known a priori; that is the case in most measurements.

In the EPM the total uncertainty in dielectric constant measurements is given by [26]:

u(ε′r,mut) =
√
u2|S11|(ε

′
r,mut) + u2dmut(ε

′
r,mut) + u2f (ε

′
r,mut) + u2tanδmut(ε

′
r,mut). (1.1)

Slightly rearranging (1.1), gives the following expression that is more illustrative from a point
of view of the main objective of the thesis, namely, it shows how important is the role the factor
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∂|S11|
∂ε′r,mut

plays in the model evaluation in terms of the measurement accuracy, as discussed below.

u(ε′r,mut) =
1

∂|S11|
∂ε′r,mut

·

√(
u|S11|

)2
+

(
∂ |S11|
∂dmut

udmut

)2

+

(
∂ |S11|
∂f

uf

)2

+

(
∂ |S11|
∂ tan δmut

utanδmut

)2

.

(1.2)
The quantities appearing in the radicand are the contributions of individual parameters of the
measurement model to the total uncertainty of dielectric constant measurements and are given
by:

u|S11|(ε
′
r,mut) =

∂ε′r,mut
∂|S11|

u|S11| - the measurement uncertainty contribution of |S11|,

udmut(ε
′
r,mut) =

∂ε′r,mut
∂dmut

udmut - the MUT slab thickness measurement uncertainty contribution,

uf (ε
′
r,mut) =

∂ε′r,mut
∂f

uf - the frequency measurement uncertainty contribution,

ua(ε
′
r,mut) =

∂ε′r,mut
∂a

ua - the waveguide width measurement uncertainty contribution,

utan δmut(ε
′
r,mut) =

∂ε′r,mut
∂ tan δmut

utan δmut - the contribution of the MUT loss tangent measurement
uncertainty,
where

u|S11| - the standard uncertainty of |S11|;
udmut - the standard uncertainty of the MUT slab thickness, mm;
uf - the standard uncertainty of the frequency, GHz;
ua - the standard uncertainty of the waveguide width, mm;
utan δmut - the standard uncertainty of the MUT loss tangent.

Since the value of the dielectric constant is retrieved from |S11|, which is measured directly,
and its value depends on the other parameters of the measurement model, their contributions
can be expressed as follows:

udmut(ε
′
r,mut) =

∂ε′r,mut
∂|S11|

∂|S11|
∂dmut

udmut ,

uf (ε
′
r,mut) =

∂ε′r,mut
∂|S11|

∂|S11|
∂f

uf ,

ua(ε
′
r,mut) =

∂ε′r,mut
∂|S11|

∂|S11|
∂a

ua,

utan δmut(ε
′
r,mut) =

∂ε′r,mut
∂|S11|

∂|S11|
tan δmut

utan δmut .

The numerical study carried out by the author, as well as the EPM formula (1.2) reveals that
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the slope of the function graph
∣∣S11(ε

′
r,mut)

∣∣ when the other model parameters are kept fixed is
determined by the derivative ∂|S11|

∂ε′r,mut
=

(
∂ε′r,mut
∂|S11|

)−1

.
Hereinafter the curve

∣∣S11(ε
′
r,mut)

∣∣ for a given measurement model will be referred to as the
model measurement curve. From (1.2) it follows that the steepness of

∣∣S11(ε
′
r,mut)

∣∣, which in
essence is the derivative ∂|S11|

∂ε′r,mut
=

(
∂ε′r,mut
∂|S11|

)−1

, is a quantity, which ultimately determines how
large the total measurement uncertainty will be, as the contribution of all model parameters is
inversely proportional to its value. Hence, in this thesis, the derivative is termed the model
sensitivity coefficient of the measurement model. The model sensitivity coefficient shows that
in the value ranges where the measurement curve is almost parallel to the argument axis ε′r,mut,
it is impossible to measure the dielectric constant for this model as the uncertainty will be very
large.

A measurement model containing only a sample made of the material under test (MUT)
only, i.e., the material whose dielectric constant is to be determined, is referred to throughout
the thesis as a conventional measurement model.

In order to find an optimal set of model parameter values giving the smallest uncertainty, the
uncertainty estimation needs to be performed for different model parameter combinations. In
the present thesis, the MCM is employed as the primary standard uncertainty estimation method
due to higher uncertainty estimation accuracy for non-nonlinear measurement models, which is
the case for the models examined in this thesis. However, since the model sensitivity concept
playing a crucial role in this research is based on the EPM, which is approximate by it is nature,
it is of particular importance to compare the estimation results obtained using both methods.
The comparative study was carried out for the extended models to be described in the following
chapters.

The MCM estimation relies on interpreting all the model parameters contributing to the total
measurement uncertainty as random quantities whose means values are the corresponding best
estimates. According to the Guide to the expression of uncertainty in measurement (GUM)
[27], each input parameter, whether it is measured directly quantity or indirectly, is assigned a
probability distribution on the basis of the maximum entropy principle [28], which states that the
probability distribution for a model parameter must be chosen based on the available information
about the value of the parameter. For example, if only the mean value (the best estimate) and
the uncertainty (standard or expanded) are known for a model parameter, then it is assumed to
follow a normal distribution [29].

Once the probability distributions are chosen, the MCM generates samples for all model
parameters with the same number of elements, each of which is drawn from the corresponding
probability distribution. Then, the sample of the model output quantity is obtained by evaluating
the model at each set of the model input quantity sample elements until the size of the output
sample becomes equal to that of the input ones. Finally, from the obtained model output value
sample, the MCM extracts the necessary statistical data, namely, the sample mean and the stan-
dard deviation, as they are used as the best estimate of the value of the measurable quantity and
the corresponding uncertainty, respectively [30].
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In this thesis, the sample for each consideredmodel parameter is produced utilizing a pseudo-
random number generator [31–33] in conjunction with the Box-Muller transform [34] used to
convert the sample of the standardized uniform distribution to the sample corresponding to the
normal distribution. Then for each combination of the model parameter values taken from the
respective samples, the corresponding value of the dielectric constant is calculated to obtain
the output sample. The dielectric constant values are found via solving the inverse problem
by means of the NRM root-finding method [35]. Once the sample of the dielectric constant
values is generated, its mean value and standard uncertainty can be calculated in a straightfor-
ward manner. For the uncertainty estimation to be reliable, typically, a large number of sample
elements (dielectric constant values) is necessary. While for measurement models that can be
described by a set of simple closed-form expressions, generating large output data samples does
not pose any problem as the relevant computations can be performed very quickly, for models
which require solving a system of equations this may lead to a prohibitively large amount of
CPU time that may exceed the capacity of modern off-the-shelf computing machines thereby
requiring the use of high power computing systems that in most cases is not a cost-effective way
of the uncertainty estimation.

Special treatment is necessary when the actual value of the dielectric constant is in the vicin-
ity of a minimum or maximum of the model measurement curve, as in this case, the NRM
root-finding algorithm may converge to an incorrect solution since the values of the dielectric
constant resulting in the same value of |S11| are very close to each other. In this study, to over-
come this issue, the derivative of the measurement curve is evaluated twice: first, at the actual
values of the model parameters before the first iteration of the NRM method; the second time,
the derivative is evaluated after the root-finding process is completed.

Another issue is that in the course of the MCM-based uncertainty estimation, some of the
generated values of |S11| may prove to be greater than the maximum value |S11| can attain for a
given set of the other model parameters. This also results in the NRM method algorithm find-
ing an incorrect value of the dielectric constant. Nevertheless, since the value found by the
algorithm is, in most cases, very far from the actual one, it can be eliminated from the output
sample by applying a simple criterion. Specifically, the dielectric constant value returned by
the NRM algorithm is rejected if the ratio of the difference between the actual value and the
returned one to the actual value is greater than some prescribed value (threshold) set by the user.
The threshold value is chosen based on the average separation between the adjacent maxima of
the measurement curve. However, for large values of the MUT dielectric constant and thickness
(radius), the shape of the measurement curve becomes so complex that such an approach may
prove not to be effective, and therefore more sophisticated ”bad dielectric constant value” rejec-
tion algorithms must be used. Since the models examined in the present study involve samples
with a dielectric constant value that is not so large that the curve shape becomes very complex,
the simpler of the above-mentioned approaches, i.e., the one based on the threshold is employed
with a very low risk of obtaining an incorrect uncertainty estimate.

In the next chapter, conventional models and the estimation of their measurement uncertain-
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ties are considered. It shows whether the model is suitable for the given set of parameter values
(measurement uncertainty is acceptable) or not due to unacceptably large measurement uncer-
tainty, e.g., above 1%. (or any other prescribed value). The effect of the sample dimensions,
frequency, and dielectric constant value on the dielectric constant measurement accuracy is also
addressed in this chapter, as well as possible ways of reducing measurement uncertainties.

1.2 EMCP Extraction Methods

Aswas mentioned in the introduction, the main focus of this thesis is the transmission/reflec-
tion method [36] of characterization of a MUT located in free space or a rectangular waveguide
where it fits tightly into the waveguide cross-section. Likewise, there are cases where the MUT
is located in a coaxial line and occupies the entire cross-section.

Typically, prior to performing measurements, the measurement setup is calibrated to elim-
inate the effect of unwanted reflections at the junctions due to mismatch, as well as the effect
of the connecting cables and adapters. During the calibration process, the data is collected for
the sample holder without the sample and/or employing calibration kits, including standards
whose dimensions and EMCP are known with high accuracy. Then, processing of the acquired
measurement data is performed, which consists in applying a number of corrections to reduce
the systematic component of the dielectric constant measurement uncertainty arising due to the
above-mentioned effects. Once the calibration is done, the MUT is introduced in the experi-
mental setup, and the scattering matrix parameters of the model with the MUT are measured.
For a detailed discussion and comparison of various calibration techniques, the interested reader
is referred to [37–39].

The Nicolson-Ross-Weir (NRW) method [40, 41] has been used over decades as a standard
technique for measuring both permittivity and permeability of homogeneous, isotropic materi-
als. The NRW method relies on closed-form expressions for the extraction of the constitutive
parameters directly from a complete set of scattering data measured for a slab made of the MUT
[36, 42] using the T/R method.

However, the NRW requires a complete set of scattering matrix parameters that consider-
ably limits its use. In the case of amplitude-only measurements, where the phases of scattering
parameters are not available, or in the case of the reflection-only or transmission-only measure-
ment method, the NRW is not applicable at all. In this case, to retrieve the EMCP of some
material, one has to resort to numerical methods that iteratively reconstruct the desired EMCP.
The most extensively used iterative EMCP extraction method is the Newton-Raphson (NRM)
root-finding method. Various optimization algorithms are also widely employed to retrieve the
EMCP of the MUT from incomplete scattering data measurements. The most extensively used
optimization method are the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and
other swarm intelligence-based and various evolutionary methods [43–47]. Here the term ”in-
complete scattering data” means that only the measured refection or the transmission coefficient
values are used to extract the EMCP, or the amplitude method is used where only magnitudes
of the scattering parameters are measured.
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Unfortunately, the iterative algorithms require a good initial guess to guarantee convergence
to the actual solution. While in many cases, the values of the EMCP to be determined are
approximately known, the iterative process may converge to an incorrect solution due to a large
difference between the actual value and the approximate one used to initialize the algorithm.

Recently in a number of studies, the Artificial Neural Networks (ANN) algorithms have been
applied to the raw measurement data with a view to improving the complex dielectric constant
value measurement accuracy [43–45]. The use of the ANN allows for optimizing the existing
analytical and numerical extraction techniques by training the underlying neural network on a
large quantity of measurement data; however, to achieve satisfactory results, the data collection
used for ANN training must be sufficiently large that is the main drawback of that approach.

The fundamental papers by J. Baker-Jarvis [36, 48, 49] show that the model sensitivity varies
with model parameters, and in some cases, the measurement uncertainty can be prohibitively
large. Nevertheless, a rigorous numerical analysis that would clearly show that a specific model
has such model parameter value regions where the model is not suitable for the measurements,
to the best of the author’s knowledge, has not yet been presented in the literature. In the above-
mentioned papers, as well as in many other papers, e.g., [2], specific properties of measurement
models are not evaluated, and no attempt is made to deduce the suitability of the models from
the model sensitivity coefficient prior to the measurement uncertainty analysis. Although in
[36] it indicated that ”Any number of discrete measurement frequencies may be selected in this
frequency range. To achieve a maximum measurement accuracy, use of different transmission
line sizes and types may be required”, the paper, in fact, addresses the effect of higher-order
modes on the measurement results to ensure sufficiently high accuracy in the case of wide-
band measurements, as well as provides some suggestions for choosing dimensions to ensure
a single-mode regime, but nothing specific is mentioned about the optimal sample dimensions.
Likewise, in [50], some attention is paid to the measurement accuracy, while the importance of
the measurement model sensitivity is not taken into consideration; instead, the paper discusses
various issues associated with the calibration process, which is also essential but is not always
of primary concern, especially when the measurement model exhibits very low sensitivity.

Some papers describe the effect of the half-wavelength resonances on themeasurement accu-
racy and the stability of the EMCP extraction techniques for the T/R method, as well as propose
possible ways to overcome or at least mitigate these issues [51]. In [52], it is shown that for a
certain set of input parameter values, such as the slab thickness and the frequency, the sensitivity
coefficients of the input parameters becomes very large (in fact, they tend to infinity) resulting
in unacceptably large measurement uncertainty. Also, in [52], it is shown that there are sample
thickness values that yield a lower measurement uncertainty.

A similar study is presented in [53], and in an earlier contribution [54], it was shown that
when the T/Rmethod is applied to aMUT loaded transmission line, themeasurement uncertainty
depends significantly on the normalized (taken relative to a wavelength) sample thickness. In
[55] an ANN-enhanced NRWmethod is proposed for stable and unique retrieval of the complex
dielectric constant of low-loss materials from the data acquired with the T/R method that is
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invariant to the position of the MUT in the sample holder.
In [56] an attempt was made to improve the measurement uncertainty by introducing addi-

tional weighting factors into the objective function [17] to be solved by means of an iterative
method. However, the effectiveness of this approach seems questionable due to the fact that in
the case when the measurement model sensitivity is not sufficiently high, adjusting the coef-
ficient value to improve the accuracy of the EMCP extraction from the raw measurement data
cannot give any significant improvement in the measurement uncertainty, as the sensitivity of
the measurement model cannot be increased in this way.

It is worth noting that there are papers devoted to the EMCP extraction from the amplitude-
only reflection measurement data for samples whose thickness is small compared to a wave-
length which enables one to derive an analytical polynomial-based approximation ensuring
unique EMCP extraction [58]. A similar idea has been used in a number of other studies con-
cerned with the use of the T/R method for the dielectric constant retrieval when the MUT is a
thin slab [59, 60].

In this thesis, it is proved that the sensitivity of the measurement models is not sufficiently
high over a much wider range of the dielectric constant values not only in the vicinity of values
giving the λ/2 resonances, since in the vast majority of cases, e.g., when |S11| peaks are sharp
and the uncertainty sensitivity coefficient 1/(d |S11| /dε′r,mut) takes large values over a relatively
wide range of ε′r,mut values. It is also demonstrated that the dielectric constant can be simply
extracted without having to solve the inverse problem, which in many cases, is not a trivial task.
For example, when the MUT is not a single-layer substrate but a multi-layer laminate structure
or even a cylindrical rod.

Also, it is worth noting that in some studies where the MUT is a relatively thin slab, it is
possible to employ analytical expressions.

Presently there is no methodology that would clearly show how to evaluate the suitability
of the measurement model, as well as the measurement model sensitivity and how to make the
decision regarding its suitability for performing a specific measurement when the measurements
are to be performed at a specific frequency, and the MUT dimensions (thickness of the slab or
the radius of the cylindrical rod) cannot be changed.
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2. CONVENTIONAL MEASUREMENT MODELS
2.1 Single Slab Models

This section covers the properties, applications, advantages, and disadvantages of three con-
ventional measurement models commonly employed in practice. One of the considered models
is composed of an empty waveguide section utilized as a sample holder to accommodate a di-
electric slab made of material with the dielectric constant to be determined from the measured
scattering matrix elements. The second model also involves a dielectric slab. However, in
contrast to the waveguide-based model, in this case, the slab is located in free space, and the
dielectric constant is retrieved from the scattering data relating the amplitudes of the incident,
reflected, and transmitted plane waves, as the model relies on the plane wave assumption. The
third model treated in this section is a conventional model comprising a cylindrical dielectric
rod made of the MUT-loaded rectangular waveguide section. Though the third model is similar
to the first one, it is considerably more challenging to handle due to the absence of close-form
expressions for the scattering matrix element calculation.

2.1.1 Single Slab Waveguide Measurement Model

The first step in measurement model evaluation is the evaluation of conventional measure-
ment models involving a sample made of the MUT only [61].

In this section, the conventional measurement model consisting of a rectangular dielectric
sample (slab) made of a MUT in a rectangular waveguide is considered, whereas conventional
measurement models consisting of a dielectric sample (slab) in free space or a dielectric centered
rod in a rectangular waveguide are treated in the following sections.

Here the waveguide measurement technique where an empty section of a rectangular waveg-
uide employed as a sample holder [63] is examined. The effect of the sample dimensions, fre-
quency, and dielectric constant on the dielectric constant measurement accuracy, as well as
possible ways of reducing measurement uncertainties, are also addressed.

In this thesis, the measurement models are analyzed for the cases where the MUT has low
losses, and it is chosen so that the magnitude of the scattering matrix element |S11| can be mea-
sured to determine the MUT dielectric constant. MUT losses are assumed to be known a priori
(measured beforehand). This approach is common [21] and, moreover, in many studies, the
MUT is treated as being lossless at all [42].

Additionally, the world leading companies manufacturing electronics testing and measure-
ment equipment and software, as well as developing EMCP measurement methods for various
materials, also develop and employ specialized low-loss material EMCP measurement methods
based on the waveguide measurement techniques [7, 8]. Despite their apparent shortcomings,
waveguide (transmission-line) based measurement models are quite attractive and extensively
used owing to their capability to perform measurements at different frequencies - the operating
frequency can be easily varied over a certain band whose width is limited only by the equipment
involved [7, 8].

For the waveguide technique, it is assumed that the dielectric slab is homogeneous, theMUT
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sample fills the waveguide cross-section, and there are no air gaps between the sample faces and
waveguide walls. In this model, the sample has smooth, flat faces, normal to the direction of
propagation (see Fig. 2.1). Also, it is assumed that the waveguide walls are perfectly conducting
and the waveguide is operated in a single-mode (TE10) regime, where all higher order modes
are cut-off [7, 8].

These assumptions significantly simplify the mathematical model of the measurement
model, thus allowing for obtaining simple closed-form expressions for the calculation of |S11|
while not causing any significant discrepancies with experimental results.

z

TE10

dmut

x

Fig. 2.1. The conventional single slab waveguide measurement model.

The mathematical model of the waveguide technique is simple and relatively easy to realize
in practice.

The following expressions for the scattering matrix entries of the model involving a single
dielectric slab in a waveguide (or transmission line) are widely described in the literature and
can be found in many papers, e.g., [40, 65]:

S11 = e−j2k̃0L1
Rmut(1− T 2

mut)

1−R2
mutT

2
mut

, (2.1)

S22 = e−j2k̃0L2
Rmut(1− T 2

mut)

1−R2
mutT

2
mut

, (2.2)

S11 = e−jk̃0L1e−jk̃0L2
Tmut(1−R2

mut)

1−R2
mutT

2
mut

, (2.3)

where
L1 - the distance between the front reference plane and the front face of the sample, m;
L2 - the distance between the rear reference plane and the rear face of the sample, m;
Tmut = e−jk̃dmut - the transmission coefficient;
Rmut = (k̃0 − k̃)/(k̃0 + k̃) - the interfacial reflection coefficient at slab faces;

k̃0 =
√
k20 − (π/a)2 - the TE10 mode waveguide wavenumber in the air-filled region, 1/m;

k̃ =
√
k20εr,mut − (π/a)2 - the TE10 mode waveguide wavenumber in the dielectric-filled

region, 1/m;
εr,mut = ε′r,mut (1− j tan δmut) - the complex dielectric constant in the dielectric-filled region;
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k0 = 2πf/c - the free space wavenumber, 1/m;
c - the speed of light, m/s.

For the sake of convenience, the symbols used to denote the single slab waveguide measure-
ment model parameters are summarized in Table 2.1.

Table 2.1
Single slab waveguide model parameters

Model Parameter Symbol
MUT dielectric constant ε′r,mut

MUT loss tangent tan δmut
MUT slab thickness dmut

Frequency f

Waveguide width a

In the present study, it is assumed that the front and rear reference planes are aligned with
the front and rear faces of the slabs, respectively. Hence, L1 = 0 and L2 = 2.

For non-magnetic materials, if the position of the reference planes is not known precisely,
factors e−jk̃0L1 and e−jk̃0L2 can be eliminated from the relations giving reference plane invariant
equations to extract the EMCP of the MUT [63]. Although there exists an entire family of
reference plane independent equations, the most commonly used ones (owing to their particular
usefulness) are as follows

|S11| =
∣∣∣∣Rmut(1− T 2

mut)

1−R2
mutT

2
mut

∣∣∣∣ , (2.4)

|S21| =
∣∣∣∣Tmut(1−R2

mut)

1−R2
mutT

2
mut

∣∣∣∣ . (2.5)

The primary focus of this thesis is cases where the dimensions of the MUT cannot be
changed, and the measurements are made at a fixed frequency chosen according to standards.
However, if it is necessary to perform measurements at multiple frequencies, the only obstacle
that stands in the way is ensuring that the waveguide is operated in a single-mode regime.

The requirement that the sample must fit tightly in the waveguide cross-section is a signifi-
cant drawback of the method, but the advantages are the simplicity of the measurements and the
availability of closed-form expression for the scattering matrix calculation. Furthermore, the
model is easy to realize to perform measurements at a given frequency and allows for measur-
ing the temperature dependence of the dielectric constant. The gap between the MUT slab and
wavegiude walls is discussed in many papers [66, 67]. In practice, it was found that the effect
of the air-gap on the scattering matrix parameters, resulting from the excitation of higher order
modes in the dielectric-filled region, can be significantly mitigated by filling the gaps with a
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high conductivity paste.
A typical measurement model using the transmission-line method comprises a VNA, a

waveguide serving as a sample holder, and software for dielectric constant extraction. There are
a number of dielectric constant extraction techniques and uncertainty estimation methods [64].
The waveguide dielectric constant measurement technique is one of the most widely employed
ones for being simple, and cost-effective [68, 69]. Also, commercial software is available, such
as the N1500A Materials Measurement Suite [70] featuring nine different dielectric constant
extraction algorithms, so that the user can select the one which is more suitable for a particular
measurement model, MUT, and applications [40, 71, 72]. Some iterative techniques are also
extensively employed despite the fact that they require a good initial guess as described in [70].

In the numerical analysis of the measurement model under consideration, it is assumed the
model is based on a standard rectangular waveguide WR-90 with a width of the broader wall of
22.86mm and the measurements are performed at 10GHz. It should be noted, however, that the
research methodology can be applied just as well to models involving waveguides of different
dimensions and operating at different frequencies.

First, examine how the actual value of the MUT dielectric constant affects the measurement
uncertainty of the conventional waveguide model. To that end, two models, denoted MUT1 and
MUT2, are analyzed. The models have the same parameter values except ε′r,mut, which for the
first model (MUT1) is set equal to 10.2 and for the second model (MUT2) is equal to 4.3 (see
Table 2.2).

Table 2.2
Model parameters for two single slab models
Model Parameter Symbol Value

MUT1 dielectric constant ε′r,mut1 10.2
MUT1 loss tangent tan δmut1 0.0023
MUT1 slab thickness dmut1 2.5 mm

MUT2 dielectric constant ε′r,mut2 4.3
MUT2 loss tangent tan δmut2 0.003
MUT2 slab thickness dmut2 2.5 mm

Frequency f 10 GHz
Waveguide width a 22.86 mm

In this example, as well as the other examples presented in this section, the interval-based
uncertainty estimation is used in place of the conventional point estimation for being more illus-
trative; namely, the amount of the measurement uncertainty of the measurable quantity (MUT
dielectric constant) and its dependence on the steepens of the curve can be easily deduced just
by looking at the measurement curve graph accompanied by horizontal and vertical bars repre-
senting the confidence intervals for |S11| and ε′r,mut, respectively.

Most standards require stating the expanded measurement uncertainty with the factor k = 2
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(expanded uncertainty is k times the standard uncertainty) in lieu of the standard uncertainty,
which is equal to the standard deviation for the measurable quantity. This choice is dictated by
the fact the interval [-expanded uncertainty, +expanded uncertainty] coincides with the confi-
dence interval with the confidence level of 95% for a normal distribution (typically in standards,
it is assumed that the measurable quantity follows a normal distribution unless some more so-
phisticated uncertainty estimation method is utilized, such as the MCM, which considers the
distribution of the measurable quantity, as well). The confidence level of a confidence interval
corresponds to the probability of the measurable quantity estimate to be within the interval. This
means that the value of the measurable quantity is within the k = 2 confidence interval with the
probability of approximately 95%. The purpose of this example is not to properly estimate the
measurement uncertainty but to illustrate the effect of the model measurement curve steepness
on the uncertainty, namely, to show how the width of the confidence interval for ε′r,mut depends
on the model parameters. Therefore it is not mandatory to choose the confidence level of 95%
for the confidence interval for |S11|.

In this thesis∆|S11| and∆ε′r,mut refer to the confidence interval widths for |S11| and the actual
value of theMUT dielectric constant, ε′r,mut, respectively. In this example, it is assumed that |S11|
is a random quantity following a normal distribution, and ∆|S11| is chosen to be equal to two
standard deviations, which corresponds to the confidence level (probability) of approximately
68% (corresponds to k = 1). Also, for both models, it assumed that ∆|S11| = 0.01.

Fig. 2.2 shows |S11| plotted as a function of ε′r,mut for a single slab model.
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Fig. 2.2. |S11| as a function of ε′r,mut for the single slab waveguide model and the confidence
intervals for ε′r,mut = 10.2 and ε′r,mut = 4.3.

It should be noted that if the confidence level of 95% were chosen, the width of the cor-

33



responding interval for ε′r,mut would be even wider. Also, the figure displays the confidence
intervals with the confidence level of 68% evaluated for two models with different values of
ε′r,mut. The values of the other model parameters of these two models are the same (see Table
2.2).

The blue and red curves, as well as horizontal and vertical bars correspond to the models
with ε′r,mut = 10.2 and ε′r,mut = 4.3, respectively. The widths of the horizontal bars are equal to
the widths of the corresponding confidence intervals for |S11|, while the widths of the vertical
bars correspond to the widths of the confidence intervals for ε′r,mut.

As can be seen in Fig. 2.2, the confidence interval width for the measured dielectric constant
value, ∆ε′r,mut, for the model with ε′r,mut = 4.3 is considerably narrower than for the model with
ε′r,mut = 10.2. Thus, measuring the dielectric constant using the model with ε′r,mut = 4.3 results in
a measurement uncertainty that is by an order of magnitude smaller than when the measurements
are made for the MUT with ε′r,mut = 10.2. Specifically, values of ε′r,mut at which the steepness of
the curve is high result in a lower measurement uncertainty than those at which the steepness is
low.

This behavior of the model can be explained by the expression for the measurement un-
certainty (formula (1.2)). The expression clearly shows the total measurement uncertainty is
inversely proportional to the model sensitivity coefficient, which means that for models with a
very small model sensitivity coefficient, the dielectric constant measurement uncertainty will
be exceedingly large even when the contribution of the other model parameters is small.

Thus, this example shows that the suitability of the conventional measurement model (the
same also holds for non-conventional models) can be conveniently evaluated based on the
function graph of the derivative ∂|S11|

∂ε′r,mut
. The main advantage of the model sensitivity-based

model evaluation is that it does not require any cumbersomemathematical expressions and time-
consuming computations - only the forward problem needs to be solved. This proves the first of
the theses put forth by the author, namely, the one concerning the possibility of performing the
measurement model suitability evaluation in a simple, convenient, and time-efficient manner
when the model parameters cannot be altered for various reasons.

Now, examine how the thickness of the MUT affects the measurement uncertainty. To do so,
two single slab waveguide models having the same parameter values except for the MUT thick-
ness, dmut, which is varied in this case, are considered. The MUT thickness of one of the models
is set equal to 2.5 mm, while that of the other is 0.635mm. The dielectric constant and the loss
tangent for both models are the same and are equal to 10.2 and 0.0023, respectively. The fre-
quency and the width of the waveguide are the same as in the previous example (see Table 2.2).
Similarly to the previous example, the confidence interval concept is utilized to demonstrate the
effect of the model parameters (in this case dmut) on the measurement uncertainty.

Fig. 2.3 shows |S11| as a function of ε′r,mut calculated for both models. Also, the figure dis-
plays the confidence intervals with the confidence level of 68% for both models. The width of
the confidence interval for |S11| in this case is set equal to 0.02 for both models (∆|S11| = 0.02).
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Fig. 2.3. |S11| as a function of ε′r,mut for two different values of dr,mut and the corresponding
confidence intervals.

The blue and red curves, as well as horizontal and vertical bars, correspond to the models
with dmut = 2.5 and dmut = 0.635, respectively. The widths of the horizontal bars are equal to
the widths of the corresponding confidence intervals for |S11|, while the widths of the vertical
bars correspond to the widths of the confidence intervals (uε′r,mut = ∆ε′r,mut in the figures) for
ε′r,mut.

Fig. 2.3 shows that the measurement uncertainty of the dielectric constant depends consid-
erably on dmut. In the present example, the steepness for the model with dmut = 2.5mm is
appreciably lower than for the model with dmut = 0.635mm; as a result, the confidence inter-
val for dmut = 2.5mm is more 6 times wider than for the model with the MUT thickness of
0.635mm.

The measurement uncertainty can also be reduced by changing the frequency at which mea-
surements are performed; however, in some practical cases the frequency must be kept fixed,
e.g., when one needs to determine a dielectric constant at a frequency specified in standards.

As can be seen, the measurement uncertainty depends on all model input parameters, and
changing the model parameters can improve the sensitivity of the model. However, in most
cases, measurements must be made at given parameters, which means that measurements must
be made at a fixed frequency without changing the size of the MUT sample, and therefore the
most significant effect has ∂|S11|

∂ε′r,mut
value and the uncertainty u|S11| should be as small as possible,

but it is limited by the capabilities of the measuring system.
Similar model behavior, as described above, is also exhibited by other measurement models.

As can be seen, the measurement uncertainty varies with the MUT dielectric constant, as well as
the slab thickness and the measurement frequency. However, in this thesis, these parameters are
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treated as fixed, as it is assumed that the dielectric constant of a given value must be measured
(it is known approximately). The measurements are performed at a given MUT thickness and
frequency.

2.1.2 Single Slab Free Space Measurement Model

In this section, the conventional model for the free-space method is considered. The general
principles and parameters of the measurements are similar to those of the previously discussed
waveguide method. Since most of the papers cited above also refer to free-space technique
measurements, only those not mentioned above and related to the free-space dielectric constant
measurement technique will be discussed in this section.

In this thesis, only those models using plane electromagnetic waves incident normal to the
MUT surface are considered. In the conventional model, the MUT is a plane-parallel dielectric
slab whose broad faces are normal to the wave propagation direction (see. Fig. 2.4)

plane wave

dmut

MUT

x

z

Fig. 2.4. The conventional free space technique measurement model.

Similar to section 2.1.2, the MUT dielectric constant, ε′r,mut, is retrieved from the magnitude
of the scattering matrix element S11, |S11|. As before, it is assumed that the MUT losses are
low and are known a priori (measured beforehand). This approach is commonly employed in
studies of free space techniques [73, 74].

For the free space technique, it is assumed that the MUT sample is a large homogeneous
dielectric slab with flat parallel faces [75].

In the mathematical model, the slab is assumed to have infinite transverse dimensions and
a finite thickness. Such assumptions significantly simplify the mathematical model of the mea-
surement model. The magnitude of the scattering matrix element S11, |S11| is calculated using
formula (2.4) |S11| =

∣∣∣Rmut(1−T 2
mut)

1−R2
mutT

2
mut

∣∣∣ , where for a nonmagnetic slab in free space Tmut = e−jk̃dmut

is the transmission coefficient in free space, Rmut =
η−η0
η+η0

=
1−√

εr
1+

√
εr

is the interfacial reflection
coefficient at slab faces, η - intrinsic impedance of MUT medium, Ω; η0 - intrinsic impedance
of free space, Ω.
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The main advantages of the free space technique models are the ability to perform the mea-
surements in a non-contacting and non-destructive manner over a wide range of frequencies
and temperatures [7]. The free space technique is widely used in the measurement of dielectric
constant of construction materials [73].

The lowest frequency is limited by antenna capabilities and sample dimensions. In many
studies, it is assumed sufficient for the sample to have transverse dimensions that are at least
three wavelengths in theMUTmaterial. If these conditions are fulfilled, the mathematical model
can be constructed for a slab with infinite transverse dimensions, which, in turn, allows for using
closed-form expressions for the scattering matrix element calculation.

In [76] a theoretical model was developed to study, in a very general way, the limitations
of the plane-wave approximation. The use of lens-equipped horn antennas [77] has also been
shown to effectively reduce the edge diffraction effect. Rather complex cases are also studied
for finite-size rectangular dielectric cuboid samples [78, 79].

Some commercially available full-wave simulation software can be employed to treat the
scattering of waves by a dielectric slab of finite transverse dimension and calculate scattering
matrix elements; however, such computations can be accomplished in a reasonable time frame
only for slabs with sufficiently small dimensions, but in this case, a problem arises - the sample
holder used to fix the position of the slab will affect the result. On the other hand, when the
transverse dimensions of the slab are greater than five wavelengths, the simulation time is so
long that the correct evaluation of the measurement uncertainty becomes practically unrealistic.

Conventional measurement methods based on the free space technique for the metal-backed
dielectric sample measurements are also employed in practice - the dielectric constant in these
methods is extracted from the reflection coefficient for a dielectric slab (MUT), whose rear face
is completely covered by a thin metal layer [80].

A free space technique for frequency-by-frequency solution or a multi-frequency recon-
struction is described in [81], but the measurement considered in this thesis are assumed to be
performed at a given fixed frequency.

Similar to section 2.1.2, two important cases are considered for the free space method at the
frequency of f = 10GHz:

1) The thickness of the dielectric slab is constant, but the dielectric constant of the model
MUT is varied. The results are indicated in Fig. 2.5;

2) The constitutive parameters of the dielectric slabs (MUTs) are the same (with an a priori
known expected value of the MUT dielectric constant), but the thicknesses of the slabs are
different. The relevant results are shown Fig. 2.6;

The values of the model parameters used in the numerical calculations whose results are
displayed in Fig. 2.5 are presented in Table 2.3.
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Table 2.3
Two single slab free space model parameters

Model Parameter Symbol Value
MUT1 dielectric constant ε′r,mut1 30

MUT1 loss tangent tan δmut1 6.67 · 10−5

MUT1 slab thickness dmut1 2.5 mm
MUT2 dielectric constant ε′r,mut2 4.3

MUT2 loss tangent tan δmut2 0.003
MUT2 slab thickness dmut2 2.5 mm

Frequency f 10 GHz
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Fig. 2.5. |S11| as a function of ε′r,mut and the confidence intervals for samples with two
different ε′r,mut.

The values of the model parameters used in the numerical calculations whose results are
displayed in Fig. 2.6 are presented in Table 2.4.

The results are similar to those of subsection 2.1.2. The figures show that for the models
where the MUT is a homogeneous slab, and the dielectric constant is determined from the mea-
sured |S11|, the measurement uncertainty depends on both the expected value of the dielectric
constant and the thickness of the slabs. Furthermore, changing the frequency can affect the
model sensitivity since |S11| is a function of dmut/λ (the same applies to the model based on the
waveguide technique as described in subsection 2.1.2).
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Table 2.4
Single slab free space model parameters

Model Parameter Symbol Value
MUT dielectric constant ε′r,mut 30

MUT loss tangent tan δmut 6.67 · 10−5

MUT slab thickness 1 dmut1 2.5 mm
MUT slab thickness 2 dmut2 0.625 mm

Frequency f 10 GHz
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Fig. 2.6. |S11| as a function of ε′r,mut and the confidence intervals for two different dr,mut.

In both cases, a separate calculation must be performed to evaluate the suitability of the
model for a set of specific parameter values (dielectric constant, layer thickness, frequency).
At certain parameter values, the model may exhibit a sufficiently high sensitivity, which gives
a small measurement uncertainty, but at the same time, there are also ranges of the model pa-
rameter values that give very low sensitivity, which means that there are regions where the
measurement uncertainty is unacceptably high.

It should be noted that these results show that it is less likely that the expected measurement
uncertainty, as well as the measurement model suitability, were considered in papers proposing
measurement methods for a wide frequencies band, e.g., [69, 74, 79].
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2.2 Single Rod Waveguide Measurement Model

2.2.1 Overview of Single Rod Models

The characterization of cylindrical samples has gained interest owing to the fact that they
are easy to machine as compared to their rectangular counterparts [82, 83]. However, in contrast
to the slab-shaped sample entirely filling the waveguide cross-section, in this case, closed-form
mathematical expressions for the evaluation of the scattering matrix are not available. Although
some analytical expressions or simplified equations for solving the forward scattering problem
involving a cylindrical rod in a rectangular waveguide have been presented, all of them are
derived fromMaxwell’s equation based on a number of simplifying assumptions. This, however,
limits the applicability of the expressions; typically, the expressions ensure satisfactory accuracy
of the scattering parameter calculation only for dielectric rods with a diameter much smaller than
a wavelength in the rod material. However, in many cases, one needs to measure the ready-to-
use product, such as a cylindrical dielectric resonator whose diameter is not electrically small
and which must be subjected to non-destructive characterization. In some recent studies, an
interesting measurement configuration was utilized [84] where the dielectric constant of a liquid
was measured using a flexible pipe passing through two holes made in the broader waveguide
walls so that the resulting structure may be treated as a rectangular waveguide with a cylindrical
full-height tubular (two-layer) sample whose outer layer is the pipe wall, whereas the liquid
pushed through the pipe using a pump and taken from a special reservoir is regarded as the inner
layer (core).

An accurate and elegant method for measurement of the dielectric constant of cylindrical ob-
jects with arbitrary cross-section is presented [85]. Themethod relies on expressing the scattered
fields in terms of a volume integral over the extent of the MUT, resulting in the integral formula-
tion that is discretized using the Method of Moments. However, in place of solving the resulting
system of equation, the eigenanalysis is applied to it, giving a partial fraction representation of
the TE10 mode reflection coefficient. However, the eigenvalues and eigenvectors of the matrix
must be evaluated to construct such an approximation which is quite a time-consuming process,
especially when the number of the eigenpairs is large, which limits the use of the method to
electrically thin samples. The method is very convenient, as to extract the value of the dielectric
constant, one just needs to find the roots of a polynomial obtained by equating the approximate
reflection coefficient to the measured one. The roots of the resulting polynomial are found nu-
merically via the use of the conjugate gradient method. Various practical aspects of the dielectric
measurement using that technique are also treated in that paper.

In [86], a generic approach for determining the complex permittivity of dielectric materials
based on a rectangular waveguide measurement technique is reported. The method first calcu-
lates the MUT scattering parameters, whose dielectric constant may take a wide range of values
and is known a priori. The forward scattering problem is solved using a unified theory based on
a combination of the boundary integral equation technique and the modal expansion approach.
The paper presents generic diagrams interrelating the dielectric constant and the measured scat-

40



tering parameters, and a simple analytical expression was deduced to solve the inverse problem
using an easy-to-use analytical formulation. The method requires an a priori knowledge of the
MUT dielectric constant and generates a number of diagrams to visualize how the complex
dielectric constant varies with the real and imaginary parts of the measured scattering matrix
parameters. This way is faster than graphical and iterative approaches.

In [87] an elegant way for the dielectric constant retrieval from the measured set of scattering
matrix parameters is proposed. The method relies on a mode-matching-based forward problem
solution originally proposed by Sahalos [90] and subsequently improved by Abdulnour [91].
One of the two discontinuities treated in that work is a cylindrical dielectric sample for the
analysis of which easy-to-use expressions were derived that outperform iterative methods. Also,
as indicated in [87], the methodology can be extended to handle samples with shapes other than
cylindrical - a different method for solving the underlying forward problem is needed. In [88]
dielectric constant measurements of liquid materials with a tubular sample holder are addressed,
and an extension of the method proposed in [87] was developed to analyze a specialized sample
holder designed for making measurements at high temperatures. The extended method is based
on Abdulnour’s extraction model for a cylindrical sample piercing through the broader walls of
a rectangular waveguide (WR340 standard). Subsequently, an analytical model for dielectric
constant measurements was improved [89] by exploiting the fact that the relation between S21

and the MUT dielectric constant resembles a bi-linear transform, which appreciably accelerates
the time-consuming optimization process.

In this thesis for the uncertainty analysis of single rod models, the method of Sahalos-
Abdulnour [90–92] is utilized, as this method is more rapid than that proposed by Sarabandi [85].
More specifically, Sarabadi’s method is more general - it is based on the MoM and therefore is
capable of treating not only cylindrical samples with circular cross-sections but also cylindrical
samples with an arbitrary cross-section; however, this advantage of Sarabandi’s method comes
at the expense of higher computational burden. The Sahalos-Abdulnour method, by contrast, is
a semi-analytical method developed to address scattering by full-height cylindrical rods only,
and therefore it is considerably more rapid than its MoM-based counterpart.

Alternatively, the choice of themethod is entirely dictated by the amount of CPU time needed
to solve the corresponding forward scattering problem since this aspect is crucial in the MCM-
based uncertainty estimation to obtain reliable estimates. An in-depth discussion of various
methods for scatteringmatrix element calculation for a cylindrical object in a rectangular waveg-
uide is presented in chapter 6 of the thesis.

2.2.2 Uncertainty Analysis of Single Rod Model

Examine a conventional model consisting of a dielectric sample (cylindrical rod) in a rectan-
gular waveguidemade of thematerial whose dielectric constant is to bemeasured. The geometry
of the model under consideration is depicted in Fig. 2.7. It is assumed that the dielectric slab
is homogeneous and the waveguide walls are perfectly conducting. These assumptions signifi-
cantly simplify the mathematical model of the measurement model - allow for obtaining simple
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analytical expressions for S11, but do not cause a significant deviation from the experimental
results.

As in the case slab model examined above, here, the impact of the MUT dielectric constant
on the measurement uncertainty is analyzed first. Two dielectric rod waveguide models having
the same parameter values other than the dielectric constant are attested. MUT1 and MUT2
refer to the models with ε′r,mut = 10.2 and 4.3, respectively (see Table 2.5).

z

TE10 rmut

MUT

x

Fig. 2.7. The geometry of the conventional single rod measurement model.

Table 2.5
Two single rod waveguide model parameters
Model Parameter Symbol Value

MUT1 dielectric constant ε′r,mut1 10.2
MUT1 loss tangent tan δmut1 0.0023
MUT1 rod radius dmut1 2.5 mm

MUT2 dielectric constant ε′r,mut2 4.3
MUT2 loss tangent tan δmut2 0.003
MUT2 rod radius dmut2 2.5 mm

Frequency f 10 GHz
Waveguide width a 22.86 mm

It is assumed that |S11| is a random quantity following a normal distribution, and ∆|S11| is
chosen to be equal to two standard deviations, which corresponds to the confidence level of about
68% (equivalent to k = 1). In addition, one assumes that for both models, ∆|S11| = 0.01. It
should be noted that if the confidence level of 95%were chosen, the width of the corresponding
interval for ε′r,mut would be even wider.

Fig. 2.8 shows |S11| plotted as a function of ε′r,mut for a single rod model. Also, the figure
displays the confidence intervals with the confidence level of 68% evaluated for two models
with different values of ε′r,mut. The values of the other model parameters of these two models are
the same (see Table 2.4). The blue and red curves, as well as the horizontal and vertical bars,
correspond to the models with ε′r,mut = 10.2 and ε′r,mut = 4.3, respectively. The widths of the
horizontal bars are equal to the widths of the corresponding confidence intervals for |S11|, while
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the widths of the vertical bars correspond to the widths of the confidence intervals for ε′r,mut.
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Fig. 2.8. |S11| as a function of ε′r,mut, and confidence intervals for a model with a cylindrical
sample in a waveguide calculated at two different values of ε′r,mut.

Two single-rod waveguide models are studied to examine the effect of the MUT radius on
the measurement uncertainty. The models have the same parameter values except for the MUT
radius, rmut, which is varied in this case. The MUT radii of the models are set equal to 2.5 mm
and 0.635 mm, respectively. For both models under study, the dielectric constant and the loss
tangent are 10.2 and 0.0023, respectively. The frequency and the width of the waveguide are
the same as in the previous example (see Table 2.6). Similarly to the previous example, the
confidence interval concept is utilized to demonstrate the effect of the model parameters (in this
case rmut) on the measurement uncertainty.

Table 2.6
Single rod waveguide model parameters

Model Parameter Symbol Value
MUT dielectric constant ε′r,mut 10.2

MUT loss tangent tan δmut 0.0023
MUT rod radius 1 rmut1 2.5 mm
MUT rod radius 2 rmut2 2.0 mm

Frequency f 10 GHz
Waveguide width a 22.86 mm

Fig. 2.9 shows |S11| plotted as a function of ε′r,mut for the single rod model with two different
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radii of the rod, while the other model parameters are kept fixed. The blue and red curves, as
well as horizontal and vertical bars, correspond to the models with rmut = 2.5 and rmut = 2.0,
respectively. The widths of the horizontal bars are equal to the widths of the corresponding
confidence intervals for |S11|, while the widths of the vertical bars correspond to the widths of
the confidence intervals for ε′r,mut.
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Fig. 2.9. |S11| as a function of ε′r,mut for different values of rr,mut.

As can be observed in Fig. 2.9, similar to the slabmodels considered above, themeasurement
uncertainty of the dielectric varies considerably with rmut. In this example, the steepness for the
model with rmut = 2.5mm is significantly lower than for the model with rmut = 2.0mm. The
confidence interval for rmut = 2.5mm is approximately 6.8 times wider than for the model with
the MUT radius of 2.0mm.

2.3 Summary
The analysis of three conventional models shows that for each model, there are model pa-

rameter values that give unacceptably large measurement uncertainty, and therefore one should
avoid using them. This fact emphasizes the importance of quick and effective measurement
model suitability evaluation. Such an evaluation can be accomplished by calculating the model
sensitivity coefficient, which is a very computationally efficient way of evaluating measure-
ment models. One does not need to solve the inverse problem and resort to computationally
demanding uncertainty estimation algorithms to carry out the sensitivity-based evaluation of a
measurement model. Instead, one needs to calculate and plot the model sensitivity coefficient,
which, in fact, is the derivative of |S11| with respect to the MUT dielectric constant and can be
determined by solving the forward problem only.
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3. MULTI-SLAB WAVEGUIDE MEASUREMENT
MODEL

3.1 Overview of Extended and Optimized Measurement Models
A number of studies have been carried out with a view to improving the existing conven-

tional measurement models in terms of dielectric constant measurement accuracy. For example,
in [19] it is demonstrated that for a shielded dielectric resonator of cylindrical shape, there are
values of its radius at which the measurement uncertainty attains a value that is lower than for
cylinders with a different radius value. Alternatively, it is possible to minimize the dielectric
constant measurement uncertainty by testing samples with optimized dimensions. In [19] the
measurement uncertainty is estimated by using the MCM, which is more reliable, as demon-
strated in [23]. In [93], and [94], a similar analysis was applied to measurement models con-
sisting of a single dielectric obstacle and two dielectric obstacles in a rectangular waveguide,
respectively. In both cases, the obtained results indicate that there exist optimal model parame-
ters that minimize the measurement uncertainty.

Dester in his doctoral thesis, performed a comprehensive investigation, including a thor-
ough measurement uncertainty analysis, of the two-layer, two-thickness, and two-iris waveg-
uide probe methods for measuring conductor-backed materials [18]. His findings also show
that measurement uncertainty can be reduced by choosing optimal measurement model dimen-
sions and by extending the original model so that the extended one provides lower measurement
uncertainty.

An efficient procedure for finding the optimal value of the β coefficient, appearing in the
objective function proposed by Baker-Jarvis [71] to retrieve the MUT dielectric constant for
a conventional model composed of a single slab in a rectangular waveguide or coaxial trans-
mission, is proposed in [20]. However, the EPM was used to estimate the uncertainty, and the
method is based on a mathematical trick that improves the uncertainty due to the objective func-
tion, not the actual measurement uncertainty of the measurement model. Furthermore, in [20],
the dielectric constant is extracted from the complete set of complex scattering parameters, but
the measurement uncertainties associated with the scattering parameter phase measurements are
larger than those of their absolute values, which means that one should avoid using phaseless
measurements to achieve higher measurement accuracy. Since, in the vast majority of practi-
cal cases, the value of the dielectric constant is approximately known beforehand, the dielectric
constant extraction from the measured absolute values of the scattering parameters by means
of some simple root-finding algorithm, such as the NRM gives a value that is very close to the
actual one and only slightly differs from it due to the measurement uncertainty. In the case of
low-loss material measurements, it suffices to measure only |S11| as the other scattering matrix
parameters do not provide any additional information about the MUT dielectric constant.
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3.2 Two-Slab Waveguide Measurement Model

3.2.1 Extended Model

In this section, an efficient methodology for the uncertainty reduction in nondestructive di-
electric constant measurements based on the waveguide technique [133] is proposed and dis-
cussed in detail, as well as a numerical study is carried out to demonstrate its effectiveness. The
model is also investigated in one of the author’s papers [131].

It should be noted that the proposed methodology is intended for measurements of dielectric
constant only; it is not intended for loss tangent measurements since the proposed methodology,
unfortunately, cannot guarantee a high accuracy in the MUT loss tangent measurements.

For example, the conventional model for slab-based waveguide measurement technique is
a model consisting only of a sample made of the material whose dielectric constant is to be
measured, placed in an empty section of a rectangular waveguide serving as a sample holder.

3.2.2 Uncertainty Reduction

By the very definition of the model sensitivity, it is parameter dependent; namely, the deriva-
tives of the measurable quantity are also functions of the measurement model parameters, not
only the measurable quantity itself. For some models, sensitive coefficients do not exhibit larger
variations when one or more parameters are being varied, while for some models, values may
differ considerably. Alternatively, it may happen that for certain values of the model parame-
ters, i.e., for a certain combination of frequency and thickness, as well as other parameters, the
sensitivity will be so low that it will not be possible to make measurements. On the other hand,
this also implies that there may exist optimal sets of parameters giving higher sensitivities and,
therefore, higher measurement accuracy.

Typically, conventional and simplemeasurementmodels (one-slabmodels) do not ensure the
required sensitivity at a particular frequency and for a specific thickness of the slab made of the
material under testMUT. This problem can bemitigated by optimizing the original measurement
model, i.e., by reducing the sensitivity of the quantity being measured to the model parameter
(dimensions, constitutive properties) values.

In case the interval of possible dielectric constant values coincides or overlaps with a low-
sensitivity region of the conventional measurement model, the measurement uncertainty will be
substantial. To mitigate this problem, one needs to alter the shape of the measurement curve so

that the sensitivity coefficient of the extended measurement model
∂|S11|
∂ε′r,mut

is sufficiently large

in the interval of possible values of the measured quantity. The main idea of the proposed
methodology is to achieve a significant reduction in the measurement uncertainty by increasing

the steepness of the curve, thereby increasing the measurement sensitivity,
∂|S11|
∂ε′r,mut

. Here ε′r,mut
denotes the relative dielectric constant of the material to be measured. In the calculations, it
is assumed that performing measurements in the region where the value of |S11| is less than
0.1 − 0.2 is not desirable, as for such small values of |S11| the corresponding measurement
uncertainty is larger. The large uncertainty results from the very high sensitivity of the model to
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the distance between slabs and the accuracy of the slab thickness measurements.
Calculations show that the sensitivity of the measurement model can be increased by using

an extended two-slab measurement model involving two slabs, one of which has a known di-
electric constant, whereas the dielectric constant of the other MUT slab needs to be determined
(measured).

In the thesis, formulas are derived for the calculation of the scattering matrix element S11

and its magnitude |S11|. Also, the software has been developed for calculating the sensitivity
coefficient of the conventional models, ccl = ∂|S11|

∂ε′r,mut
, as well as one of the extended models

cex = ∂|S11|
∂ε′r,mut

. The software also solves the inverse problem to extract the dielectric constant of
the MUT, ε′r,mut, from a given value of |S11|.

The measurement uncertainty u(ε′r,mut), when u|S11| and other input parameter measurement
uncertainties are known, can also be calculated using the developed software. Therefore it is
capable of finding optimal dimensions of the extended models to achieve higher sensitivity than
that of the conventional measurement models.

For constructing and evaluating the extended models, a procedure has been developed and
validated. The proposed dielectric constant measurement procedure comprises the following six
steps:

1. Insert a MUT sample with the dielectric constant to found, ε′r,mut into the rectangular
waveguide, and measure the magnitude of the scattering matrix element |S11|. Then From
the measured value of |S11|, ε′r,mut is deduced by solving the inverse problem. Note that
it is assumed that the MUT losses tan δmut are measured beforehand or are given in the
relevant documentation.

2. Use ε′r,mut calculated in the previous step to calculate the sensitivity coefficient of the mea-
surement model ccl = ∂|S11|

∂ε′r,mut
and evaluate the suitability of the conventional measurement

model:

a if the conventional model can provide sufficiently high measurement accuracy, be-
cause the sensitivity of the model is sufficient ccl > 1 (but a higher sensitivity can
also be requested), then no additional measures need to be taken;

b if the sensitivity of the measurement model is low ccl < 1, then an extended model
is created by adding another dielectric slab with known dimensions and dielectric
constant to the MUT slab in the conventional model.

3. Select an auxiliary slab with a known dielectric constant ε′r,aux and the loss tangent (it
would be wiser to choose a ready-made product whose parameters are specified by the
manufacturer). Find the distance between theMUT slab and the auxiliary slab, dint, as well
as the thickness of the additional slab daux, which provides the highest possible sensitivity
of the extended measurement model cex = ∂|S11|

∂ε′r,mut
in the range of possible values of the

measured MUT dielectric constant.
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4. If for the chosen auxiliary slab it is not possible to find dint and daux such that the sensitivity
coefficient of the extended model is sufficiently large to reach cex, then the MUT with
another ε′r,aux should be chosen, and the step 3 of the algorithm should be repeated.

5. To make it possible to utilize manufactured ready-to-use slabs as auxiliary slabs, an aux-
iliary slab is selected for the extended model whose thickness daux is closest to that calcu-
lated in step 3.

6. cex of the created model is calculated, and in case it is sufficient, the model construction
procedure is terminated.

Since it is not possible to produce an auxiliary slab with dimensions that perfectly match the
calculated optimal dimensions, it is assumed that auxiliary slabs with different thickness values
that differ by 0.01 mm are utilized, so the calculations in step 3 of the procedure are performed
only for these values.

3.2.3 Extended Model Analysis

In this chapter, experimental models composed of two slabs located in a rectangular waveg-
uide are investigated. One of the slabs has an unknown dielectric constant to be determined
via measurements, while the other one has a priori known constitutive properties, which can
be measured by some more accurate, but at the same time more cumbersome method, such as
resonant cavity method. The samples considered in the present study are full-height and full-
width rectangular slabs. Themain reasonmodels involving rectangular slabs are among themost
commonly used in dielectric constant measurements is their simplicity from the point of view
of experimenters. Alternately, forming slab-shaped samples of some biological or agricultural
substances, such as flour, is often easier.

The geometry of the conventional single slab waveguide measurement model is depicted in
Fig. 3.1.
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Fig. 3.1. Geometry of the two-slab waveguide measurement model.

It is assumed that the dielectric slabs are homogeneous and the waveguide walls are perfectly
conducting. These assumptions significantly simplify the mathematical model of the measure-
ment model - they allow obtaining simple analytical expressions for calculating S11, but do not
result in noticeable discrepancies between the results obtained under these assumptions and the
actual ones. The measurement uncertainty estimation for the model is performed by means of
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the MCM. Probability distributions for the model input quantities are chosen according to the
BayesianMaximumEntropy principle. In the present case, all themodel parameters are assumed
to follow a normal distribution.

3.2.4 Solution of the Forward Problem

The mathematical formulas derived in this section facilitate the finding of optimal model
measurement model parameters that ensure a sufficiently high measurement curve slope and,
therefore, lower measurement uncertainty. In this section, only a brief overview of the numerical
method for solving the forward scattering problem is presented for the reader’s convenience.

The scattering parameters for the auxiliary slab only can be calculated using the following
simple closed-form expressions

Saux
11 =

Raux (1− T 2
aux)

1−R2
auxT

2
aux

, (3.1)

Saux
21 =

Taux (1−R2
aux)

1−R2
auxT

2
aux

, (3.2)

Saux
12 =

Taux (1−R2
aux)

1−R2
auxT

2
aux

, (3.3)

Saux
22 =

Raux (1− T 2
aux)

1−R2
auxT

2
aux

, (3.4)

where
Raux = (k̃o − k̃aux)/(k̃o + k̃aux) - the interfacial reflection coefficient for the auxiliary slab

faces;
Taux = e−jk̃auxdaux - the propagation factor of the auxiliary slab;
k̃o =

√
k2o − π2/a2 - the free space waveguide wavenumber, 1/m;

k̃aux =
√
k2oεr,aux − π2/a2 - the waveguide wavenumber in the auxiliary slab, 1/m;

εr,aux = ε′r,aux (1− j tan δaux) - the complex dielectric constant of the auxiliary slab.

These coefficients can be easily derived either by employing the multiple reflection method
or by solving the corresponding Helmholtz equation for each slab and homogeneous regions
outside them and enforcing continuity of the tangential field components across each interface.

The scattering parameters for the second slab can be derived in a similar manner. For a wave
propagating along the z axis, one has

Smut
11 =

Rmut (1− T 2
mut)

1−R2
mutT

2
mut

, (3.5)

Smut
21 =

Tmut (1−R2
mut)

1−R2
mutT

2
mut

, (3.6)

Smut
12 =

Tmut (1−R2
mut)

1−R2
mutT

2
mut

, (3.7)
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Smut
22 =

Rmut (1− T 2
mut)

1−R2
mutT

2
mut

, (3.8)

where
Rmut = (k̃o − k̃mut)/(k̃o + k̃mut) -the interfacial reflection coefficient for slab faces;
Tmut = e−jk̃mutdmut - the propagation factor of the MUT slab;
k̃mut =

√
k2oεr,mut − π2/a2 - the waveguide wavenumber in the MUT filled region, 1/m.

εr,mut = ε′r,mut (1− j tan δmut) - the complex dielectric constant of the MUT slab.

The reflection coefficient for a structure consisting of both slabs can be derived by using
(3.1)–(3.8) and the multiple reflection method as follows

S11 = Saux
11 +

Saux
21 S

mut
11 S

aux
12 T

2
m

1− Saux
22 S

mut
11 T

2
m

. (3.9)

Now, taking the absolute value of (3.9) and applying a number of algebraic manipulations, yields

|S11| =
∣∣∣∣Saux

11 − (Saux
11 S

aux
22 − Saux

21 S
aux
12 )Smut

11 T
2
m

1− Saux
22 S

mut
11 T

2
m

∣∣∣∣ , (3.10)

where
Tm = e−jk̃odint - the transmission transmission coefficient for the interslab space.

For the derivation of (3.9), the method of multiple reflections was employed, which will
be described in more detail in the next chapter. Since formulas for the waveguide-based slab
and the free space-based slab models are very similar, the author decided not to reproduce their
derivation twice.

Now, substituting (3.1)-(3.4) into the first factor of the second term of the numerator of
(3.10), one has

Saux
11 S

aux
22 − Saux

21 S
aux
12 =

Saux
11 S

aux
22 − T 2

1

1− Saux
11 S

aux
22 T

2
1

. (3.11)

For a lossless auxiliary slab, the absolute value of factor (3.11) is unity, the phase is equal to
arg(Saux

11 ) + arg(Saux
22 ) and |Saux

11 | = |Saux
22 |. Thus, (3.10) takes the form

|S11| =
∣∣∣∣ |Saux

11 | − |Smut
11 |P

1− |Saux
11 | |Smut

11 |P

∣∣∣∣ , (3.12)

where
P = ejφp = ej(arg(S

mut
11 )+arg(Saux

22 )) · T 2
m = ej(arg(S

mut
11 )+arg(Saux

22 )−2k̃mdint) - the phase factor.

As it can be seen, the |S11| depends upon the three real quantities only: |Saux
11 |, |Smut

11 | and φp.
In [131], it is shown that curve |S11|

(
ε′r,mut

)
attains the highest steepness in the neighborhood

of reflection zeros (model resonances) of |S11|, however, making measurements in the vicinity
of reflection zeros is highly undesirable since the measurement uncertainty of |S11| is large for
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small values of |S11|. Thus, in practice, it is optimal to make dielectric constant measurements
between a reflection zero (minimum) and the maximum, where the slope of the measurement
curve is still sufficiently high.

Furthermore, from (3.12) it follows that |S11| reaches zero only when P = 1

(φp = ±2πn, n = 0, 1, 2, . . .) and |Saux
22 | = |Smut

11 |. Since |Smut
11 | and arg (Smut

11 ) are func-
tions of ε′r,mut, whereas arg (Saux

11 ) does not depend on ε′r,mut and due to the fact that φp is
depends linearly on dint, there always exist multiple values of dint, such that |S11| = 0, when
|Saux

11 | = |Smut
11 |.

In cases when |Saux
11 | ̸= |Smut

11 |, the reflection zero can no longer be achieved, but if the
difference between these quantities is not large it is possible to find a value of dint giving a
measurement curve with a distinct minimum in place of the reflection zero, but the minimum
value of |S11| is close to zero. Also, the slope of the measurement curve is still high in the
region between the minimum and the closest maximum, and therefore, a high measurement
model sensitivity is guaranteed. Moreover, in the low-steepness regions |Smut

11 | varies very slowly
with ε′r,mut, while φp exhibits very rapid variations, which means that the steepness of curve
|S11|

(
ε′r,mut

)
, depends largely on that of φp

(
ε′r,mut

)
.

3.2.5 Numerical Study of The Two-Slab Waveguide Model

To verify whether the proposed two-slab waveguide model allows for achieving a higher
measurement sensitivity than the conventional model involving the MUT only with fixed fre-
quency and MUT slab thickness, a numerical analysis was carried out.

The model parameters of the extended model under study are summarized in Table 3.1.

Table 3.1
Two-slab waveguide model parameters

Model Parameter Symbol Value
Standard

uncertainty
value

MUT dielectric constant ε′r,mut 10.2 -

MUT loss tangent tan δmut 0.0023 1.15 · 10−4

Dielectric constant of the auxiliary slab ε′r,aux 4.3 0.043
Auxiliary slab loss tangent tan δaux 0.003 5.0 · 10−5

MUT slab thickness dmut 2.5 mm 0.01 mm
Auxiliary slab thickness daux 3.8 mm 0.01 mm

Interslab distance dint 20 mm 0.01 mm
Frequency f 10 GHz 35 MHz

Waveguide width a 22.86 mm 0.01 mm

For the conventional model, the MUT parameters (dielectric constant, loss tangent, and
thickness) are the same as in the extended model. In the numerical simulations of the model, it
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was assumed that the material under study is the high-frequency ceramic Arlon AD1000 [95],
which is widely used in the high-frequency range as the bases of antennas, filters, and other de-
vices. The material has low losses at high frequencies. The data provided in the manufacturer’s
documentation are as follows: dielectric constant - 10.2 and loss tangent 0.003 at a frequency
of 10 GHz. The documentation states that these quantities were measured by the IPC-TM-650
method [10], which is one of the resonance methods. In the description of the method, only the
uncertainty in dielectric constant measurements is specified, but it is not specified for the loss
tangent, and it is accepted based on the average data of other measurements.

It is assumed that both models are measured using a vector network analyzer (for VNA)
P5024B. The analyzer is assumed to be calibrated with calibration standard 85050C (TRL).
The calibration method is (Full Two Port Calibrations). The measurement uncertainty after
calibration is calculated using a specialized program Keysight VNA Uncertainty Calculator for
measuring measurement uncertainty after calibration, and the dependence of |S11|measurement
uncertainty on |S11| is shown in Fig. 3.2. As can be seen, the uncertainty increases as |S11|
increases.
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Fig. 3.2. u|S11| as a function of |S11| for vector network analyzer Keysight P5024B.

As far as the material of the auxiliary slab is concerned, it is assumed to be Arlon AD430
[98], with a dielectric constant of 4.3 and a loss tangent equal to 0.003. This material is also
widely used in various high-frequency devices due to low losses and high thermal stability.
Unlike other high-frequency ceramic materials, it is not so fragile, which simplifies mechanical
processing.

Additionally, it is assumed that the thicknesses of the slabs, the width of the broader wall of
the waveguide, and the distance between the slabs are measured with the expanded uncertainty
of 0.02 mm [97], which corresponds to the standard uncertainty of 0.01 mm. The absolute
standard uncertainty associated with the dielectric constant of the auxiliary slab is 0.043, which
corresponds to 2% [6] relative expanded measurement uncertainty (the corresponding relative
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standard uncertainty is 1%). The absolute standard uncertainty associated with the loss tangent
of the auxiliary slab is 5.0 · 10−5 [6]. It is assumed that the auxiliary slab was characterized
beforehand by means of a re-entrant cavity measurement method [6].

Fig. 3.3 shows the calculated |S11| as a function of dielectric constant on ε′r,mut, for the con-
ventional (CSWM) and extended (ETSWM) models. The confidence intervals associated with
the |S11| are represented as the horizontal bars in Fig. 3.3. The blue bar corresponds to the con-
fidence interval of the conventional model’s |S11|, whereas the red one refers to the possible
values of the |S11| of the extended model.
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Fig. 3.3. |S11| as a function of ε′r,mut, and widths of confidence intervals for the conventional
(CSWM) and the extended (ETSWM) models.

This graph is entirely illustrative, and the width of the coverage intervals does not correspond
to the actual for the selected VNAmodel. Meanwhile, the vertical bars represent the confidence
intervals for the measured value of ε′r,mut that differ from the actual one due to the uncertainty in
the measurement of |S11|. In this instance, the width of the confidence interval for both models is
assumed to be equal to 0.005. The confidence level of the confidence intervals is approximately
68%, i.e., the confidence interval width is chosen to be one standard deviation of the normal
probability distribution.

The obtained results demonstrate that the width of the 68% confidence interval for ε′r,mut is
approximately 6.2 times smaller, which means that the measurement uncertainty, in this case,
is also likely to be smaller. However, in this case, the standard uncertainties associated with
|S11| for both models are assumed to be equal, but it is not the case, as the other measurement
model parameters also affect the value of |S11| and therefore their uncertainties contribute to
u|S11|. Alternatively, the resulting uncertainty will be larger since the extended model has more
parameters, each contributing to u|S11|. That is why Fig. 3.3 may serve only for the evaluation of
the measurement model suitability based on its sensitivity. The present model example clearly
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shows that the conventional model is not suitable due to very low sensitivity. In case the pre-
liminary evaluation of the model suitability shows that the model sensitivity is not very low
and, therefore, it can be employed in the measurements, one needs to perform a more accurate
evaluation based on the uncertainty estimation methods.

In Fig. 3.4, the standard dielectric constant measurement uncertainty estimated with the aid
of the MCM is displayed.
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Fig. 3.4. The standard uncertainty as a function of ε′r,mut for the conventional (CSWM) and
the extended (ETSWM) models.

The MCMwas selected owing to its capability to handle non-linear models more accurately
than the EPM, but it is very computationally demanding. For example, to obtain the results
presented in Fig. 3.4, the MCM iteration (trial) number was set to 100000. The estimation error
does not exceed 2% in the regions of interest, but in the regions where the MCM method fails,
the error may be larger. At the end of this chapter, the results of a comparative study carried
out to ascertain the amount of discrepancy between the MCM and EPM estimation results are
presented.

The missing parts of the curves shown in Fig. 3.4 correspond to the MUT dielectric constant
value ranges, where the MCM fails to find an uncertainty estimate. This occurs because more
than 10% of the MCM realizations give values of |S11| that are greater than the maximum
possible value, which is determined by the definition of this quantity and the VNA capabilities.
Such situations arise in the MCM method analysis when the actual dielectric constant is in a
low-sensitivity region of the measurement model.

The model is by no means perfect - the main drawback of this model is the fact that the
slabs must be precisely positioned in the model, and in situations where the sensitivity of the
model is high to even small changes in the distance between slabs, even small changes in the
distance between slabs can cause relatively large |S11| changes, which will significantly increase
the uncertainty of measurements.
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3.3 Three-Slab Waveguide Measurement Model

3.3.1 Shortcomings of Two-slab Measurement Model

Although a relatively simple two-slabmodel can increase the measurement model sensitivity
for a required range of model parameter values, the model has several shortcomings manifested
in the practical implementation of the model.

One of the disadvantages of the two-slab model is that it is difficult to ensure the (optimal)
distance between the slabs; in practice, it is difficult to place the slabs so that the distance between
them is equal to the calculated optimal distance.

Another issue is that slabs with a small thickness are very difficult to place so that their
broader faces are perpendicular to the direction of the plane wave propagation. Even a slight
displacement can cause a difference between theoretically expected and actual measurement
results. This circumstance is less critical if the dielectric constant of relatively thick slabs is
measured, but in this case, the effect of the air gap between the slab faces and the waveguide
walls on the measurement results must be taken into account - the greater the thickness of the
slab, the greater the effect of the air gap on |S11|. In practice, the impact of the air gap is reduced
by using special pastes with high conductivity.

To mitigate the problems mentioned above, the author proposes to use a three-slab model.
In contrast to the two-slab model, in its three-slab counterpart, another dielectric slab is placed
between the main slabs (auxiliary slab and MUT slab). The slabs in this model are arranged so
that there are no air gaps between them. Themain advantage of the three-slabmodel is the ability
to measure the thickness of the middle slab with a high accuracy, which reduces the uncertainty
associated with this quantity.

3.3.2 Uncertainty Analysis of the Three Slab Model

Now, investigate a three-slab model shown in Fig. 3.5. The parameters of the three-slab
model under consideration are summarized in Table 3.2.

z

TE10

daux dmut
dintAUX MUT

x

Fig. 3.5. Three-slab waveguide measurement model geometry.
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Table 3.2
Three-slab waveguide model parameters

Model Parameter Symbol Value
Standard

uncertainty value
MUT dielectric constant ε′r,mut 10.2 -

MUT loss tangent tan δmut 0.0023 1.15 · 10−4

Dielectric constant of the auxiliary slab ε′r,aux 4.3 0.043
Auxiliary slab loss tangent tan δaux 0.003 5.0 · 10−5

Dielectric constant of the middle slab ε′r,int 2.2 0.022
Middle slab loss tangent tan δint 0.0009 5.0 · 10−5

MUT slab thickness dmut 2.5 mm 0.01 mm
Auxiliary slab thickness daux 7.0 mm 0.01 mm
Middle slab thickness dint 7.1 mm 0.01 mm

Frequency f 10 GHz 35 MHz
Waveguide width a 22.86 mm 0.01 mm

The expressions for calculating the model’s scattering parameters are the same as those de-
rived in the next chapter for the three-slab free space model. The only exception is formulas for
the interfacial reflections coefficient that, in the case of the waveguidemodel, contain waveguide
wavenumbers in place of the ordinary ones for free space.

Fig. 3.6 shows |S11| as a function of ε′r,mut, and the widths of the confidence intervals for the
conventional (CSWM) and the extended three-slab model (ETrSWM) models. As can be seen,
the extended model gives about 2.6 times smaller confidence interval width.
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Fig. 3.6. |S11| as a function of ε′r,mut, and widths of the confidence intervals for the
conventional (CSWM) and the extended (CTrSWM) models.
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Fig. 3.7 shows the standard dielectric constant measurement uncertainty as a function of
the MUT dielectric constant, ε′r,mut, for the conventional (CSWM) and the extended (ETrSWM)
models.

As can be observed, the extended measurement model gives a smaller dielectric constant
measurement uncertainty than the conventional one containing the MUT only. Thus, by using
the three-slab model, one can also reduce the measurement uncertainty. At the same time, this
model is less susceptible to the precise positioning issue described above.
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Fig. 3.7. The standard uncertainty as a function of ε′r,mut for the conventional (CSWM) and
the extended (CTrSWM) models.

3.4 Sensitivity Analysis for Two-Slab Waveguide Model
In order to find the contribution of different model parameters to the total MUT dielectric

constant measurement uncertainty using the EPM and also to ascertain the extent to which the
estimation results obtained by using the EPMdiffer from those of theMCMmethod, the absolute
standard uncertainty of the above-mentioned two-slab model is estimated using both the EPM
and MCM.

The parameters of the model and their respective uncertainties are the same as for the two-
slab model studied in subsection 3.2.5 (see Table 3.1).

Themean value of theMUT dielectric constant obtained by using theMCMmethod is shown
in Fig. 3.8. As it can be seen, the mean value (the best estimate of the measurand) is not equal
to its actual value, and, moreover, it depends on the model parameter (in this case the interslab
distance). The cause of this discrepancy is the inherent nonlinearity of the measurement model
under consideration. Alternatively, for any model with pronounced nonlinearity, the estimate of
the actual value will always differ from the true value, regardless of the number of measurements
and calibration procedures employed. When all systematic uncertainties are eliminated, the
averaging will not reduce the measurement uncertainty when the model is highly non-linear.
Therefore, to minimize the measurement uncertainty, one also needs to find a model parameter
value or a set of model parameter values that reduce the degree of nonlinearity.
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ū(ε′r,mut)

Fig. 3.8. The best estimate (mean value) of ε′r,mut as a function of dint.

The estimated standard uncertainty is shown in Fig. 3.9. The figure reveals that there is an
optimal value of dint at which the value of the total uncertainty is considerably smaller than at
other values.
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Fig. 3.9. u(ε′r,mut) as a function of dint.

The narrowmaxima seen in Fig. 3.9 correspond to the value of dint at which the measurement
model sensitivity coefficient tends to zero, and therefore according to the formula (1.2), the total
dielectric constant measurement uncertainty tends to infinity when estimated using the EPM.
Regarding the MCM, it fails to converge in the vicinity of these maxima.

Additionally, several uncertainty components (standard uncertainties accounting for the con-
tribution of only one of the model parameters) were computed and plotted as functions of the
interslab separation. The sensitivity coefficients were calculated using both the EPM and the
MCM to find how large the difference is between the results obtained using these methods. It
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should be noted that in contrast to the EPM, the MCM takes into account the nonlinearity of the
measurement model, and therefore, there will always be some difference between the results.

Fig. 3.10 shows the uncertainty component due to |S11| as a function of the distance between
theMUT and the auxiliary slabs, dint. This uncertainty component characterizes the contribution
of the uncertainty associated with |S11| to the total dielectric constant measurement uncertainty.
Comparing Fig. 3.9 and Fig. 3.10 reveals that the curves are similar, whichmeans the uncertainty
contribution of |S11| dominates in this case.
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Fig. 3.10. u|S11|(ε
′
r,mut) as a function of dint.

Fig. 3.11 shows the uncertainty component due to the thickness of the MUT, dmut, as a func-
tion of the distance between the MUT and the auxiliary slabs, dint.
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Fig. 3.11. udaux(ε′r,mut) as a function of dint.

Fig. 3.12 shows the uncertainty component for the thickness of the auxiliary slab, daux, as
a function of dint. Comparing Fig. 3.11 and Fig. 3.12, it is seen that the uncertainty component
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for dmut and daux are on the same order of magnitude, and therefore their contributions to the
total dielectric constant measurement uncertainty are comparable, provided the corresponding
measurement uncertainties are the same or comparable.
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Fig. 3.12. udmut(ε′r,mut) as a function of dint.

Also, it is observed that in both cases, there is quite a wide range of the values of dint, where
the uncertainty components take small values, namely for dint = 8 − 12. Moreover, in both
Fig. 3.11 and Fig. 3.12, there is a noticeable minimum at about dint = 21. This minimum corre-
sponds to the optimal value of dint. However, it is very narrow, which means that the distance
between slabs must be ensured with sufficiently high precision. As a result, a slight shift in the
position of the slabs may considerably increase the contribution of these two parameter uncer-
tainties to the total one.

Fig. 3.13 shows the uncertainty component for the dielectric constant of the auxiliary slab
against dint, while Fig. 3.14 presents the uncertainty component for loss tangent of the auxiliary
slab against dint.

As follows from the figures, the contribution of the auxiliary slab loss tangent is consider-
ably smaller than that of the dielectric constant. Also, it is much smaller than the uncertainty
component for the other model parameters considered.

Additionally, Fig. 3.13 shows that there are two minima of the uncertainty component as
approximately dint = 17 and dint = 21. This means that the contribution of the uncertainty asso-
ciated with the dielectric constant of the auxiliary slab can be significantly reduced by choosing
the auxiliary slab thickness equal to one of these two values. But these minima are very narrow,
similar to the case of Fig. 3.11 and Fig. 3.12.
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Fig. 3.13. uε′aux(ε
′
r,mut) as a function of dint.
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Fig. 3.14. utan δaux(ε′r,mut) as a function of dint.

3.5 Summary
Numerical analysis shows that the use of themethod of extendedmodels allows for achieving

a higher sensitivity of themodel even in those intervals of values of dielectric constant, where the
conventional measurement model, containing the MUT slab only, exhibits very low sensitivity.
The sensitivity of the model is increased by changing the distance between objects dint and the
thickness of the auxiliary slab daux. Additionally, it is shown that despite the presence of the
middle slab in the extended three-slab model, it is still possible to achieve a higher measurement
model sensitivity in cases where the corresponding conventional model with fixed frequency and
the sample dimensions cannot accomplish it.
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4. MULTI-SLAB FREE-SPACE MEASUREMENT
MODEL

4.1 Two-slab Free Space Measurement Model

4.1.1 Overview of Free Space Measurement Model

This chapter demonstrates that a simple measurement model composed of MUT and two or
three dielectric slabs with known constitutive parameters (auxiliary slabs), whose parameters are
chosen in an optimal way, allows for a considerable reduction in the total uncertainty [99]. The
EMCP of the auxiliary slabs are assumed to be measured by using high-precision equipment in
conjunction with more sophisticated measurement techniques. The parameters of the auxiliary
slab(s) are chosen so that the resulting sensitivity coefficient of the three-slab model, defined as
∂|S11|/∂ε′r,mut, is greater than that of the model containing the MUT only.

The main advantage of the proposed methodology is that it allows for finding optimal pa-
rameters of models for which the forward problem cannot be solved in closed form (as in [18])
in a time-efficient way. In addition, the technique is universal and can be successfully applied
to a number of similar problems. In order to verify the efficiency of the proposed methodology,
the slopes of the measurement curves of both the original model (MUT only) and the extended
(two-slab or three-slab) models are compared.

4.1.2 Solution of the Forward Problem

The geometry of the model under consideration is shown in Fig. 4.1. A severe limitation
of waveguide measurement models discussed in [131] is a relatively narrow frequency range
that can be used for measurements. The lower limit of the range is the cut-off frequency of the
dominant waveguide mode, whereas the upper one is the cut-off frequency of the second mode.

plane wave

daux
dint dmut

AUX MUT

x

z

Fig. 4.1. Two-Slab Free Space Measurement Model Geometry.

In contrast to the waveguide measurement technique, the free space technique does not suf-
fer from such a limitation. However, the method considered herein also has a limitation: the
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analytical solution can be found only for slabs with infinite width and length. In contrast, only
finite-dimensional slabs are available in real-world measurements, resulting in discrepancies be-
tween the calculated and measured data due to the diffraction at slab edges. For convenience, in
this section, the model scattering parameter expressions are derived for a general case of three
slab structures (three-slab model). The two-slab model can be viewed as a special case of the
three-slab model when εr,int = 1.

First, derive the expression for the S11 under normal plane wave incidence (it is assumed
that the wave propagates along the z-axis). The parameters of the measurement model being
considered are as follows: daux, dmut which are the thicknesses of the auxiliary and the MUT
slabs, respectively, dint - the thickness of the middle slab, f is the measurement frequency. Since
the reflection coefficients are associated with reference planes, they must be chosen first.

For each slab, it is convenient to choose the reference planes so that they are aligned with
the faces of the slab. In the multiple reflection method, the reflected wave can be found by
adding all the waves (reflected waves of different order) resulting from multiple reflections of
the incident plane wave from the faces of the slab and splitting. The wave splitting into two
components occurs upon the wave arrival at the face of the slab.

To simplify the derivation of the expressions for the scattering matrix elements and to make
formulas more compact, the entire structure is treated as being composed of five homogeneous
dielectric-filled (or air-filled) regions, and the notation used in [99] is adopted. This notation
is convenient as it can be applied to both the two-slab model, its three-slab counterpart, and
even more general models. Each of the regions is assigned a number as follows: 0 refers to
the semi-infinite region to the left of the auxiliary slab, 1 refers to the space occupied by the
auxiliary slab, 3 refers to the space occupied by the MUT slab, 2 refers to the space occupied by
the middle slab (three-slab model) or air-filled region between the slabs (two-slab model), and
4 refers to the semi-infinite region to the right of the MUT slab.

Similar to the homogeneous regions themselves, the quantities associated with them can also
be denoted in a similar manner. For example, for the two-slab model shown in (Fig. 4.1), the
thicknesses are denoted as follows: d1 = daux, d2 = dint, d3 = dmut. The same applies to the
respective dielectric constants and loss tangents.

For the wave impinging upon the interface between i-th and j-th regions from the i-th region,
the interfacial reflection and transmission coefficients are, respectively, given by

Γij =

√
εri −

√
εrj√

εri +
√
εrj

tij =
2
√
εri√

εri +
√
εrj
, (4.1)

where
εri = ε′ri (1− j tan δei ) - the complex permittivity of the i-th region;
ε′ri - the real part of εri;
tan δei - the dielectric loss tangent of the i-th region.
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In addition, they satisfy the following relations

Γij = −Γji 1 + Γij = tij. (4.2)

The first-order reflected wave is the result of the reflection of the incident plane wave at the
front face of the slab, whereas that of the second-order results from reflection at the rear face of
the face. The difference between the 2-nd and n-th reflected wave is that the latter undergoes
n more reflections from both the faces of the slab before leaving it, which is equivalent to the
multiplication of the intensity of the 2-nd order reflected wave by the factor (Γ10Γ12T

2
1 )

n, where
Ti = e−j√εrikodi , i = 1, 2, 3. is the phase factor of the i-th region and di is the thickness of the
i-th region.

Now by adding all the reflected waves, one obtains the total reflected wave, which under the
assumption that the intensity of the incident wave is unity, is equal to the reflection coefficient
for the first slab only (reflection from other slabs is not considered at this point)

Saux
11 = Γ01 + t01 t10 Γ12 T

2
1 lim

N→∞

N∑
n=0

(
Γ10Γ12T

2
1

)n
= Γ01 + t01 t10 Γ12 T

2
1 lim

N→∞

1− (Γ10Γ12T
2
1 )

N

1− Γ10Γ12T 2
1

.

(4.3)

As the factor (Γ10Γ12T
2
1 )

N tends to zero as N → ∞, (4.3) takes the form

Saux
11 = Γ01 +

t01 t10 Γ12 T
2
1

1− Γ10Γ12T 2
1

. (4.4)

In view of relations (4.2), one has

Saux
11 = Γ01 −

(1 + Γ01)(1− Γ01)Γ21 T
2
1

1− Γ01Γ21T 2
1

=
Γ01 − Γ2

01Γ21T
2
1 − (1− Γ2

01)Γ21 T
2
1

1− Γ01Γ21T 2
1

=
Γ01 − Γ21 T

2
1

1− Γ01Γ21T 2
1

.

(4.5)

Now, derive the transmission coefficient for the plane wave propagating along the z-axis

Saux
21 = t01 t12 T1 lim

N→∞

N∑
n=0

(
Γ10Γ12T

2
1

)n
=

t01 t12 T1
1− Γ10Γ12T 2

1

=
(1 + Γ01)(1− Γ21)T1

1− Γ01Γ21T 2
1

. (4.6)

Following the same steps as above, one can obtain the scattering parameter expressions for the
plane wave propagating in the opposite direction

Saux
22 =

Γ21 − Γ01 T
2
1

1− Γ01Γ21T 2
1

, (4.7)
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Saux
12 =

(1− Γ01)(1 + Γ21)T1
1− Γ01Γ21T 2

1

. (4.8)

The scattering parameters for the MUT slab can be derived in a similar fashion

Smut
11 =

Γ23 − Γ43 T
2
3

1− Γ23Γ43T 2
3

, (4.9)

Smut
21 =

(1 + Γ23)(1− Γ43)T3
1− Γ23Γ43T 2

3

, (4.10)

Smut
21 =

Γ43 − Γ23 T
2
3

1− Γ23Γ43T 2
3

, (4.11)

Smut
12 =

(1− Γ23)(1 + Γ43)T3
1− Γ23Γ43T 2

3

. (4.12)

Once the scattering parameters for the auxiliary and the MUT slabs are found, the S11 for the
entire measurement model, comprising three slabs, can be derived straightforwardly by using
(4.5)-(4.12), as well as the method of multiple reflections

S11 = Saux
11 + Saux

21 S
aux
12 S

mut
11 T 2

2 lim
N→∞

N∑
n=0

(
Saux
22 S

mut
11 T

2
2

)n
= Saux

11 +
Saux
21 S

aux
12 S

mut
11 T

2
2

1− Saux
22 S

mut
11 T

2
2

. (4.13)

Now taking the absolute value of (4.13), yields

|S11| =
∣∣∣∣Saux

11 − (Saux
11 S

aux
22 − Saux

21 S
aux
12 )Smut

11 T
2
2

1− Saux
22 S

mut
11 T

2
2

∣∣∣∣ . (4.14)

Substituting (4.1) into the first factor of the second term of the numerator of (4.14), one has

Saux
11 S

aux
22 − Saux

21 S
aux
12 =

Γ01Γ21 − T 2
1

1− Γ01Γ21T 2
1

. (4.15)

Now it can be proved that in the case where the first two slabs are lossless, the absolute value
of (4.15) is unity∣∣∣∣ Γ01Γ21 − T 2

1

1− Γ01Γ21T 2
1

∣∣∣∣ = ∣∣∣∣T 2
1

1− Γ01Γ21T
−2
1

1− Γ01Γ21T 2
1

∣∣∣∣ = ∣∣T 2
1

∣∣ ∣∣(1− Γ01Γ21T
2
1 )

∗∣∣
|1− Γ01Γ21T 2

1 |
= 1, (4.16)

Similarly, it can be shown that |R+
1 | = |R−

1 |

|Saux
22 | =

∣∣T 2
1

∣∣ ∣∣Γ01 − Γ21T
−2
1
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1 |
=
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1 |
=

|Γ01 − Γ21T
2
1 |

|1− Γ01Γ21T 2
1 |

= |Saux
11 | . (4.17)

Now making use of (4.17), it can be easily proved that the angle of factor (4.15) is equal to
arg(Saux

11 ) + arg(Saux
22 ).
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arg(Saux
11 ) + arg(Saux

22 ) = arg
(
Saux
11

Saux
22

∗

)
= arg

(
Γ01 − Γ21 T

2
1

1− Γ01Γ21T 2
1

· T
2
1 − Γ01Γ21

Γ21T 2
1 − Γ01

)
= arg

(
Γ01Γ21 − T 2

1

1− Γ01Γ21T 2
1

)
.

(4.18)

Then using (4.16)-(18), (4.14) becomes

|S11| =
∣∣∣∣ |Saux

11 | − |Smut
11 |P

1− |Saux
11 | |Smut

11 |P

∣∣∣∣ , (4.19)

where
P = ejφp = ej(arg(S

aux
22 )+arg(Smut

11 )) · T 2
2 = ej(arg(S

aux
22 )+arg(Smut

11 )−2ko
√
εr,intdint) - the phase factor.

From (4.19) it follows that |S11| can treated as a function the three real quantities: |Saux
11 |,

|Smut
11 | and φp. As it was shown in [131], curve |S11|

(
ε′r,mut

)
has the highest slope in the neigh-

borhood of minima (resonances) or zeros of |S11|
(
ε′r,mut

)
.

Additionally, from (4.19) it follows that when the condition |Saux
11 | = |Smut

11 | is satisfied,
i.e., when the absolute values of the reflection coefficients for both slabs are equal, it is always
possible to achieve P = 1 (zeros of |S11|

(
ε′r,mut

)
) by varying only d2 = dint, where dint is the

distance between theMUT slab and the auxiliary slab in the case of two-slab free spacemodel. In
the case of the three-slab model, this represents the thickness of the middle slab. |Smut

11 | depends
on both ε′3 = ε′r,mut and d3 = dmut. Note that dmut cannot change in the case of non-destructive
measurements, and therefore, for the condition |Saux

11 | = |Smut
11 | to be satisfied |Saux

11 | should be
changed by varying daux.

To increase the slope of |S11|
(
ε′r,mut

)
(high sensitivity), it is not necessarily for the model to

be resonant, i.e., for the condition |Saux
11 | = |Smut

11 | to be strictly satisfied. When |Saux
11 | ̸= |Smut

11 |,
but their values differ slightly, the curve has minima (not zero in this case) in a low-sensitivity
region of the original model. In the vicinity of these minima, the slope is lower than in the case
of the resonant model, but it is still sufficiently high to improve the measurement accuracy.

Now, check whether it is always possible to find dint, such that |Saux
11 | = |Smut

11 |. The low-
sensitivity regions of the original model are always the neighborhoods of maxima. In such
regions, |S11| attains large values that differ only slightly from the maximum and vary very
slowly with ε′r,mut.

From (4.4) it follows that when tan δeaux = 0, Saux
11 takes the maximum value only when

T 2
1 = −1. Since by varying daux one can always achieve T 2

1 = −1, substituting T 2
1 = −1 into

(4.4), one obtains the maximum value of |Saux
11 | that is possible to achieve by varying daux with

a fixed ε′r,aux

|Saux
11 |max =

∣∣∣∣ Γ01 + Γ21

1 + Γ01Γ21

∣∣∣∣ =
∣∣∣∣∣
√
ε′r,int −

√
ε′r,aux√

ε′r,int +
√
ε′r,aux

∣∣∣∣∣ . (4.20)
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From (4.20), it follows that |Saux
11 |max increases with ε′r,aux; therefore, to increase the slope of

models containing MUT with high ε′r,mut, one has to employ auxiliary slabs with comparable or
greater dielectric constant than that of MUT. On the other hand, the rate at which the value of
|Saux

11 | varies with daux for slabs with large ε′r,aux is higher, except for low-slope regions around
each maximum of |Saux

11 |. In simple terms, the greater the value of ε′r,aux, the worse, since the
component of uncertainty associated with daux is proportional to the slope of curve |Saux

11 |(daux).
This issue can be mitigated by introducing a lossy middle slab into the model. However, in this
case, formula (4.19) cannot be used, as the absolute value of factor (4.15) is no longer equal to
unity, and the argument of (4.15) becomes different from argSaux

11 + argSaux
22 . However, in one

of author’s papers [131] it is demonstrated that for middle slabs with low ε′r,int and tan δeint the
absolute value of Saux

11 S
aux
22 − Saux

21 S
aux
12 differs only slightly from unity. At the same time, due to

losses T2 decreases exponentially with dint.
Thus, the absolute value of the second term in the numerator of (4.14), namely,

(Saux
11 S

aux
22 − Saux

21 S
aux
12 )Smut

11 T
2
2 (4.21)

can be reduced by using larger resonant values of dint that makes it possible to achieve a reflection
zero and, therefore, high sensitivity in models consisting of an optimizing slab with low ε′r,aux
and MUT with high ε′r,mut.

Due to the fact that arg (Saux
11 S

aux
22 − Saux

21 S
aux
12 )Smut

11 T
2
2 still depends linearly on φp, one can

find dint, such that arg (Saux
11 S

aux
22 − Saux

21 S
aux
12 )Smut

11 T
2
2 = arg (Saux

11 ) which implies that |S11| = 0

when the condition |(Saux
11 S

aux
22 − Saux

21 S
aux
12 )Smut

11 T
2
2 | = |Saux

11 | is also satisfied.
Another interesting case is a model with a MUT having medium losses, as in this case, it is

still possible to achieve resonances. However, the maximum possible slope of the measurement
curve in such models is less than that of their lossless counterparts. Furthermore, the higher the
losses, the smaller the maximum attainable slope for the model.

The reason the models with a lossy MUT exhibit low measurement model sensitivity to
variations in ε′r,mut is the fact that φp varies slowly with ε′r,mut compared to the case of lossless
MUT. Alternatively, the larger the loss tangent of material, the lower the slope of φp(ε

′
r,mut) that

together with the slope of |S11|(φp) determines that of |S11|(ε′r,mut).

4.1.3 Uncertainty Analysis of Free Space Models

A numerical analysis was carried out to verify whether the proposed two-slab model (see
Fig. 4.1) can ensure higher measurement sensitivity than that of the conventional model involv-
ing the MUT only with fixed frequency and MUT slab thickness. The model parameters of this
extended model are summarized in Table 4.1. It is assumed that the MUT parameters for the
extended model (dielectric constant, loss tangent, and thickness) are identical to those for the
conventional one.

As before, it is assumed that the measurements are performed with a calibrated (two-port
calibration method) VNA P5024B. For this measuring device, the uncertainty of the reflection
coefficient is around 0.003. In the calculation example, a high-frequency ceramic with an ex-
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pected relative dielectric constant equal to 30 and a loss tangent equal to 0.000067 [96] was as
the MUT, while the material Arlon AD1000 [95] was selected for the auxiliary slab.

Table 4.1
Two-slab free space model parameters

Model Parameter Symbol Value
Standard

uncertainty
value

MUT dielectric constant ε′r,mut 30 -

MUT loss tangent tan δmut 6.67 · 10−5 3.33 · 10−6

Dielectric constant of the auxiliary slab ε′r,aux 10.2 0.0102
Auxiliary slab loss tangent tan δaux 0.0023 5.0 · 10−5

MUT slab thickness dmut 2.0 mm 0.01 mm
Auxiliary slab thickness daux 2.6 mm 0.01 mm

Interslab distance dint 13.1 mm 0.01 mm
Frequency f 10 GHz 35 MHz

The absolute standard uncertainty associated with the dielectric constant of the auxiliary
slab is 0.0102, which corresponds to 2% [6] relative expanded measurement uncertainty. The
absolute standard uncertainty associated with the loss tangent of the auxiliary slab is 5.0 · 10−5

[6]. It is assumed that the auxiliary slab was characterized by means of a re-entrant cavity
measurement method.

The calculated |S11| as a function of ε′r,mut for both the conventional model containing the
MUT only and the extended model formed from it by adding one more slab is shown in Fig. 4.2.

Similar to the previous model, in this case, the dimensions of the MUT and the measurement
frequency are such that the sensitivity of the conventional model is pretty low, which means
that this model is not suitable for dielectric constant measurements as it would give a large
measurement uncertainty. As can be seen, the presence of the auxiliary slab affects the slope of
the measurement curve; namely, it is significantly higher than in the case of the conventional
model.

The horizontal bars in Fig. 4.2 represent the confidence intervals associated with the |S11|.
The blue bar corresponds to the confidence interval of the |S11| of the conventional model,
whereas the red one refers to the possible values of the |S11| of the extended model. The confi-
dence interval width for both models is assumed to be equal to 0.005. The confidence level of
confidence intervals is 68%. The results show that the width of the confidence interval for ε′r,mut
is approximately 5.8 times smaller; thus, the extended model is more suitable for measurements
than the conventional one. The results clearly indicate that the conventional model is unsuitable
due to very low sensitivity.
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Fig. 4.2. |S11| as a function of ε′r,mut, and confidence interval widths for the conventional
(CSFSM) and the extended (ETSFSM) models.

In Fig. 4.3, the standard dielectric constant measurement uncertainty estimated with the aid
of the MCM is displayed. The MCM method was used with 100000 iterations (trials) to obtain
the results presented in Fig. 4.3. The estimation error does not exceed 2% in the regions of
interest.
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Fig. 4.3. The standard uncertainty as a function of the interslab distance for the conventional
(CSFSM) and the extended (ETSFSM) models.

4.2 Three Slab Free Space Measurement Model
Similar to the two-slab-based free space measurement model, the waveguide-based two-slab

model also exhibits a considerable sensitivity of the measured quantity |S11| to small changes in
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the interslab distance. However, because the sample size, in this case, is sufficiently large, this
problem can bemitigated by using specially made sample holders that ensure precise positioning
of the slabs. This issue can be addressed by a three-slab model, similar to the one examined and
described in the previous chapter of the thesis, in which, unlike the two-slab model, there is
another dielectric slab between the main slabs (auxiliary and MUT). The geometry of the three-
slab model under consideration is shown Fig. 4.4, and the parameters as summarized in Table
4.2.

plane wave

daux dint dmut

AUX MUT

x

z

Fig. 4.4. Three-slab free space measurement model geometry.
Table 4.2

Three-slab free space model parameters

Model Parameter Symbol Value
Standard
uncertainty

value
MUT dielectric constant ε′r,mut 30 -

MUT loss tangent tan δmut 6.67 · 10−5 3.33 · 10−6

Dielectric constant of the auxiliary slab ε′r,aux 10.2 0.0102
Auxiliary slab loss tangent tan δaux 0.0023 5 · 10−5

Dielectric constant of the middle slab ε′r,int 2.2 0.022
Middle slab loss tangent tan δint 0.0009 5 · 10−5

MUT slab thickness dmut 2.4 mm 0.01 mm
Auxiliary slab thickness daux 5.7 mm 0.01 mm
Middle slab thickness dint 9.6 mm 0.01 mm

Frequency f 10 GHz 35 MHz

Fig. 4.5 shows |S11(ε
′
r,mut)| as a function of ε′r,mut and the corresponding measurement uncer-

tainties for the conventional and extended three-slab models. From the figure, it is evident that
the sensitivity of the expanded model (its calculated parameters are presented in Table 2.4) is ap-
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preciably higher, which results in a considerable reduction in the uncertainty of MUT dielectric
constant measurements, u(ε′r,mut), which in this case is approximately 3.5 times.
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Fig. 4.5. |S11| as a function of ε′r,mut, and the confidence interval widths for the conventional
(CSFSM) and the extended (ETrSFSM) models.

It is worth noting that the increase in sensitivity of the extended models and the correspond-
ing reduction in their measurement uncertainty compared to the conventional model becomes
smaller as ε′r,mut increases, which in this example is 30.0 and for measurements when measuring
MUT with a lower dielectric constant value, the benefits of three-slab models are significantly
greater compared to conventional models, and the advantage of using extended models is unde-
niable.

Fig. 4.6 indicates the measurement uncertainty, u(ε′r,mut), as a function of ε′r,mut for the con-
ventional and extended three-slab model. However, the obtained results show that in constant to
its two-slab counterpart, the three-slab model fails to provide better measurement uncertainty,
even though its model sensitivity is considerably higher. The cause of such a behavior of the
three-slab model is the fact that the MUT dielectric constant in the present example is relatively
large. Specifically, for large values of the dielectric constant the contribution of the MUT slab
thickness uncertainty cannot be sufficiently reduced by increasing the measurement model sen-
sitivity only since a higher rate of change of |S11| with ε′r,mut overwhelms the reduction in the
uncertainty component due to dmut resulting from an increase in ∂|S11|

∂ε′r,mut
. Furthermore, additional

numerical studies, whose results are not presented in this thesis, show that for smaller dielec-
tric constant values, such as 10.2, the three-slab model may ensure smaller dielectric constant
measurement uncertainty than the conventional model.
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Fig. 4.6. The standard uncertainty as a function of the interslab distance for the conventional
(CSFSM) and the extended (ETrSFSM) models.

4.3 Sensitivity Analysis of Two-Slab Free Space Model
Again in order to find the contribution of different model parameters to the total MUT di-

electric constant measurement uncertainty using the EPM and compare the EPM and MCM
uncertainty estimation results, which is very important for the present study since the model
sensitivity concept proposed and treated in the thesis relies on the EPM, the standard uncer-
tainty and several uncertainty components are calculated at different values of dint. The mean
value of the MUT dielectric constant obtained by using the MCM method is shown in Fig. 4.7.
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Fig. 4.7. The best estimate of ε′r,mut as a function of dint.

The parameters of the model and their respective uncertainties are the same as for the two-
slab model studied in subsection 4.1.3 (see Table 4.1).

Similar to the two-slab waveguide model, in the present case, the mean value (the best es-
timate of the measurand) differs from the actual value and varies with the distance between the
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slabs. Of course, it also varies with other model parameters, but the objective was to show the
dependence on dint as this quantity plays a crucial role in the model under consideration - it
serves as an optimization parameter. The source of the difference is the inherent non-linearity
of the measurement model under consideration.

The estimated standard uncertainty is shown in Fig. 4.8, while Fig. 4.9 shows the uncertainty
component due to |S11| as a function of the distance between the MUT and the auxiliary slabs,
dint.
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Fig. 4.8. u(ε′r,mut) as a function of dint.
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Fig. 4.9. u|S11|(ε
′
r,mut) as a function of dint.

Fig. 4.8 reveals that there are optimal values of dint at which the value of the total uncer-
tainty is considerably smaller than at other values. In this case the optimal values of dint are
approximately dint = 14 and dint = 28.

Fig. 4.10 shows the uncertainty component due to the thickness of the MUT, dmut, as a func-
tion of the distance between the MUT and the auxiliary slabs, dint.
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Fig. 4.10. udmut(ε′r,mut) as a function of dint.

Similar to the case of the two-slab waveguide model, comparing Fig. 4.9 and Fig. 4.10, one
can conclude that the curves are similar and the uncertainty components are on the same order
of magnitude, which means the uncertainty contribution of |S11| dominates in this case, as well.

Fig. 4.11 shows the uncertainty component for the thickness of the auxiliary slab, daux, as a
function of dint for the two-slab free-space model under study. Comparing Fig. 4.10 and Fig. 4.11
shows that the uncertainty components for dmut and daux are on the same order of magnitude.
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Fig. 4.11. udaux(ε′r,mut) as a function of dint.

Therefore, if the corresponding measurement uncertainties are the same or comparable, they
will contribute comparably to the total dielectric constant measurement uncertainty.

As can be seen in Fig. 4.11, the uncertainty component for the auxiliary slab thickness ex-
hibits two noticeable minima at dint = 4 and dint = 18. In contrast to the two-slab waveguide
measurement method, in this case, the minima are not very narrow. However, the uncertainty
component for the MUT slab thickness takes minimum values at different dint, namely, 16 and
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31, which means that in this case, it is not possible to reduce both uncertainty components simul-
taneously significantly. Fig. 4.12 shows the uncertainty component for the dielectric constant
of the auxiliary slab against dint and Fig. 4.13 presents the uncertainty component for the loss
tangent of the auxiliary slab against dint.
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Fig. 4.12. uε′aux(ε
′
r,mut) as a function of dint.
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Fig. 4.13. utan δaux(ε′r,mut) as a function of dint.

The contribution of the auxiliary slab loss tangent is smaller than that of the dielectric con-
stant, but it is not considerably smaller compared to the case of the two-slab free space model
studied in section 3.4. Furthermore, Fig. 4.12 indicates that there are two minima of the uncer-
tainty component for the dielectric constant of the auxiliary slab at approximately dint = 12 and
dint = 28. These minima almost coincide with those observed in Fig. 4.13, however, they are
located close to the values of dint, which give prohibitively large uncertainty component values.
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4.4 Summary
The results of the present study show that it is possible to reduce uncertainty in the dielectric

constant reconstruction of a dielectric slab in free space antenna measurements by extending the
set of degrees of freedom and finding optimal values of some parameters of the extended model.
To extend the conventional model, one or two slabs whose EMCP are assumed to be measured
a priori with sufficiently high accuracy are added to the model. It is shown that in the case of
small losses, the behavior of the model under study differs only slightly from that of the lossless
model. The two-slab model has a shortcoming that the shape of the measurement curve is highly
sensitive to the uncertainty in the distance between the slabs. The three-slab model also exhibits
the same issue, but to a lesser extent, since for a rigid material, there is no need to measure
the distance between the main slabs each time the dielectric constant needs to be measured; it
suffices tomeasure it only once. The thickness of themiddle slab can bemeasured beforehand by
using high-precision measurement instruments to reduce the uncertainty component associated
with it. However, as the results obtained for the three-slab free space model show, this model is
by no means a panacea; namely, for large values of the MUT dielectric constant, it may fail to
ensure lower measurement uncertainty than the conventional one.
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5. TWO-ROD MEASUREMENT MODEL
5.1 Two-Rod Model

5.1.1 Overview of Two-Rod model

This chapter describes an extended measurement model composed of two H-plane full-
height dielectric rods in a rectangular waveguide [132]. One of these rods is made of the material
under study, the dielectric constant of which is to be determined from a measured |S11|. The
second rod is an auxiliary rod whose dimensions and material properties are known and the
dielectric constant measurements are made at a frequency chosen so that only the fundamen-
tal mode can propagate in the waveguide. The distance between the rods and the radius of the
auxiliary rods are treated as model optimization parameters. The fast integral equation method
developed by the author is utilized to solve the forward scattering problem as it gives accu-
rate results while requiring significantly less computing time compared to other methods. The
geometry of the model is shown in Fig. 5.1.

z

TE10 rmutraux dint

AUX MUT

x

Fig. 5.1. Extended two-rod measurement model geometry.

Cylindrical samples are considered since most of the microwave resonators supplied by the
world’s leading manufacturers are cylindrical owing to the fact that they are easier to produce.

5.1.2 Uncertainty Analysis for Two-rod model

The rods are assumed to be located in a standard rectangular waveguideWR-90 with a width
of the broader wall of 22.86 mm. The MUT is assumed to be made of Arlon AD1000 [95],
whereas the auxiliary rod is assumed to be made of Arlon AD430 [98]. The standard uncertain-
ties associated with the radii of the rods, waveguide width, and interrod distance are equal to
0.02mm. The absolute standard uncertainty associated with the dielectric constant of the auxil-
iary rod is assumed to be 0.043, which corresponds to 2% [6] relative expanded measurement
uncertainty. The absolute standard uncertainty associated with the loss tangent of the auxiliary
rod is 5.0 ·10−5 [6]. It assumed that the auxiliary rod was characterized using a re-entrant cavity
measurement method [6].

The parameters of the examined two-rod measurement model are summarized in Table 5.1.
It is assumed that the reflection coefficient is measured with the aid of Vector Network

Analyzer P5024B. In general, Spectrum Analyzers can also be utilized since they measure the
absolutes value of the reflection coefficient and the absolute value of the reflection, which is the
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quantity of interest in the present study; however, the uncertainty associated with the |S11| for
these devices is larger than for VNAs. This is due to the calibration - knowing only one of the
four scattering parameters does not suffice to eliminate multiple error terms, such as reflection
tracking, transmission tracking, directivity, and isolation.

Table 5.1
Two-rod waveguide model parameters

Model Parameter Symbol Value
Standard
uncertainty

value
MUT dielectric constant ε′r,mut 10.2 -

MUT loss tangent tan δmut 0.0023 1.15 · 10−4

Dielectric constant of the auxiliary rod ε′r,aux 4.3 0.043
Auxiliary rod loss tangent tan δaux 0.003 5.0 · 10−5

MUT rod radius rmut 2.5 mm 0.01 mm
Auxiliary rod radius raux 5.7 mm 0.01 mm
Interrod distance dint 8.6 mm 0.01 mm

Frequency f 10 GHz 35 MHz
Waveguide width a 22.86 mm 0.01 mm

The calculated |S11| as a function of ε′r,mut for both the conventional model (CSRWM) con-
taining the MUT only and the extended model (ETRWM) formed from it by adding one more
slab is shown in Fig. 5.2. Similar to the previous model, in this case, the dimensions of the MUT
and the measurement frequency are such that the sensitivity of the conventional model is pretty
low, which means that this model is not suitable for dielectric constant measurements as it would
give a large measurement uncertainty. As can be seen, the presence of the auxiliary slab affects
the slope of the measurement curve; namely, it is significantly higher than in the case of the
conventional model.

The horizontal bars appearing in the figure represent the confidence intervals associated
with the |S11| are represented in Fig. 5.2. The blue bar corresponds to the confidence interval
of the |S11| of the conventional model, whereas the red one refers to the possible values of the
|S11| of the extended model. The width of the confidence interval for |S11| for both models is
assumed to be equal to 0.005, and the confidence level of the confidence intervals is 68%. As
can be seen, the width of the confidence interval for ε′r,mut is approximately 5.4 times smaller.
Thus, the conventional model is less suitable because of low sensitivity, but direct uncertainty
estimation is required to find the amount by which the extended model reduces the measurement
uncertainty.

The results of the MCM estimation for the given measurement model are presented in
Fig. 5.3. The MCM iteration (trial) number was set to 100000. The error of the estimation does
not exceed 2% in the regions of interest, but in the regions where the MCM method fails, the
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error may be larger.

0 4.0 8.0 12.0 16.0 20.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|S11| = 0.86

∆|S11| = 0.005

ε′r,mut = 10.20

∆ε′r,mut = 0.665

|S11| = 0.65

∆|S11| = 0.005

∆ε′r,mut = 0.123
ε′r,mut

|S11|
CSRWM
ETRWM

Fig. 5.2. |S11| as a function of ε′r,mut and confidence interval widths for the conventional
(CSRWM) and the extended (ETRWM) models.
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Fig. 5.3. The standard uncertainty as a function of ε′r,mut for the conventional (CSRWM) and
the extended (ETRWM) models.

The estimation results show that the uncertainty obtained with the extendedmodel is approx-
imately 4.1 times smaller, namely, 0.29 and 0.07 obtained with the conventional and extended
models, respectively.
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For large values of εr,aux and raux, the measurement procedure becomes slightly more com-
plicated because of the presence of spikes (resonances exhibiting very rapid variation of |S11| as
ε′r,aux is varied) in low-sensitivity regions, which are not observed in the slab-based measurement
models. The effects of the spikes can be reduced by varying slightly the frequency at which the
measurements are performed. Fortunately, the width of the region containing the spike is usu-
ally so small that the variation of the dielectric constant due to dispersion can be considered
negligible. Also, these spikes can be easily detected, as large variations in the absolute value of
the reflection coefficient due to small frequency deviations may indicate a spike’s presence.

5.2 Summary
To verify the efficiency of the proposed methodology, several numerical studies were car-

ried out. It is shown that the extended two-two model constructed from a conventional model
involving the MUT slab only exhibits much higher measurement model sensitivity. The MCM
estimation was performed to evaluate the standard dielectric constant measurement uncertainty.
The number of MCM trials was set to 100000, which guarantees that the uncertainty estima-
tion error is approximately 2 − 3%. Also, it was assumed that estimation for a specific set of
model parameter values is invalid if the number of physically meaningless outcomes is greater
than 10% of the total number of MCM trials, which allows for eliminating incorrect estimates.
The estimation results show that the uncertainty obtained with the extended model is approxi-
mately 1.6 times smaller (0.29 and 0.18 obtained with the conventional and extended models,
respectively) for the MUT made of Arlon AD1000. This means that the extended two-rod mea-
surement model is a simple and sufficiently efficient means of reducing the measurement uncer-
tainty. Thus, the obtained results successfully prove the hypothesis that it is possible to reduce
the uncertainty when the conventional model is unsuitable for dielectric constant measurements
due to low sensitivity and the dimensions, and the frequency cannot be changed.
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6. FAST INTEGRAL EQUATION METHOD
6.1 Multiple Dielectric Rod Structures

At the beginning of this section, an introductory overview of various methods for solving
the forward scattering problems by dielectric cylindrical rods in a rectangular waveguide is pre-
sented. The main objective of this survey is to ascertain which of the methods is the most
suitable method for the computation of the reflection and transmission coefficients of the dom-
inant mode scattered by a circular cylindrical rod in a rectangular waveguide and to extend it to
handle multi-layered dielectric rods, as well.

The main motivation behind the development of a rapid method for calculating the scattering
data in the case of multi-layered configurations is the fact that some samples to be characterized
may not have a purely cylindrical shape but may, for example, have an annular cross-sectional
shape. Additionally, in the measurements of the dielectric constant of various liquids, includ-
ing, among others, human blood, and seawater, the material under test must be placed in some
container whose walls must be penetrable to electromagnetic waves, i.e., must be made of some
dielectric materials. The same applies to the measurement of pulverized materials, such as var-
ious powders, flour, etc. For example, a cylindrical container with thin dielectric walls may
be regarded as a two-layered rod whose inner layer is the material under study, whereas the
container wall corresponds to the outer layer.

In order to accelerate the uncertainty estimation process, one needs to find a fast approach;
otherwise, a prohibitively large amount of CPU time makes the characterization completely
impractical. In addition, the algorithm for solving the corresponding inverse scattering problem
can be employed for the measurements of the complex dielectric constant, as a plastic tube filled
with a liquid with the complex dielectric can be treated as a two-layered rod.

6.1.1 Overview of General Purpose Numerical Methods

Several most commonly used general-purpose numerical methods are the method of mo-
ments [101], finite element method (FEM), finite difference method (FD) [102], and transmis-
sion line matrix (TLM), just to name a few. Which method to choose depends on the structure
under consideration and type of excitation: short pulse or wide spectrum signal. For the sake
of convenience, as well as to explain the reason why the author uses some specialized methods
of solving the problem at hand, a brief discussion of the most widely used methods, as well as
their advantages and disadvantages, is given below.

Transmission line matrix method. In this method, media under study or structures are
treated as an array (matrix, hence the name of the method) composed of two sets of parallel
transmission lines arranged in such a way that the lines of these two sets are mutually perpen-
dicular. The pulses traveling down these lines exhibit behavior similar to that of the plane wave
in the free space, provided that the distance between the nodes of the matrix, i.e., points where
the lines meet, is much smaller compared to a wavelength in the medium being modeled. As a
result, modeling of high dielectric constant rods or, in general, objects of other shapes becomes
a highly computationally expensive task due to the large number of discretization cells needed
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to guarantee satisfactory field resolution.
Finite difference time domain. This method is based on the FD approximation of the

derivatives in the governing partial differential equations that results in a set of update equations
that allows one to calculate the values of electric and magnetic fields for all the time instants
starting from a given initial values at all the points in the computational domain.

Finite element method. In the FEM, the governing differential equations are solved via dis-
cretization of the function being sought that, in turn, involves the discretization of the modeling
domain – some region of space where the fields are confined or just part of the region of inter-
est like in the case of antenna modeling and study of the scattering of incident electromagnetic
wave, e.g., a plane wave, by a dielectric or any other body of arbitrary shape.

Method ofMoments. The method of moment, or integral equation method, or when applied
to surfaces only, is referred to as the Boundary Integral method (Boundary element method).
This method is based on the surface or volume equivalence principle that enables one to derive
a set of integral equations fromMaxwell’s equations using the so-called fundamental solution or
Green’s function. The function can be regarded as the field electric due to a unit point source, i.e.,
a source that is a unit amplitude charge or current (dipole) of infinitely small size. One can derive
the integral equations by combining the governing wave equations (in general inhomogeneous
– due to the presence of sources) with the equation for Green’s function with the aid of the well-
known second Green’s identity. The integral equation derived this way does not need to satisfy
any boundary conditions on the boundary surface of the domain explicitly. Thus, there is no
need to discretize space around the object under study in contrast to other methods such as the
FEM, etc. However, the evaluation of the system matrix entries, in this case, is far more time-
consuming as one has to integrate the function (integrand) that exhibits singular behavior, i.e., as
the source point approaches the observation point, the value of the function grows unboundedly
[100].

6.1.2 Semi-Analytic Methods for Handling Cylindrical Obstacles

Although the problem can be solved using one of the well-established general-purpose meth-
ods or software employing them (e.g., Ansys HFSS, CST Studio, Comsol, etc.), they are typi-
cally highly computationally demanding. This is because these methods do not account for some
useful properties of the problem geometry, such as the capability of being divided into regions
with simple geometry, e.g., cylindrical, spherical, elliptical, spheroidal, etc. These geometrical
properties reduce computational effort by solving part of the forward scattering problem analyt-
ically or at least by converting a problem to its simpler equivalent that is less computationally
expensive to handle.

A number of approaches exploiting the geometrical peculiarities of the problem have been
proposed during the last decades. The first work devoted to discontinuities in waveguides was
the Notes on Lectures by J. Schwinger [103]. This work presents solutions to a number of
waveguide discontinuity problems, among which there is a solution to a problem of scattering
by a circular rod in a rectangular waveguide obtained via the use of the variational method.
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The method consists in replacing the original problem with a problem of finding the stationary
point of a functional. Schwinger formed the functional from the quantities characterizing the
equivalent T network for an inductive rod. The scattering problem by a perfectly conducting
metal rod and a dielectric one was treated separately in [103]. In addition to deriving mathemat-
ical expressions for the evaluation of the equivalent circuit parameters, two useful differential
operators were utilized, allowing lowering and raising the order of the so-called cylindrical har-
monics to be discussed in what follows. In the case of the dielectric rod, the fields inside it were
approximated using a truncated cylindrical wave expansion, as these functions are the most suit-
able for homogeneous objects with a cylindrical shape. More specifically, they allow one to use
the same functions for approximating magnetic and electric fields.

The expressions derived in [103] were subsequently used by Marcuwitz to calculate the
equivalent circuit parameters for both centered and offset rods in a rectangular waveguide, as
reported in [104]. However, for the handbook, Marcuwitz used only a first-order approximation
of fields inside the rods; namely, only the first term was retained in both odd- and even-case
series. Furthermore, numerical results presented in [105] demonstrate that Schwinger’s varia-
tional method with the first-order field approximation yields accurate results only for rods of
small radius and small dielectric constant. In contrast, for rods with a large electrical size, the
discrepancy between the calculated and experimentally obtained results becomes impractically
large. In addition, the first-order approximation gives a substantial error in the vicinity of the
resonant dielectric constant values, i.e., values at which the reflection coefficient attains a min-
imum value. For lossless rods, the minimum value of the reflection coefficient is zero, whereas
for low-loss or medium-loss rods, the reflection coefficient no longer reaches zero but takes a
very small value. Araneta [105] improved Schwinger’s variational solution by retaining two
more cylindrical terms in series expansions, thereby obtaining the second-order approximation.
Although the approach provides more accurate results, it is found that in the case of second-
order approximation, expressions become quite cumbersome, which makes it inconvenient to
use them in practice.

An attempt to treat the problem of the scattering by a magnetized ferrite rod in a rectangular
waveguide using an approach relying on the fact that the scattered fields can be computed by
successively finding fields scattered by the rod ignoring the effect of the waveguide walls as
if the rod was located in free space was made in [134]. The expressions derived, however,
are valid only for rods with small electrical dimensions due to a number of assumptions and
approximations made to derive them. Although, the method can be made more accurate by
taking into account the second-order scattered-reflected fields. Theoretically, as the number
of iterations tends to infinity, the sequence of approximations converges to the actual solution
of the problem. In practice, however, this method proves to be useful only for rods of small
electrical dimensions, as in this case, an acceptable approximation can be found just after a few
iterations of the process. A rigorous multipole treatment of the same problem was proposed by
Nakamoto [135]. To approximate the fields scattered by a ferrite rod, they employed a multipole
expansion-based method adapted to waveguide settings. Namely, the effect of waveguide wall
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reflections was accounted for through the use of the mirror image technique [100]. The fields
inside the cylindrical rod are expressed in terms of an infinite sum of cylindrical waves, and
the system of equations was obtained by enforcing the continuity of the fields at the surface of
the rod. Although the method was applied to a single magnetized rod, it is capable of handling
dielectric rods, as well, since the problem of scattering by a dielectric rod may be viewed as a
special case of the one for an axially magnetized ferrite rod.

A multifilament moment solution proposed in [106] allows finding the reflection and trans-
mission coefficients of the dominant mode scattered by a metallic rod. The scattered field pro-
duced by a rod is simulated by a set of filamentary current sources infinite in extent and with
unknown amplitudes to be determined. These sources are positioned on a closed surface enclos-
ing the rod to produce an approximation of fields in the exterior of the obstacle. Also, it was
shown that greater accuracy of the calculated scattering data could be achieved in the case when
the shape of the closed surface is reminiscent of that of the obstacle. Subsequently, the method
was extended to address the problem of scattering by dielectric [107] and composite rods [108],
as well. Other authors have developed an approach to solving the problem of scattering by struc-
tures comprising a number of rods located in a rectangular waveguide [109]. In that case, the
total field inside the rod is represented as a superposition of the incident wave and the unknown
scattered field produced by the polarization current inside the rod. Then with the use of the
waveguide Green’s function, the inhomogeneous wave equation is converted to a Fredholm in-
tegral equation of the second kind containing the unknown function both under the integral sign
and explicitly outside it. The integral equation is solved by dividing the cross-section of each
rod into a number of elements of simple shape and applying numerical integration (numerical
quadrature) [110]. Despite the great flexibility of the method, its major shortcoming is a high
computational burden, in particular for rods with a high dielectric constant, as the side lengths
of the simplices used to discretize the cross-section of the rod under study must be much shorter
than a wavelength in the rod. In addition, the last two approaches involve the use of the waveg-
uide Green’s function, which is represented in terms of an infinite series of waveguide modes.
For the computation of each entry of the generalized impedance matrix, the waveguide Green’s
function must be truncated and added up, which leads to a considerable increase in CPU time.

The first approach based on the division of the geometry of a problem into a number of
homogeneous regions of simple geometry was proposed by Nielsen in [111]. The fact that the
fields in the regions can be expressed in terms of a series of eigenfunctions of the Laplacian
allows for solving a boundary problem on the interfaces between layers of the rod analytically,
that, in turn, considerably reduces the computational burden and provides sufficiently high res-
olution of field distribution. The last step of the approach is the derivation of a system of linear
equations, which is attained by using the point-matching procedure and infinite eigenfunction
series truncation. However, this approach applies only to the centered rods, namely, the rods
with its axis placed at equal distances from the walls of the waveguide. Furthermore, numerical
studies revealed that the approach guarantees accurate results for rods with sufficiently small
electrical radii only. In an attempt to overcome this limitation, the method was modified [90].
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The modified subdomain method differs from the original one [111] in that the fictitious surface
termed the interaction region consists of four straight line segments (in the equivalent 2D prob-
lem), two of which lie on the opposite walls of the waveguide. At the same time, the other two
join their endpoints, thus forming a rectangle, which was replaced with a circular one enclosing
the rod under study and centered at its axis. Hence, the radius of this imaginary surface neces-
sary for the point-matching procedure equals half the width of the broader waveguide wall. It
was shown that the circular interaction region-based method is entirely free from the divergence
issue of Nielsen’s method when thick rods are considered. Additionally, it demonstrates stable
convergence even for rods with a very high dielectric constant. Moreover, the approach is faster
than the aforementioned approaches in terms of the computation time and provides a sufficiently
high degree of accuracy of results.

To the best of the author’s knowledge, for circular centered rods in a rectangular waveguide,
there is only one point-matching procedure with a circular interaction region proposed by Sa-
halos in [106] and subsequently improved and extended by other researchers [91, 92, 112–114]
to handle composite centered rods with an arbitrary number of layers, as well as offset rods and
two rods situated inside the circular interaction region [107].
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Fig. 6.1. The geometry of a multi-rod structure. [128]

The method employed here belongs to the family of boundary integral methods and is also
described in one of the author’s papers [128]. The integral equations are typically obtained from
the governing differential equations by usingGreen’s identities. However, when the object under
consideration has a simple (canonical) shape, such as cylindrical, spherical, or elliptical, one can
exploit the fact that the fields on surfaces can be expressed in terms of the so-called entire-domain
basis functions, which typically are solutions of an appropriate differential equation and satisfy
certain boundary conditions. The most appropriate in the case of cylindrical objects are periodic
boundary conditions.

Solutions of the harmonic equation subject to periodic boundary conditions are obtained in
the form of well-known periodic complex exponential functions. Both source and weighting
surface integrals required for calculating each matrix entry can be evaluated analytically, resul-
ting in infinite Schlömilch series. However, the series exhibit very slow convergence, thereby
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degrading the efficiency of the method dramatically. From a number of approaches that have
been proposed to accelerate the convergence of these series, the Ewald method [117] that for a
long time was used mainly for accelerating the calculation of periodic lattice potentials [118]
and only recently gained popularity in the microwave community, proves to be efficient. It is
worth noting that the Ewald technique has found use in a wide variety of other applications
where it is utilized to speed up the evaluation of free space Green functions [119], waveguide
Green functions [120], etc. [121–123].

The comparative analysis of three different acceleration techniques presented by Linton in
[124] shows that the contour integral and Ewald’s summation techniques are more efficient than
the Euler-Maclaurinmethod and themost efficient from the computational point of is the contour
integral technique. However, the numerical analysis performed by the author shows that in
some cases, Ewald’s summation technique is more advantageous. Specifically, for large number
dielectric rods, Ewald’s method converges faster than the contour integral method, since it does
not require expanding Hankel functions appearing in the Schlömilch series into another series
by using Graf’s addition theorem, whose convergence rate decreases as the distance between
the rods increases. Since in this Thesis, the general case is addressed, where the number of rods
may be arbitrary, and the distances between them may also be arbitrarily large, the most suitable
of the three techniques treated in [124] in terms of the rate of convergence and accuracy is that
proposed by Ewald. Thus, this method has been selected for the boundary integral equation
method for dielectric rods employed to speed up the scattering parameter calculation for the
two-rod measurement model investigated in the present thesis, which results in a considerable
acceleration of the MC uncertainty estimation process for the model.

6.1.3 Discretization of Boundary Integral Equation

It is assumed that only the dominant mode can propagate in a rectangular waveguide along
the z axis. A possible geometry of the structure under consideration is illustrated in Fig. 6.1. In
the general case, P inductive circular rods are placed in the rectangular waveguide, and the i-th
rod consists of pi layers. The number of layers may also be pi = 1.

The problem is two-dimensional; therefore, all surface integrals over the surfaces of rods
reduce to contour integrals around the circumferences of rods. Using the surface equivalence
theorem, one can obtain the following surface integral equation to be solved for unknown func-
tions Ey (r) and Hφ (r) [125]

E i
y (ro) = Ey (ro)−

∮
L

(
Ey (rs)

∂G(ro, rs)

∂n
+ jZ0k0Hφ (rs)G (ro, rs)

)
dls, (6.1)

where
G (ro, rs) - the waveguide Green’s function;
Ei

y (r) - the incident electric field, V/m;
Z0 - the free space intrinsic impedance, Ω;
k0 - the free space wavenumber, 1/m;
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Ey (r) - the tangential components of the total electric fields, V/m;
Hφ (r) - the tangential components of the total magnetic field, A/m.

Also, in (6.1) the subscripts s and o refer to the variables associated with the source and
observation points, respectively. Here Green’s function and the above-mentioned fields are
considered on the surfaces of the rods, L = {L1 ∪ . . . ∪ LP} and Li is the circumference of
the i-th rod. In order to find the unknown functions Ey (r) and Hφ (r) equation (6.1) must
be recast into a weak form, by multiplying both sides of the equation by appropriate weight-
ing functions Th,{i}

(
φ{i}

)
= e−jhφ{i} , h = −N,−N + 1, ..., N and integrating over each Li,

i = 1, 2, ..., P . Then, approximating the unknown distributions of the electric Ey

(
r{j}, φ{j}

)
and magnetic Hφ

(
r{j}, φ{j}

)
fields on the surface of the j-th rod by a series of basis functions

of the form ejnφ{i} , n = −N,−N + 1, . . . , N with unknown expansion coefficients Ẽn,{j} and
H̃n,{j}, and substituting them into (6.1), one obtains the following expressions for the entries
of the submatrices ZE

ij and ZH
ij of the system matrix Z and the subvector ei of the excitation

vector e

zEij;(h+N+1)(n+N+1) = r0,{i}r0,{j}

2π∫
0

2π∫
0

e−jhφ{i}ejnφ{j}
∂G(r{i}, r{j})

∂r{j}
dφ{i}dφ{j},

zHij;(h+N+1)(n+N+1) = −jZ0k0r0,{i}r0,{j}

2π∫
0

2π∫
0

e−jhφiejnφ{j}G(r{i}, r{j})dφ{i}dφ{j},

eo;h+N+1 = r0,{i}

2π∫
0

e−jhφ{i}E i
y(r{i})dφ{i}, h, n = −N,−N + 1, ..., N. (6.2)

where
r{i} - the position vector of point with polar coordinates r{i} and φ{i}.

In the case of a cylindrical obstacle, the integration in (6.2) can be carried out analytically,
resulting in infinite Schlömilch series. To obtain this series, one first decomposes the waveguide
Green’s function in the spatial form given by

G(ro, rs) =
j
4

+∞∑
m=−∞

H
(2)
0 (k0r

−
m)−

j
4

+∞∑
m=−∞

H
(2)
0 (k0r

+
m), (6.3)

where
r±m =

√
(xo ± xs + 2am)2 + (zo − zs)

2 - the distance between the m-th image point of the
source point and the observation point, m;

a - the width of the broader wall of the waveguide, m.

Using the Graf addition theorem for cylindrical functions [116] one finds the decomposi-

87



tion of the m-th term of both sums in (6.3) in terms of the local coordinates (r{i}, φ{i}) and
(r{j}, φj) with origins at (x0,{i}, z0,{i}) and (x0,{j}, z0,{j}) associated with the i-th and j-th rods,
respectively

H
(2)
0

(
k0r

∓
m

)
=

+∞∑
k,l=−∞

H
(2)
−l±k(k0r

∓
m,{i,j})J±k(k0rj)Jl(k0ri)ej((−l±k)φ−

m−kφj+lφi), (6.4)

where
r±m,i,j =

√
(x0,{i} ± x0,{j} + 2am)2 + (z0,{i} − z0,{j})

2;
φ±
m = arctan ((x0,{i} ± x0,{j} + 2am)/(z0,{i} − z0,{j}));

rk =
√
(x− x0,{k})

2 + (z − z0,{k})
2;

φi = arctan ((xs − x0,{i})/(zs − z0,{i}));
φj = arctan ((xs − x0,{j})/(zs − z0,{j})).

Substituting (6.4) into (6.3), and then the resulting expression into (6.2), as well as per-
forming integration of both source and test integrals the original triple series reduces, due to
orthogonality, to a single one

zHij;(h+N+1)(n+N+1) = −jZ0

(
S−
n−h − (−1)nS+

−(n+h)

)
Jh(k0r0,{i})Jn(k0r0,{j}),

zEij;(h+N+1)(n+N+1) =
(
S−
n−h − (−1)nS+

−(n+h)

)
Jh(k0r0,{i})J

′
n(k0r0,{j}), (6.5)

where
S±
l = jk0π2r0,{i}r0,{j}

+∞∑
m=−∞

H
(2)
l (k0r

±
m,i,j)ejlφ

±
m - the l-th order Schlömilch series.

In order to accelerate the convergence of the Schlömilch seriesS+
0 and S−

0 appearing in (6.5),
the Ewald summationmethod [117] is utilized. The improvement in the convergence is achieved
by splitting the original series into a slowly and a rapidly convergent series in such a way that
the convergence of the slowly convergent one can be substantially accelerated by means of the
Poisson summation method. The expressions for S+

l and S−
l can be obtained from those for S+

0

and S−
0 using forward and backward recurrence relations for Hankel functions [126]. For i = j

the termm = 0 in the first sum in (6.2) must be excluded and treated separately

zDHii;(n+N+1)(n+N+1) = Z0k0π
2r20,{i}H

(2)
n (k0r0,{i})Jn(k0r0,{i}),

zDEii;(n+N+1)(n+N+1) = jk0π2r20,{i}H
(2)
n (k0r0,{i})J

′
n(k0r0,{i}). (6.6)

Finally, one has (
ZH +ZDH

)
xh +

(
I r +ZE +ZDE

)
xe = e, (6.7)

where
I r
ii = 2πr0,{i}I - the (i-th,i-th) submatrix of matrix I r;

88



I - the 2N + 1× 2N + 1 identity matrix;
xe - the vector containing unknown expansion coefficients Ẽn,{j};
xh - the vector containing unknown expansion coefficients H̃n,{j}.

To find the relations between the tangential components of the magnetic and electric fields
on the surface of the j-th rod, one first needs to find expansions for the fields in each layer of
the rod. The electric field in the o-th layer of the j-th rod satisfies the homogeneous Helmholtz
equation; consequently, the electric field inside this layer can be expanded into the series of
solutions to this equation in cylindrical coordinates

E{j,o}
y

(
r{j}φ{j}

)
=

+∞∑
n=−∞

(
An,{j,o}Jn(k{j,o}r{j}) + Bn,{j,o}Yn(k{j,o}r{j})

)
ejnφ{j} , (6.8)

where
k{j,o} - the wavenumber of the zeroth layer of the j-th rod, 1/m;
An,{j,o} and Bn,{j,o} - the unknown expansion coefficients.

The corresponding expansion for the magnetic field can be found by using Maxwell’s equa-
tions. The relation between An,{j} and Bn,{j} can be determined by enforcing continuity of the
tangential components of the fields on each interface of the j-th rod, as well as taking advantage
of the orthogonally with respect to φ{j} that results in infinitely many decoupled systems of
equations, each involving only n-th unknown expansions coefficients for all layers of the rod.
Then, gn,{j} = Bn,{j}/An,{j} can be found by means of the following recurrence relation, which
can be obtained by eliminating all unknown coefficients successively, except An,{j} and Bn,{j}

from the corresponding set of equations, starting with the innermost layer

gn,{j,o} =
k̃{j,o}Jn−1(k̃{j,o})Qn,{j,o}(k̃{j,(o−1)})− k̃{j,(o−1)}Jn(k̃{j,o})Q(n−1),{j,o}(k̃{j,(o−1)})

k̃{j,(o−1)}Yn(k̃{j,o})Q(n−1),{j,o}(k̃{j,(o−1)})− k̃{j,o}Yn−1(k̃{j,o})Qn,{j,o}(k̃{j,(o−1)})
,

(6.9)
where

Qn,{j,o}(x) = Jn(x) + gn,{j,(o−1)}Yn(x);
k̃{j,o} = k{j,o}r{j,(o−1)} - the normalized wavenumber;
gn,{j,1} = 0.

By using this result and continuity of the electric andmagnetic fields across the surface of the
j-th rod, the following relation between the two sets of unknown expansion coefficients Ẽn,{j}

and H̃n,{j} can be found

xej;n+N+1 = dj;n+N+1x
h
j;n+N+1

= jZ{j,pj}
Jn(k{j,pj}r{j,pj}) + gn,{j,pj}Yn(k{j,pj}r{j,pj})

J ′
n(k{j}r{j,pj}) + gn,{j,pj}Y

′
n(k{j,pj}r{j,pj})

xhj;n+N+1. (6.10)
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Substituting this expression into (6.7), yields((
ZH +ZDH

)
+
(
Ir +ZE +ZDE

)
D
)
xh = e. (6.11)

Solving equation system (6.11) gives the field expansion coefficients from which both the re-
flection and transmission coefficients can be readily extracted by carrying out integration over
the surface of each rod. Fortunately, in this case, the integral can be evaluated in closed form
owing to the well-known Jacobi-Anger expansion of the exponential function. Furthermore, the
expansion is valid not only for the real angles but also for complex ones arising when higher-
order mode scattering data (generalized scattering matrix elements) need to be retrieved. This
advantageous property appreciably facilitates the analysis of the rod-based structures under con-
sideration.

For the sake of convenience, henceforth, the general case mathematical expressions for the
zeroth order term of Schlömilch series will be considered. To obtain from the general case
expression those corresponding to S+

0 one needs to substitute x0,{i} + x0,{j} + 2ma and z0,{i} −
x0,{j} for xm and z, respectively. Regarding the other type of the Schlömilch series, namely,
S−
0 , the relevant expressions can be readily obtained by making the following substitution: x→
x0,{i} − x0,{j} + 2ma and z → x0,{i} − x0,{j}

Additionally, in what follows, the use will be made of two differential operators for raising
and lowering the order of the Hankel function appearing in the Schlömilch series, which con-
siderably simplifies the derivation of the expressions for Schlömilch series of orders other than
0.

The order raising operator is defined as

− 1

k0

(
∂

∂z
+ j

∂

∂x

)
H(2)

n

(
k0
√
x2 + z2

)
ejnφ = H(2)

n+1

(
k0
√
x2 + z2

)
ej(n+1)φ (6.12)

and its order-lowering counterpart as

− 1

k0

(
∂

∂z
− j

∂

∂x

)
H(2)

n

(
k0
√
x2 + z2

)
ejnφ = H(2)

n−1

(
k0
√
x2 + z2

)
ej(n−1)φ (6.13)

where

φ =

{
arctan x

z
if x ≥ 0

φ = π − arctan x
z

if x < 0
.

For the above-mentioned general case, the Schlömilch series can be expressed as

Ŝ =
+∞∑

m=−∞

H(2)
0

(
k0
√
x2m + z2

)
. (6.14)

Now, to transform this into the dual series by means of the Poisson summation method, one
needs to find the following Fourier transform that can be recognized as one of several integral
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representations of the zeroth order Hankel function of the second kind

H(2)
0

(
k0
√
x2 + z2

)
= − j

π2

+∞∫
−∞

+∞∫
−∞

e−jkxxe−jkzz

k20 − k2x − k2z
dkzdkx. (6.15)

Thus, using the double integral representation of the zeroth order Hankel function of the second
kind for the above-mentioned general case, the Schlömilch series can be expressed as

Ŝ = − j
π2

+∞∑
m=−∞

+∞∫
−∞

+∞∫
−∞

e−jkxxme−jkzz

k20 − k2x − k2z
dkzdkx. (6.16)

The integral appearing on the right-hand side of (6.16) can be regarded as the two-dimensional
Fourier transform of the following function with respect to spectral variables kx and kz

1

k20 − k2x − k2z
, (6.17)

which can be expressed as

1

k20 − k2x − k2z
= −

−j∞∫
0

et (k20−k2x−k2z) dt. (6.18)

In (6.18) the integration is performed along the negative imaginary axis to ensure convergence
of the improper integral irrespective of whether k20 − k2x − k2z is positive or not. Note that this
integral is convergent only when the imaginary part of ko is positive. The case of real ko can be
obtained by taking the limit as the imaginary part tends to zero.

Now, using (6.18), the Hankel function can be written as

+∞∫
−∞

+∞∫
−∞

e−jkxxe−jkzz

k20 − k2x − k2z
dkxdkz = −

+∞∫
−∞

+∞∫
−∞

−j∞∫
0

e−jkxxe−jkzzet (k20−k2x−k2z) dtdkxdkz. (6.19)

The integration with respect to kx and kz can be evaluated in closed form as the functions being
transformed are, in fact, Gaussian functions in kx and kz, respectively. However, in the present
case, it is unnecessary, as the main objective is to speed up the convergence of the Schlömilch
series. To that end, the integral along the imaginary axis can be divided into two integrals by
deforming the contour of integration. This trick will finally lead to two rapidly converging
series. The parameter α must be a positive real number, and as will be seen later, it allows one
to control the convergence of the two series. More specifically, the contour of integration is
deformed so that the resulting one consists of two parts, one being the straight line segment that
emerges from the origin and goes to the point α2 on the real axis. The second part is a ray that
emerges from point α2 and goes to infinity parallel to the imaginary axis.
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Thus, by dividing the integration contour as described above, one obtains

−j∞∫
0

et (k20−k2x−k2z) dt =

α2∫
0

et (k20−k2x−k2z) dt+

−j∞∫
α2

et (k20−k2x−k2z) dt. (6.20)

Substituting (6.20) into (6.16), one achieves the following splitting of the original series into
two parts

Ŝ = Ŝspec + Ŝspac = − j
π2

+∞∑
m=−∞

I specm +
j
π2

+∞∑
m=−∞

I spacm , (6.21)

where

I specm = −
+∞∫
−∞

+∞∫
−∞

−j∞∫
α2

e−jkxxme−jkzzet (k20−k2x−k2z) dt dkx dkz;

I spacm =
+∞∫
−∞

+∞∫
−∞

α2∫
0

e−jkxxme−jkzzet (k20−k2x−k2z) dt dkx dkz.

The first of the resulting series is termed the spectral series and can be evaluated as it stands
owing to sufficiently rapid convergence. However, the other series exhibits prohibitively slow
convergence and therefore needs to be accelerated. In the present work, as well as in many other
works, it is achieved by means of the Poisson summation formula, which relies upon Fourier
transform, as well as the fact that rapidly decaying functions have wide spectra and vice versa.

6.1.4 Evaluation of the Spectral Series Terms

The Poissonmethod requires applying the Fourier transform to the generating function of the
original series to obtain that of the dual series. The generating function for slowly converging
series Ŝspec is obtained by performing integration along the imaginary axis, which in this case
can be accomplished analytically

I spec(x) =

+∞∫
−∞

+∞∫
−∞

e−jkxxe−jkzz e
α2 (k20−k2x−k2z)

k20 − k2x − k2z
dkx dkz (6.22)

Then the Fourier transform with respect to x is applied to (6.23) to derive the generating
function for the equivalent dual series

I spec(k̂x) =

+∞∫
−∞

ejk̂xx
+∞∫

−∞

+∞∫
−∞

e−jkxxe−jkzz e
α2 (k20−k2x−k2z)

k20 − k2x − k2z
dkx dkz dx

= 2π

+∞∫
−∞

+∞∫
−∞

δ(kx − k̂x)e−jkzz e
α2 (k20−k2x−k2z)

k20 − k2x − k2z
dkx dkz = 2π

+∞∫
−∞

e−jkzz e
α2 (k20−k̂2x−k2z)

k20 − k̂2x − k2z
dkz.

(6.23)
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Hence, the series dual to the slowly converging spectral series are

Ŝspec =
1

2a

+∞∑
m=−∞

I spec(γm) =
π

a

+∞∑
m=−∞

+∞∫
−∞

e−jkzz e
α2(k20−γ2

m−k2z)

k20 − γ2m − k2z
dkz, (6.24)

where
γm = mπ

a
- the transverse wavenumber for the TEm0 mode, 1/m.

The Fourier integral with respect to kz appearing in (6.24) can be conveniently found by
treating the function being transformed as the product of two functions, namely, the Gaussian
function

Ψ(kz) = eα2(k20−γ2
m−k2z), (6.25)

and the following function

Ξ(kz) =
1

k20 − γ2m − k2z
, (6.26)

and then finding the convolution of their Fourier transforms

Intspec(z) =
1

2π

+∞∫
−∞

ξ(z − v)ψ(v) dv, (6.27)

where
ξ(z) =

+∞∫
−∞

Ξ(kz)e−jkzz dkz;

ψ(z) =
+∞∫
−∞

Ψ(kz)e−jkzz dkz.

The expression forψ(kz) can be found with the aid of integration on the complex plane using
Jordan’s lemma [127], and is as follows

ξ(z) = j
π

km
e−jkm|z|. (6.28)

The expression for ξ(kz) is a Gaussian function, as the Fourier transform of a Gaussian function
is another Gaussian function. Thus,

ψ(z) =

√
π

α
eα2(k20−γ2

m)e−
z2

4α2 . (6.29)
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As a result, the convolution integral becomes

I spec(γm) = j
√
π
3

α

1

km
eα2(k20−γ2

m)

+∞∫
−∞

e−
v2

4α2 e−jkm|z−v| dv. (6.30)

The presence of the absolute sign requires splitting the integral into two parts by choosing the
integration limits appropriately

I spec(γm) = j
√
π
3

α

1

km
eα2(k20−γ2

m)

 z∫
−∞

e−
v2

4α2 e−jkm(z−v) dv +

+∞∫
z

e−
v2

4α2 ejkm(z−v) dv

 . (6.31)

By slightly rearranging, one has

I spec(γm) = j
√
π
3

α

1

km
eα2(k20−γ2

m)

ejkmz

+∞∫
z

e−
v2

4α2 e−jkmv dv + e−jkmz

z∫
−∞

e−
v2

4α2 ejkmv dv

 .
(6.32)

Then, for the first integral appearing in (6.32), one obtains

+∞∫
z

e−
v2

4α2 e−jkmv dv = e−k2mα2

+∞∫
z

e−
(v+j2α2km)2

4α2 dv = α
√
πe−k2mα2Erfc

(
z + j2α2km

2α

)
. (6.33)

Similarly, the second integral can be expressed as

z∫
−∞

e−
v2

4α2 ejkmv dv = e−k2mα2

z∫
−∞

e−
(v−j2α2km)2

4α2 dv

= e−k2mα2

+∞∫
−z

e−
(v+j2α2km)2

4α2 dv = α
√
πe−k2mα2Erfc

(
−z + j2α2km

2α

)
, (6.34)

where Erfc(x) is the complementary error function defined as

Erfc(z) =
2√
π

+∞∫
z

e−t2 dt = 1− 2z√
π

1∫
0

e−(zt)2 dt. (6.35)

By substituting (6.33) and (6.34) into (6.32), eventually results in

I spec(γm) = j
π2

km

[
e−jkmzErfc

(
−z + j2α2km

2α

)
+ ejkmzErfc

(
z + j2α2km

2α

)]
. (6.36)

Now, to obtain expressions for the dual series of the spectral part of S±
0 , one needs to substitute

z with z{i} − z{j} in (6.37). Since (6.37) does not depend on x explicitly, to obtain the series for
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x{i} + x{j} + 2am rather than xm = 2am, the shift property of the Fourier transform needs to
be applied, giving

S±,spec
0 =

1

2a

+∞∑
m=−∞

e−jγm(x{i}±x{j}) 1

km

[
I+,spec
m + I−,spec

m

]
, (6.37)

where
I±,spec
m = e∓jkm(z{i}−z{j}) Erfc

(
∓(z{i}−z{j})+j2α2km

2α

)
.

In order to obtain Schlömilch series of orders other than the zeroth, one can make use of dif-
ferential operators (6.12) and (6.13), as well as the Leibniz rule in conjunction with the Binomial
theorem.

S±,spec
n =

(−1)n

kn0

(
∂

∂z{i}
+ j

∂

∂x{i}

)n

S±,spec
0 =

(−1)n

kn0

n∑
l=0

C l
n

∂l

∂zl{i}
jn−l ∂

n−l

∂xn−l
{i}

S±,spec
0

=
1

2a

(−1)n

kn0

+∞∑
m=−∞

e−jγm(x{i}±x{j})
n∑

l=0

C l
nγ

n−l
m

[
Ī+,spec
m,l + Ī−,spec

m,l

]
, (6.38)

where
C l

n - the binomial coefficient;

Ī±,spec
m,l = ∂lI

±,spec
m

∂zl{i}
= e∓jkm(z{i}−z{j})

l∑
k=0

Ck
l (∓jkm)l−k ∂k

∂zk{i}
Erfc

(
∓(z{i}−z{j})+j2α2km

2α

)
.

6.1.5 Evaluation of the Spatial Series Terms

Now, consider the spatial part of (6.20). By changing the order of integration, them-th term
of the spatial part of the Schlömilch series becomes.

I spacm =

α2∫
0

etk20
+∞∫

−∞

e−tk2xe−jkxxm dkx

+∞∫
−∞

e−tk2ze−jkzz dkz dt (6.39)

Since the functions being transformed are, in fact, Gaussian functions, for both Fourier integrals,
there exist closed-form expressions

+∞∫
−∞

e−tk2xe−jkxxm dkx =

√
π

t
e−

x2m
4t (6.40)

and

+∞∫
−∞

e−tk2ze−jkzz dkz =

√
π

t
e−

z2

4t (6.41)
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In view of (6.40) and (6.41), (6.39) can be written as

I spacm = π

α2∫
0

1

t
etk20 e−

1
4t
(x2

m+z2) dt = π

+∞∫
1/α2

1

t
e

k20
t e−0.25t(x2

m+z2) dt. (6.42)

The second integral in (6.42) is obtained by making substitution t → 1
t
. To make the notation

more compact write um for (x2m + z2)/(4α2). Also, for convenience the substitution t → t/α2

is made, giving

Sspac = π
+∞∑

m=−∞

I spacm = π
+∞∑

m=−∞

∞∫
1

1

t
e

k20α
2

t e−tum dt. (6.43)

For the positive orders, the corresponding Schlömilch series term expressions can be derived by
means of the order raising operator (see [103]) as follows

Sspac
n = π

+∞∑
m=−∞

(−1)n

kn0

(
∂

∂z
+ j

∂

∂xm

)n
∞∫
1

1

t
e

k20α
2

t e−tum dt (6.44)

= π
+∞∑

m=−∞

1

(2α2k0)n
(z + jxm)n

∞∫
1

1

t1−n
e

k20α
2

t e−tum dt. (6.45)

Although the integral cannot be evaluated in closed form, one can expand the first exponential
factor in (6.45) into a Taylor series around 0. Thus, by letting α2 = ᾱ/k20 , expanding (6.45) into
a Taylor series about 0 and truncating it, (6.45) becomes

Sspac
n = π

+∞∑
m=−∞

[
k0 (z + jxm)

2ᾱ

]n ∞∫
1

1

t1−n

P∑
p=0

ᾱp

tpp!
e−tum dt. (6.46)

It can be shown by using the integration by parts that the exponential integral of then-th order can
be expressed in terms of the 0-th order exponential integral and some simple algebraic functions.
Additionally, it turns out that the number of terms retained in the power series can be reduced
while preserving the same accuracy by expanding (6.48) into a Taylor series about 0.5 rather
than 0. Of course, it comes at the cost of the increased complexity of mathematical expressions.
Hence, by expanding the exponential function around 0.5, not 0, one arrives at

Sspac
n = π

+∞∑
m=−∞

[
k0 (z + jxm)

2ᾱ

]n ∞∫
1

1

t1−n
e0.5

P∑
p=0

1

p!

( ᾱ
t
− 0.5

)p

e−tum dt. (6.47)

Now, interchanging the order of the summation and the integration yields a series of exponential
integrals of different orders. The exponential integral function for non-zero real values of the
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argument, x, is defined as

Ei(x) =
∞∫
1

e−xt

t
dt. (6.48)

The definition of the exponential integral can be generalized to powers of t other than −1. The
most commonly encountered in the literature definition is the following one

Ein(x) =
∞∫
1

e−xt

tn
dt. (6.49)

The integral function is termed the exponential integral ofn-th order. There exist straightforward
recurrence relations relating these functions of orders differing by one. Similar to cylindrical
functions, the recurrence relations allow for efficient computation of the expressions involving
functions of different orders. The recurrence relation can be easily derived by applying integra-
tion by parts to (6.49), giving

Ein(x) =
1

x
e−x − n

x
Ein+1(x), (6.50)

and the equivalent backward recurrence relation is as follows

Ein+1(x) =
1

n
e−x − x

n
Ein(x), (6.51)

Thus, for n = 1, the generalized exponential integral can be written as

Ei1(x) =
∞∑

m=0

(−1)mm!

xm+1
. (6.52)

Unfortunately, this inverse power series representation converges slowly for x < 10, and the
presence of the factorial in the numerator of terms causes overflow when computed using float-
ing point arithmetics. Nevertheless, it is possible to rewrite the series in terms of a continued
fraction that converges much quicker than the series it is derived from

Ei1(x) =
e−x

x+
1

1 +
1

x+
2

1 + . . .

. (6.53)

For small values of x, the conventional power series expansion is used, which converges very
quickly. Using the definition of the generalized exponential integral of the n-th order, one has
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the following identity

+∞∫
1

e−t u2
m

tn
dt = Ein(u2mk

2
o), (6.54)

In order to simplify (6.47), Newton’s binomial formula can be applied to the p-th term of the
summation in the integrand resulting in

(ᾱ− 0.5t)p

tp−n+1
=

∑p
l=0 Cl

pᾱ
p−l(−0.5)ltl

tp−n+1
=

p∑
l=0

Cl
pᾱ

p−l(−0.5)l

tp−n+1−l
. (6.55)

Thus,

Sspac
n = e0.5π

+∞∑
m=−∞

[
k0 (z + jxm)

2ᾱ

]n ∞∫
1

P∑
p=0

1

p!

p∑
l=0

ᾱp−l(−0.5)lCl
p

e−tum

tp−n−l+1
dt (6.56)

By interchanging integration and summation, (6.56) becomes

Sspac
n = π

√
e

+∞∑
m=−∞

[
k0 (z + jxm)

2ᾱ

]n P∑
p=0

p∑
l=0

1

p!
Cl

p ᾱ
p−l (−0.5)l

∞∫
1

e−tum

tp−n−l+1
dt, (6.57)

and using (6.54), results in

Sspac
n = π

√
e

+∞∑
m=−∞

[
k0 (z + jxm)

2ᾱ

]n P∑
p=0

p∑
l=0

1

p!
Cl

pᾱ
p−l(−0.5)lEip−n−l+1(um). (6.58)

Expression (6.58) can be further simplified by using the recurrence relations for the generalized
exponential integral (6.50) and (6.51), yielding the following finite series

Ein+1(x) =
n−1∑
k=0

e−x

(
(n− k − 1)!(−x)k

n!

)
+

(−x)n

n!
Ei(x) (6.59)

Now, using (6.59), one eventually obtains

Sspac
n = π

√
e

+∞∑
m=−∞

[
ko (z + jxm)

2ᾱ

]n P∑
p=0

p∑
l=0

1

p!
Cl

pᾱ
p−l(−0.5)l Tp−n−l (um) , (6.60)

where

Tn (û) =


e−û

∑n−1
k=0

[
(n−k−1)!(−û)k

n!

]
+ (−x)n

n!
Ei(û), if n > 0

e−û
[∑−n−2

k=0
(−n−1)!

(−n−k−1)!ûk+1 +
(−n−1)!
û−n

]
, if n < 0

Ei(û), if n = 0

e−û/û, if n = −1
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The expression for Tn (û) in the case when n < 0, was obtained by repeatedly (6.49) inte-
grating by parts until the integral of an exponential function is obtained. Note that for n < 0, the
expression Tn (û) does not contain the exponential integral compared to the case when n < 0.

As far as the expressions for S+,spac and S−,spac are concerned, they can be readily derived
from (6.60) by replacing xm and z with x0,{i} + x0,{j} + 2ma and z0,{i} − z0,{j} + 2ma, and xm
and z with x0,{i} − x0,{j} + 2ma and z0,{i} − z0,{j} + 2ma, respectively.

6.1.6 Evaluation of Excitation Vector Entries

The incident dominant mode in the rectangular waveguide is given by

E i
y (x, z) = sin (γ1x)e−jk̃1z, (6.61)

where
γ1 = π/a - the transverse wavenumber for the dominant waveguide mode, 1/m;
k̃1 =

√
k20 − γ21 - the waveguide wavenumber for the dominant waveguide mode, 1/m.

Using the well-known Euler’s identity, one can rewrite (6.61) in a form which is more con-
venient for the derivation of the expressions for excitation vector entries

E i
y (x, z) =

1

2j
(
ejγ1x − e−jγ1x

)
e−jk̃1z, (6.62)

First, consider the expression for the first term in (6.62). To obtain the entries of the excitation
vector, expression (6.61) should be rewritten in terms of local coordinates of the i-th rod

E i
y (x, z) =

1

2j
ejγ1xe−jk̃1z =

1

2j
ejγ1x0,{i}ejγ1r{i,pi} sinφ{i}e−jk̃1z0,{i}e−jk̃1r{i,pi} cosφ{i} . (6.63)

Then, multiplying the resulting expression by weighting functions and integrating with respect
to φ{i} over the interval [0, 2π], as well as making use of the Jacobi-Anger expansion [126], one
eventually obtains

1

2j

2π∫
0

ejnφiejγ1x0,{i}e−jk̃1z0,{i}ejk0r{i,pi}(− cosφ{i} cosφk+sinφ{i} sinφk)r{i,pi} dφ{i}

= −jπ(−j)nr{i,pi}Jn
(
k0r{i,pi}

)
ejγ1x0,{i}e−jk̃1z0,{i}e−jnφk (6.64)

where
φk = arctan

(
γ1/k̃1

)
;

φi = arctan
(
(x− x0,{i})/(z − z0,{i})

)
.

The expression for the second term in (6.62), can be readily found in a similar way. Com-
bining the expressions and slightly rearranging them, one finally obtains the expression for the
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n-th excitation vector coefficient for the i-th rod

ei,(n+N+1) = 2πr{i,pi}(−j)
nJn(k0r{i,pi})e

−jk̃1z0,{i} sin (γ1x0,{i} + nφk). (6.65)

6.1.7 Numerical Validation

To validate the proposed method, one compares the frequency responses and |S11| as a func-
tion of the dielectric constant of two waveguide sections obtained by employing the proposed
method (IBIM) and the commercially available software HFSS and CST studio. One of the
structures to be considered contains two solid dielectric rods, whereas the other includes two
two-layer rods. In the case of a single centrally placed dielectric rod, the results obtained by
the proposed method agree well with those obtained by the method outlined in [90], which
exhibits very rapid convergence while maintaining reasonably good accuracy of results. For
notational simplicity, hereinafter the following dimensionless model parameters are introduced
r̃jo = r{j,o}/a, x̃0j = x0,{j}/a and z̃0,j = z0,{j}/a.

The values of the first structure parameters are as follows: x̃01 = 0.3, x̃02 = 0.7, z̃01 = 0.3,
z̃02 = 0.1, r̃11 = 0.15, r̃21 = 0.2, and εr21 = 5. The parameter values of the second structure
are as follows: x̃01 = 0.3, x̃02 = 0.7, z̃01 = 0.3, z̃02 = 0.1, r̃11 = 0.05, r̃12 = 0.12, r̃21 = 0.1,
r̃22 = 0.2, εr12 = 5, εr21 = 10, and εr22 = 5.

The scattering data (|S11| and |S21|) for the first of the examined structures calculated at
1000 different values of the dielectric constant of the first rod is shown in Fig. 6.2, whereas the
scattering data (|S11| and |S21|) for the second structure calculated at 1000 different values of
the dielectric constant of the outer layer of the first rod is shown in Fig. 6.3. In both cases, a/λ
was set equal to 0.73.
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εr11

a/λ = 0.7(3)

Fig. 6.2. |S11| and |S21| as a function of εr11. Two solid dielectric rods. [131]

The frequency responses of the first and second structures are displayed in Fig. 6.4 and
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Fig. 6.5, respectively. The parameters of both structures are the same as before except that
εr11 and εr12 were set to 10 for the single rod and the double rod structures, respectively.
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Fig. 6.3. |S11| and |S21| against εr12. Two two-layered dielectric rods. [131]

The frequency responses obtained by means of Ansys HFSS are computed using the fast
broadband frequency sweep, which is based on the Adaptive Lanczos-Pade Approximation.
The number of test and trial functions used to approximate fields in the IBIM was 11. Overall,
the results obtained by the IBIM are in excellent agreement with the ones computed by using
Ansys HFSS, but the IBIM significantly outperforms Ansys HFSS.
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Fig. 6.4. |S11| and |S21| as a function of a/λ. Two solid dielectric rods. [131]
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Fig. 6.5. |S11| and |S21| as a function of a/λ. Two two-layered dielectric rods. [131]

To further verify the method, |S11| was calculated for the structure shown in Fig. 6.6. The
calculation results are shown in Fig. 6.7, and the calculation times are summarized in Table
6.1. The parameters of the structure are presented in Table 6.2, and the number of test and trial
functions used to approximate fields in the IBIM was 11.

z

TE10 rmutraux dint

AUX MUT

x

Fig. 6.6. Two dielectric rods in a rectangular waveguide.

Table 6.1
Comparison of computation times
Model Parameter Symbol

Method Time s
IBIM 8.2

Ansys HFSS 824.6
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Fig. 6.7. |S11| as a function of ε′r,mut, calculated using the IBIM and HFSS.

Table 6.2
Parameters of the two-rod model

Model Parameter Symbol Value
MUT dielectric constant ε′r,mut 10.2

MUT loss tangent tan δmut 0.0023
Dielectric constant of the auxiliary rod ε′r,aux 4.3

Auxiliary rod loss tangent tan δaux 0.003
MUT rod radius rmut 2.5 mm

The radius of the auxiliary rod daux 5.7 mm
Interrod distance rint 8.6 mm

Frequency f 10 GHz
Waveguide width a 22.86 mm

6.1.8 Extended Boundary Integral Equation Method

In this section, the extended version of the Improved Boundary Integral Equation Method
(IBIM) to handle structures comprising a number of dielectric rods in a rectangular waveguide is
employed [128]. The method is also described in one of the papers [129] written by the author
during the development of the thesis. This chapter is concerned with a measurement model
composed of two dielectric rods located in a rectangular waveguide. One of the rods is made
of MUT, whereas the other one is intended to improve the classical single-rod models treated in
chapter 1.

The presence of holes or, in the general case, cylindrical dielectric inclusion in an otherwise
solid rod give rise to rotational asymmetry, which might be exploited to introduce slight varia-
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tions to the S11 by rotating the rod around their axes, thereby making slight adjustments of the
corresponding measurement curve.

In addition, this kind of structure may be utilized in non-destructive measurements of disper-
sive dielectric dielectric dielectric constant. The measurement procedure, in this case, consists
in placing the sample under test (with the dielectric constant to be determined) in (a) hole(s) of
the rod. Then, multiple measurements required to find a unique value of the dielectric constant
are achieved by making measurements at different rotation angles.

The surface integral equation describing the interaction of electromagnetic waves with the
structure is derived in the same manner as the one for the multi-layered structure treated in the
previous section.

6.1.9 Formulation

One of the structures for which the method is developed is depicted in Fig. 6.8. Again, it is
assumed that only the dominant TE10 mode can propagate in the waveguide. The incident wave
is the dominant waveguide mode (TE10 mode) propagating along the z axis with the electric
field component along the y-axis given by

E i(x, z) = sin (γ1x) · e−jkz1z. (6.66)

Since the cross-sections of rods and the distribution of the fields due to the incident wave are
uniform along the y axis, the problem can be solved in two dimensions, thus significantly sim-
plifying the analysis. In order to simplify the derivation process, define local coordinates for all
cylindrical regions as shown in Fig. 6.9. The local coordinate systems are defined such that the
origin of the coordinate system associated with a cylindrical region coincides with the center of
the region. The number of rods is denoted by N , and the number of cylindrical inclusions in
the i-th rod is denoted by Ni. For convenience, separate numbering is used for rods, as well as
internal homogeneous regions (inclusions) inside different rods.

z

x

TE10

x = 0

x = a

Fig. 6.8. The geometry of the problem. [129]

To make notation compact, different homogeneous regions are labeled using multi-index

104



that may be either a single or a pair of indices enclosed in braces. For regions between the
outer surface and inner surfaces of rods, a single index is used, e.g., the region between the
outer and inner surfaces of the n-th rod is labeled V{n}. For internal homogeneous regions,
two indices are used: the first index corresponds to the rod, whereas the second corresponds
to its sub-region. For example, label V{m,n} is used for the m-th sub-region of the n-th rod.
The region outside cylindrical rods is labeled V{0} = Vo. The outer surface of region Vα is
denoted by ∂Vα. The position vector in the local coordinate system associated with region Vα
and the corresponding Cartesian and polar coordinates are denoted by rα, xα, zα rα and φα,
respectively. The position vector of the origin of the local coordinate system for cylindrical
region Vα is denoted by r0,α, while x0,α and z0,α represent the global x and z coordinates of the
local system origin, respectively, and r0,α refers to the radius of cylindrical region Vα. For the
entire surface of region Vα, the symbol Ωα is used.

Vβ

Vα

[z0,β , x0,β ]

[z0,α, x0,α]

zβ

xβ

zα

xα

~rβ

~rα

Fig. 6.9. Local coordinate systems of rods and their inclusions. [129]

Also, for the sake of compactness, the following two integral operators are introduced

L α
i,βu (rs) =

∮
∂Vβ

u (rs)
∂Gα

i (ro, rs)

∂n
dls (6.67)

K α
i,βu (ro) = jZαkα

∮
∂Vβ

u(rs)Gα
i (ro, rs) dls, (6.68)

where the normal derivative in (6.67) is taken in the direction of outward pointing normal vector
and r o and r s are position vectors of observation and source points, respectively.

The first lower index takes only two values i = 1, 2. For i = 1, the Green’s function is given
by

Gα
1 (ro, rs) =

j
4

+∞∑
n=−∞

(
H

(2)
0

(
kαr

−
n

)
−H

(2)
0

(
kαr

+
n

))
, (6.69)
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where
r±n =

√
(xo ± xs + 2an)2 + (zo − zs)

2 - the distance between the n-th image of the source
point and the observation point, m.

This Green’s function is known as the waveguide Green’s function as it satisfies PEC bound-
ary conditions on the walls of the waveguide.

For i = 2, Green’s function is given by

Gα
2 (ro, rs) =

j
4
H

(2)
0

(
kαr

−
0

)
. (6.70)

The integral relation between the electric field at a point outside of the rods, i.e., ro ∈ V{0}, and
the fields on the boundary of the region is as follows

E i(ro) = E(ro)−
N∑

n=1

[
L {0}

1,{n}E (rs) + K {0}
1,{n}H (rs)

]
, (6.71)

where ro ∈ V{0},E i(ro) is the incident field,E(ro) andH(ro) are the total electric and magnetic
fields, respectively.

Similar relations exist for the other regions, as well. The integral relation for V{n} and ro /∈
V{n} is

L {n}
2,{n}E (rs) + K {n}

2,{n}H (rs) =

Nn∑
n=1

[
L {n}

2,{n,m}E (rs) + K {n}
2,{n,m}H (rs)

]
. (6.72)

For them-th inclusion of n-th rod and ro /∈ V{n,m}, one has

0 = L {n,m}
2,{n,m}E (rs) + K {n,m}

2,{n,m}H (rs) . (6.73)

To obtain a set of integral equations for the unknown fields on all surfaces of homogeneous
regions (6.71) is used, and integral relations (6.72), (6.73) are written for all the regions. Fur-
thermore, the observation point is restricted, ro, to the surfaces of the regions (entire surfaces),
e.g., for region Vβ one must have ro ∈ Ωβ .

The next step is to convert each of the integral equations to a set of linear algebraic equations.
To that end, the fields on each surface are approximated in terms of finite series of basis functions
with unknown expansion coefficients. More precisely, the electric and magnetic fields on ∂Vβ
are approximated as

Eβ (φβ) =
M∑

i=−M

Ei,βe
j iφβ , (6.74)
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and

Hβ (φβ) =
M∑

i=−M

Hi,βe
j iφβ , (6.75)

respectively, where NB = 2M + 1 is the number of basis functions.
The Galerkin method is used to discretize the above integral equations to obtain the system

of linear algebraic equations to be solved for the field expansion coefficients. In the Galerkin
method, the weighting functions are identical to the basis functions used to approximate the
fields on ∂Vα. The Galerkin method requires the evaluation of the inner product for all the pos-
sible pairs of basis andweighting functions, where the inner product of any two square integrable
functions u(ro) and v(ro) for surface ∂Vα is defined as

(u , v)α =

∮
∂Vα

u (ro) · v∗ (ro) dlo. (6.76)

Now, substituting (6.74) and (6.75) for the electric and magnetic fields, respectively, in the
equation for region Vγ and applying the Galerkin procedure to surface ∂Vα ∈ Ωγ yields

eα,β,γn =
(
E i(ro) , e

jnφα
)
α

(6.77)

lα,β,γn,m =
(
L γ

i,βe
jmφβ , ejnφα

)
α

(6.78)

kα,β,γn,m =
(
K γ

i,βe
jmφβ , ejnφα

)
α
, (6.79)

where
∂Vβ ∈ Ωβ .

In (6.77) through (6.79) i = 2 for γ ̸= 0 and i = 1 otherwise. Combining equations for
all the surfaces yields the resulting equation system, which is solved using a plain solver using
the LU factorization. Once the expansion coefficients are found, one can easily determine the
elements of the scattering matrix (scattering data) in the same manner as in the case of multiple
multi-layered rods.

Graf’s addition theorem is utilized to evaluate the matrix entries, which can be accomplished
analytically. Thus, Green’s function can be written in terms of a series of functions of local
coordinates associated with surfaces ∂Vα and ∂Vβ only.

H
(2)
0 (kγ|rd|) =

+∞∑
m,n=−∞

Zγ,+
m−n(rα,β)Z

γ,+
n (rα)Z

γ,−
m (rβ) , (6.80)

where
rd = ro − rs = rα − rβ + rα,β;
rα,β = r0,α − r0,β;
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Zβ,±
i (rα) = Qi(kβrα) · e±j iφα ;

Qi (x) - is either the i-th order Bessel function Ji(x), or the i-th order Hankel function of
the second kind H(2)

i (x) (the latter is used for the largest of rα, rβ and rα,β .

Now, substituting (6.80) into (6.78) and (6.79) and integrating, one has

lα,β,γn,m = − jkγIαIβ · Sα,β,γ
m−n ·Qn(R̄

γ
α) ·Q(1)

m (R̄γ
β)

kα,β,γn,m = ZγkγIαIβ · Sα,β,γ
m−n ·Qn(R̄

γ
α) ·Qm(R̄

γ
β), (6.81)

where
Iα = πRα, R̄α

β = kαRβ;
Sα,β,γ
i = Qi(kγRα,β) · ejiφα,β for β ̸= 0;
Rα,β and φα,β - the polar coordinates of vector rα,β .

Since in case of γ = 0 the waveguide Green’s function is used in place of the free space one

Sα,β,γ
p = Sα,β,γ

p,− − Sα,β,γ
p,+ , (6.82)

where
Sα,β,γ
p,± =

∑+∞
l=−∞H

(0)
p (kγr

±
l,α,β)e

j iφ±
l,α,β ;

r±l,α,β and φ±
l,α,β - the polar coordinates of vectors rl,α,β+ = r0,α − r0,β + 2la · ex and

rl,α,β = r0,α − r∗
0,β + 2la · ex;

r∗
0,β - the mirror image of r0,β with respect to the z axis.

Unfortunately, the direct evaluation of series (6.82) leads to requires an exceedingly large
CPU time unless some series acceleration techniques are employed. Similar to the case of mul-
tilayered rod configurations, this issue can be appreciably mitigated via the use of Ewald’s sum-
mation technique.

Using Ewald’s summation technique to speed-up the evaluation of series (6.82) results in
the following over-determined equation system

ZHh+
(
I −ZE

)
e = i, (6.83)

To calculate the excitation vector entries, one needs to evaluate the surface integral of the
product of each weighting function and the function representing the electric field of the incident
mode over the surface of the n-th rod. To that end, first rewrite expression (6.66) in terms of
local coordinates associated with the n-th rod, whose origin coincides with the axis of the rod

Ei (x, z) = e−jk̃z1(z0,{n}+r0,{n} cosφ{n}) 1

2j

(
ejγ1(x0,{n}+r0,{n} sinφ{n}) − e−jγ1(x0,{n}+r0,{n} sinφ{n})

)
,

(6.84)
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where
φk = arctan

(√
(k0a/π)

2 − 1

)
.

The (i+M+1)-th entry of then-th subvector of excitation vector i, i{n}, can be readily found
by multiplying the right-hand side of (6.84) by e−jiφ{n} and performing integration with respect
to φ{n} using the Jacobi-Anger expansion for the exponential function. The resulting expression
is identical to (6.65), which was derived for the multilayered rod configuration, except that in
this case different notation for the local coordinates associated with rods is used.

Then, to find the relations between the tangential components of the magnetic and electric
fields on the surface the m-th subregion of the n-th rod, the fields inside the subregion are
expressed in terms of cylindrical functions. As the electric field in them-th subregion of the n-th
rod satisfies the homogeneous Helmholtz equation, the electric field inside it may be expressed
as

E{m,n}
(
r{m,n}, φ{m,n}

)
=

+∞∑
l=−∞

Al,{m,n}Jn(k{m,n}r{m,n})e
jnφ{m,n} . (6.85)

The corresponding expansion for the magnetic field inside them-th cylindrical subregion of the
n-th rod can be found by using the second Maxwell’s equation and (6.85) as follows

H{m,n}
(
r{m,n}, φ{m,n}

)
= − 1

jZ{m,n}

+∞∑
l=−∞

Al,{m,n}Jn(k{m,n}r{m,n})e
jnφ{m,n} , (6.86)

where
Z{m,n} - the intrinsic impedance ofm-th cylindrical subregion of the n-th dielectric rod.

Now, using (6.85) and (6.86), as well as exploiting the orthogonality of both series with re-
spect to φ{m,n} to eliminate unknown expansion coefficients Al,{m,n}, one obtains the following
relation between the l-th field approximation coefficients El,{m,n} and Hl,{m,n} for the surface
of the n-th cylindrical subregion of them-th rod

Hl,{m,n} = Dl,{m,n}El,{m,n} (6.87)

where
Dl,{m,n} - the l-th diagonal entry of a diagonal matrixD{m,n}.

Using relation (6.87), as well as (6.83), one can obtain the following relation between sub-
vectors of e and h for each internal cylindrical subregion to reduce the number of unknowns
and therefore the size of the resulting equation system to be solved for the unknown field expan-
sion coefficients. For example, for them-th subregion of the n-th rod the submatrices in (6.83)
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become related as follows

h{m,n} = − 1

jZ{m,n}k{m,n}
D−1

{m,n}
(
ZH

{m,n}
)−1 (

I −ZE
{m,n}

)
e{m,n} (6.88)

Substituting (6.88) into (6.83) and solving the resulting equation system for the unknown ex-
pansion coefficients, then substituting them into (6.66) and integrating using the Jacobi-Anger
expansion yields the following expressions for S11

S11 =
N∑

n=1

M∑
l=−M

(−1)lC̃l,{n} sin
(
γ1x0,{n} + lφk

)
ejk̃z1z0,{n} , (6.89)

and S21

S22 =
N∑

n=1

M∑
l=−M

C̃l,{n} sin
(
γ1x0,{n} − lφk

)
e−jk̃z1z0,{n} , (6.90)

where
C̃l,{n} =

(−j)(l−1)2πk0r0,{n}

ak̃z1

[
Z{j}Hl,{j}Jl

(
k0r0,{n}

)
− El,{n}J

′
l

(
k0r0,{n}

)]
.

6.1.10 Numerical Verification

To verify the proposed method, the scattering parameters of two structures containing single
and two dielectric rods with inclusions were calculated using the proposed method and Ansys
HFSS. Tomake the notation more compact, dimensionless parameters are introduced to describe
the model under consideration. Namely, in place of the radius of the i-th rod the following di-
mensionless quantity is used r̃{i} = r{i}/a. To distinguish relative quantities, they are indicated
using a tilde over the respective symbols.

The first of two examined structures is a single rod with two identical circular holes located
symmetrically relative to its axis (see Fig. 6.10).

Fig. 6.10. Single dielectric rod with two identical holes (HFSS model). [129]

The dielectric constant of the rod with the relative radius r̃{1} = 1.5 are εr,{1} = 12.6. The
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relative distance between the centers of two cylindrical holes was d̃{1} = 0.16, the radii of
holes were r̃{1,1} = 0.03 and r̃{1,2} = 0.03, respectively. The rod was located midway between
the walls of the waveguide, i.e., x̃o,{1} = 0.5 and is rotated by an angle φr,{1} = 45◦. The
scattering data was computed at 1000 different values of a/λ0. As can be seen in Fig. 6.11 the
|S11| calculated with the proposed method is in good agreement with that computed by means
of Ansys HFSS. The CPU time required by the proposed method and Ansys HFSS are 3 s and
825 s, respectively.
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Fig. 6.11. |S11| calculated for the single rod model as a function of a/λo. [129]

The second of the examined structures comprises two rods, each having two cylindrical holes
with equal radii, as illustrated Fig. 6.12.

Fig. 6.12. Two dielectric rods with two identical holes (HFSS model). [129]

The dielectric constants of the rods are εr,{1} = 12.6 and εr,{2} = 23.7, respectively. The
first rod with radius r̃{1} = 0.14 was located at x̃0,{1} = 0.8, while the second rod had the radius
r̃{2} = 0.12 and was located at x̃0,{2} = 0.25. The relative distance between the centers of two
cylindrical holes was d̃{1} = d̃{2} = 0.05 and the radii of holes of the first and second rods
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are r̃{1,1} = r̃{1,2} = 0.05 and r̃{2,1} = r̃{2,2} = 0.04, respectively. Both rods are rotated by
φrot,{1} = φrot,{2} = 45◦.

The scattering data were computed for 1000 different values of a/λ0. The calculated |S11|
is plotted in Fig. 6.13 as a function of a/λ0.
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Fig. 6.13. |S11| calculated for the single rod model as a function of a/λo. [129]

The calculated |S21| at different values of a/λ0 is displayed in Fig. 6.14. The scattering data
computed employing the proposed method are in excellent agreement with those obtained using
Ansys HFSS. In contrast, the computation time of the proposed method is much shorter (5 s)
than that of HFSS (1215 s). The phase was measured from the reference planes at the origin of
the global coordinate system.
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Fig. 6.14. |S21| calculated for the single rod model as a function of a/λo. [129]

However, as can be seen in Fig. 6.15 where the phase of S21 is shown, there is, however, a
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small discrepancy between the results, which arises due to an increase in the ratio of the average
element size to the wavelength that, in turn, reduces the field approximation accuracy.
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Fig. 6.15. The phase of S21 calculated for the double rod model as a function of a/λo. [129]

At the low end, the discrepancy is due to the fact that the adaptive solution frequency in
HFSS was chosen to be very close to the highest frequency of the range (a/λ0 = 0.93) and an
interpolative sweep was employed. In both cases, the number of basis and weighting functions
used for each cylindrical surface was NB = 11.

6.2 Summary
A fast integral equation-based method for the scattering parameter calculation of complex

structures involving dielectric rods with a single or multiple cylindrical dielectric inclusion(s)
or holes (can be viewed as a special case of inclusions) was developed. In contrast to most of
its counterparts, it does not require surface partitioning of the object(s) under consideration and
performing numerical integration over the subdomains. Instead, the subdomain integrals were
evaluated analytically, giving infinite series of cylindrical functions referred to as Schlömilch
series or lattice sums. The series exhibit very slow convergence, but it is shown that a consid-
erable speed-up can be achieved with the use of Ewald’s summation technique. The accuracy
and the CPU time were compared against those obtained by means of commercially available
software Ansys HFSS. The outcome of this comparative analysis shows that the method is capa-
ble of providing sufficiently high accuracy while being considerably faster than general purpose
methods, not exploiting some structural peculiarities of the problem geometry, such as symme-
try, etc.
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CONCLUSIONS
This thesis is devoted to the evaluation and sensitivity improvement of dielectric permittiv-

ity measurement models for high-frequency low-loss dielectric materials. Several of the most
widely used dielectric constant measurement models have been investigated: 1) a model where
the material under test (MUT) is a dielectric slab in a rectangular waveguide or free space; 2) a
model where the MUT is a cylindrical dielectric rod in a waveguide. Both measurement mod-
els employ the reflection technique to retrieve dielectric permittivity. The main result of the
research is a simple, fast, and convenient measurement model evaluation methodology, which
can be applied even when model parameters (MUT dimensions, frequency, as well as the ex-
pected value of the dielectric constant) cannot be altered. In the case when the model sensitivity
is unacceptably low, and the model parameters are not allowed to be changed, e.g., when it is
required by standards or measurements have to be non-destructive or made at a fixed frequency,
the author has developed several measurement models employing additional dielectric objects
alongside the MUT. To facilitate the construction and calculation of the improved measurement
models, the author has developed a number of analytical and numerical approaches. The author
has also developed a new numerical method for the analysis of models with a single or multiple
circular cylindrical rods in a waveguide, whose use results in an appreciable reduction in the
computation time compared to the existing general-purpose numerical methods, which is essen-
tial when the measurement uncertainty is estimated with the use of the Monte Carlo method.

1. In the thesis, it is shown and numerically verified that the measurement model sensitivity,
which a quantity showing how sensitive is the value of measurand to small variations in
model input parameters, depends significantly on model parameter values and that in the
case when the measurements are to be performed at a fixed frequency and for the MUT
whose shape cannot be changed, the model sensitivity is significantly affected by the di-
electric constant. Also, it is shown that there are dielectric constant value ranges where
the model sensitivity is very low, resulting in unacceptably large measurement uncertain-
ties. Furthermore, these low-sensitivity regions become very wide for the MUT dielectric
constant values greater than approximately 10.

2. A new methodology is proposed that allows for evaluating the sensitivity of dielectric
constantmeasurementmodels based on the data obtained by solving the forward scattering
problem only, which makes it possible to quickly and straightforwardly evaluate whether
the model is suitable for measurements or not.

3. In the Thesis, it is demonstrated and numerically verified that in the case when the mea-
surements must be performed for a fixed set of model parameters and it is found that the
conventional model is not suitable due to an unacceptably large measurement uncertainty,
it is possible to construct another non-destructive measurement model to reduce the mea-
surement uncertainty. This model can be constructed by adding one or more additional
elements to the conventional model containing the MUT only. Additionally, it is demon-
strated that the model sensitivity can also be improved by changing the dimensions of the
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sample, but this would require sample destruction, which is not always permissible and
possible.

4. The following new models were developed for the extended measurement models:

• in case a measurement method that involves measuring the dielectric constant of a
slab made of the MUT and located in free space or a waveguide is employed, the
new models are the two-slab model and the three-slab model;

• in case a measurement method that involves measuring the dielectric constant of a
cylindrical rod made of the MUT (it can be hollow in the middle) and located in a
rectangular waveguide is employed, the new measurement model is constructed by
adding an auxiliary cylindrical rod.

5. It has been shown that even when conventional measurement models do not exhibit suffi-
ciently high model sensitivity, an extended measurement model developed by the author
can be used to considerably improve it (at least 3-5 times) to reduce the dielectric constant
measurement uncertainty.

6. The author has developed, successfully verified, and employed for the analysis of some of
the measurement models examined in the thesis a new fast and accurate integral equation
based numerical method for the scattering data calculation for structures composed of
one or more multilayered circular cylindrical dielectric rods, as well as metallic rods. The
method has been shown to compute the scattering data at least 50 times faster than existing
commercially available finite-element-based software.

The results presented in the thesis have been approved and show that all research objectives
of the doctoral thesis have been achieved, and all planned analytical and numerical studies have
been successfully accomplished. The results may be of particular importance for the evaluation
of dielectric permittivity measurement models for low-loss dielectric materials and for con-
structing new models with a higher measurement sensitivity than that provided by conventional
measurement models containing the MUT only.
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