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Relevance of the topic 
The Thesis aims to research and develop an adaptive control system algorithm, its 

implementation, and integration into the control system of an existing unmanned vehicle. An 
additional optimization controller is proposed for energy-efficient control of unmanned vehicle 
movement. The structure based on a neural network expands the adaptive search algorithm, 
significantly reducing the time required to determine the optimal control signal values and 
maximizing the energy efficiency of the unmanned vehicle. The proposed approach is intended 
to be universally applicable to any unmanned vehicle with varying numbers of propulsion 
systems, different or variable masses, and other configuration differences, without any initial 
manual tuning. Any electric unmanned vehicle should move with maximum energy efficiency 
using the suggested algorithm. 

Scientific publications on this subject have been analyzed to gain insights into the 
current state of research, innovative technologies, and potential solutions (the most relevant are 
referenced at the end of the Thesis). The study aims to understand the existing knowledge, 
identify emerging trends, and explore opportunities for further improvements in optimizing 
electric transportation systems, including the integration of autonomous features. Analysis 
reveals that currently, the majority of energy-saving solutions are related to route calculation 
and trajectory planning for unmanned vehicles (UVs), as well as energy-saving algorithms for 
other equipment unrelated to UV electric propulsion systems. Only a few studies focused on 
reducing energy consumption explore the mechanical and electrical properties of power 
devices. 

The goal and tasks of the thesis 
The goal of the research 

The goal of the research is to develop a method for optimizing the power consumption 
of any electric unmanned vehicle. This method will enable determining optimal control signals 
at the beginning of motion for efficient energy control under varying vehicle parameters, 
without prior calculations or adjustments. 

Hypothesis 
Using the new method can reduce the energy consumption of unmanned vehicles. 

The tasks of the research 
• Research the mechanical and electrical properties of electric motors for unmanned 

electric vehicles. 
• Develop a mathematical model of unmanned electric vehicles to solve the energy 

consumption minimization problem. 
• Construct mechanical models of electric unmanned vehicles. 
• Identify the target function for minimizing energy consumption. 
• Explore algorithms for finding minimal energy consumption. 
• Research neural networks. 
• Research and develop an algorithm for automatic creation of a training set. 
• Develop an optimization algorithm for a self-learning neural network. 
• Design an electrical circuit for the optimization controller. 
• Develop electrical circuits for experimental devices. 
• Create a computer model of unmanned electric vehicles for experimental energy 

consumption calculations and investigation of the optimized objective function. 
• Experimentally test various traction electric motors for unmanned electric vehicles and 

collect data on their performance and consumption. 



6 
 

• Test the optimization algorithm of the self-learning neural network.  
 

Research tools and methods 

• Inductive method 
• Deductive method 
• Systems analysis 
• Statistical analysis methods 

• Neural network theory 
• Optimization methods 
• Formalization method 

 

Scientific novelty of the work 
A new method for energy savings in electric unmanned vehicles has been developed. 

The method consists of a new algorithm for automatic generation of a training dataset for a 
neural network, a new algorithm for load characterization, and a minimum search algorithm. 

The novelty of the proposed method is in the self-learning neural network and the 
algorithm for this network to determine the nature of the load and its change. 

Practical application of the work 
The application of this method enhances energy efficiency and reduces power 

consumption in electric unmanned vehicles. The developed optimization controller can be 
utilized in any electric unmanned vehicle. 

Work approbation 
1. 61st International Scientific Conference on Power and Electrical Engineering of Riga 

Technical University, report “Neural Network-Based UAV Optimal Control Algorithm 
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Technical University, report “Unified Energy Efficient Control Algorithm for Electric 
Unmanned Aerial Vehicles with Different Traction Drives and Configurations,” A. 
Korneyev, M. Gorobetz, A. Levchenkov, Latvia, Riga, 12–14 November 2018. 

3. 60th International Scientific Conference on Power and Electrical Engineering of Riga 
Technical University, report “Analysis and Modelling of UAV Electrical Traction Drive 
based on Empirical Data for Energy Efficiency Tasks,” M. Gorobetz, A. Potapovs, A. 
Korneyev, Latvia, Riga, 7–9 October, 2019.  

4. 7th IEEE International Energy Conference, report referāts “Long-term Energy and Fuel 
Consumption Forecast in Private and Commercial Transport using Artificial Life 
Approach,” M. Gorobetz, A. Korneyev, L. Zemite, Latvia, Riga, 9–12 May 2022. 

5. 61st International Scientific Conference on Power and Electrical Engineering of Riga 
Technical University, report “Intelligent Algorithm for Using Overall Energy 
Consumption Statistics,” M. Gorobetz, L. Zemite, A. Jasevics, A. Korneyev, Latvia, 
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6. 11th International Doctoral School of Energy Conversion and Saving Technologies, 
report “Research and development of evolutionary algorithms for optimal energy 
efficient control of autonomous unmanned electric vehicle systems,” Latvia, 
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Introduction 

Deep analysis of the research base reveals that currently, the majority of energy-saving 
solutions are related to route calculation and trajectory planning for unmanned vehicles, as well 
as energy-saving algorithms for other equipment unrelated to unmanned vehicle electric 
propulsion systems. Only a few studies focused on reducing energy consumption explore the 
mechanical and electrical properties of power devices. 

In the context of this research, an unmanned vehicle corresponds to an autonomous 
electrical vehicle (UV) that includes an autopilot in its control structure, enabling the control 
of the vehicle to reach predetermined coordinates. 
 

 Control structure and description of elements  
Detection of control signals for optimizing transportation vehicles. In the context of this 

research, an unmanned electrical vehicle corresponds to an autonomous vehicle that includes 
an electric drive and an autopilot in its control structure, enabling the control of the vehicle to 
reach predetermined coordinates. 

To identify the control signals for optimizing transportation vehicles, let us consider the 
existing types of vehicles based on degrees of freedom and the control signals they employ, 
assuming that all of them can be unmanned. 

Types of transportation based on the mode of movement, for example: 
• water-based – surface vessels, submarines; 
• air-based – airplanes, helicopters, multicopters (aerial vehicles with three or more 

lifting rotors); 
• land-based – trains, automobiles. 
The minimum number of control signals are be present in a train – one control signal. The 

maximum number of control signals are in a multirotor rotorcraft with wings – four control 
signals. 

Thus, for controlling any transportation vehicle, the maximum number of control signals 
is four: 
c1 – a roll (aileron) control signal; 

c2 – a pitch (elevator) control signal; 

c3 – a throttle control signal; 

c4 – a yaw (rudder) control signal. 

Structure of an unmanned vehicle control. The simplified control structure [33], [36] of 
UV’s control system consists of an input block, route planner, navigation equipment, sensors, 
autopilot controller, and electric drive [30]. 

The proposed structure of UVs. To achieve energy-efficient control, it is proposed to 
integrate a self-learning optimization controller [32], as investigated in this study, into the 
existing structure of UV control system between the autopilot controller and the electric drive 
[23], [25]. The proposed scheme for incorporating the self-learning optimization controller into 
the existing structure of UV control system is depicted in Fig. 1.1. 
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Fig. 1.1. The proposed scheme for integrating the self-learning optimization controller into 
the existing structure of UVs control system. 

 

 Thus, the author proposes to integrate the new optimization controller and the control 
signal encoder and decoder into the existing control structure of unmanned vehicles. The 
existing control structure in general consists of an electric drive, sensors, navigation equipment, 
input data block, a route planner, and an autopilot controller. 
 The encoder and decoder for control signal components are not considered in this 
research. 

Structure of the self-learning optimization controller. The structural diagram of the self-
learning [34], [37] optimization controller (OC) [40] is depicted in Fig. 1.2. 

 



10 
 

Voltage divider

Training dataset

Voltage stabilizer
OutputsInputs

Uvcc

Ued

SAT

C

Ied

Copt

Neural network device

NN learning algorithm

Neural network

Search for minimum 
energy consumption

Control device

Creation of the training 
dataset

Formation of control 
signals

  

 Formation of constraints

Validation of constraint 
compliance.

Input signal processor

 
 

Fig. 1.2. Structural diagram of the self-learning optimization controller. 
 

 The structure of the optimization controller consists of inputs, voltage stabilizer, voltage 
divider, satellite navigation module, neural network (NN) device, control device, and outputs. 
The voltage and current values of the electric drive [28], [29] and control signals are supplied 
to the input of the optimization microcontroller. The voltage stabilizer powers the neural 
network device [26] and the control device. The neural network device implements the neural 
network [44] and the known neural network training algorithm (for example backpropagation 
algorithm) and also stores the training dataset. The developed algorithm of the control device 
includes the algorithm for minimum energy consumption search. For this search, known 
algorithms (for example, uniform search algorithm) may be applied. Additionally, the newly 
developed algorithm creates a training data set and generates control signals. The control signals 
are formed taking into account the constraints imposed by safety and other criteria. The 
optimized control signals are provided at the outputs. The blocks related to constraints are not 
considered in this study. 

The electrical scheme of the self-learning optimization controller. The electrical 
diagram [42] of the self-learning optimization controller for optimal energy-efficient control 
[41] is depicted in Fig. 1.3. 
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Fig. 1.3. Electrical scheme of the self-learning optimization controller. 
 

 In the electrical scheme of a self-learning optimization controller, contact 1 of connector 
H1 is connected to a voltage divider consisting of resistors R1/R2. The contact number 8 is 
connected to a voltage stabilizer consisting of microchip U3, diode D1, transistor Q1, and 
resistors R5–R7. Control signals c1, c2, c3, and c4 are connected to microcontroller U1 through 
contacts 2–5. Contacts 6 and 7 receive the current and voltage values of the electric drive, 
respectively. Outputs 1–4 represent the optimal control signal values c1opt, c2opt, c3opt, and c4opt. 
USB connectors J1 and J2 are used for programming microcontrollers U1 and U2. U4 and U7 
are UART/USB protocol converters. U5 is a satellite receiver. U6 is a barometer. S1 and S2 are 
reset buttons for microcontrollers. Y1, Y2, Y3, and Y4 are quartz crystals for frequency 
stabilization of the microchips. Capacitors C8, C9, and C10 represent a frequency filter that 
smoothens power fluctuations. 
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 Mathematical models for the self-learning optimal control system  
The spatial model of vehicles 

 The UV with 6 degrees of freedom moves relative to an inertial reference frame fixed 
to the Earth, with coordinate axes Ox, Oy, and Oz. The Oz axis is directed opposite to the 
gravitational force vector. The UV has its own coordinate system with the center O located at 
the center of mass of the vehicle, and the Oxy, Oyz, and Ozy axes are parallel and co-aligned 
with the axes of the fixed reference frame. The angular position of the vehicle is defined by 
three angles: φ (roll, rotation around the Oxz axis), θ (pitch, rotation around the Oxy axis), and 
ψ (yaw, rotation around the Ozy axis), which respectively determine rotations around the axes.  
x, y, z – main axes direction of movement. 
∠𝜑𝜑,  ∠𝜃𝜃,∠𝜓𝜓 – vehicle position angles relative to coordinates. 
Signals of control required for movement in 3-dimensional space: 
c1 – a roll (aileron) control signal level; 
c2 – a pitch (elevator) control signal level; 
c3 – a throttle control signal level; 
c4 – a yaw (rudder) control signal level. 

We assume that the motion occurs in the xy, xz, and yz planes. The angles ∠φ, ∠θ, and 
∠ψ are formed by displacements in these planes. To control any UV, four control signals are 
sufficient. Thus, the minimum number of control signals for a train is one, while the maximum 
number is four, for a multirotor aircraft with variable-pitch propellers. 

 
Definition of the target function 

The primary criterion of the target function is UV energy consumption minimization, 
which in general form is represented as the following equation: 

𝐸𝐸 = 𝑓𝑓1(𝐶𝐶,𝑄𝑄) → min       (2.1) 
The secondary criterion is a minimization of the maneuver time that should be minimal in 

the case when the primary criterion is satisfied, i.e., if more than one solution exists with the 
same minimal energy consumption, then the maneuver with the shortest time should be 
selected: 

𝜏𝜏 = 𝑓𝑓2(𝐶𝐶) → min,                                                     (2.2) 
where 
  E – electrical energy consumption for the maneuver completion, Ws; 
  C – a set of adaptive control parameters, i.e., C = (c1, c2, c3, c4); 
  Q – an uncontrollable parameter set, internal, external and environmental impacts;  
  𝜏𝜏 – time spent for maneuver, s. 

Start parameters: c1 = 0, c2 = 0, c3 = 0, c4 = 0, az(R) 0°, targ = 0 + n. 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝐸𝐸𝑣𝑣 = ∫ 𝐼𝐼 · 𝑈𝑈 · d𝑡𝑡 = 𝑓𝑓 (c1, c2, c3, 𝑐𝑐4, 𝑡𝑡) → min

|𝑎𝑎𝑎𝑎(𝑐𝑐4) − 𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡| → 0
|𝑥𝑥(𝑐𝑐1, 𝑐𝑐2) − 𝑥𝑥𝑀𝑀| → 0
|𝑦𝑦(𝑐𝑐1, 𝑐𝑐2) − 𝑦𝑦𝑀𝑀| → 0

|𝑎𝑎(𝑐𝑐3) − 𝑎𝑎𝑀𝑀 | → 0
𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐1 ≤ 𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐2 ≤ 𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐3𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐3 ≤ 𝑐𝑐3𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐4𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐4 ≤ 𝑐𝑐4𝑚𝑚𝑚𝑚𝑚𝑚

.         (2.3) 

In the present study, the maneuver means the achievement of the target point M (xM, yM, 
zM) from the current UV location S (x0, y0, z0), within the condition: 
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�
|𝑥𝑥M − 𝑥𝑥0| ≤ 𝜀𝜀𝑋𝑋
|𝑦𝑦M − 𝑦𝑦0| ≤ 𝜀𝜀𝑌𝑌
|𝑎𝑎M − 𝑎𝑎0| ≤ 𝜀𝜀𝑍𝑍

 ,                                      (2.4) 

where  
  𝜀𝜀X, 𝜀𝜀Y, 𝜀𝜀Z – an acceptable precision by Ox, Oy, Oz axes. 
 

The definition of the power consumption function 
The total electricity consumption [35] of the UV can be determined as follows: 

𝐸𝐸 = ∫ 𝑢𝑢(𝑡𝑡, 𝑐𝑐(𝑡𝑡)) ∙ 𝑖𝑖(𝑡𝑡, 𝑐𝑐(𝑡𝑡))𝜏𝜏
0 ∙ d𝑡𝑡 = 𝐸𝐸𝑣𝑣 + 𝐸𝐸𝑝𝑝 .      (2.5) 

Energy consumption of UV in continuous form is the following: 
 𝐸𝐸𝑣𝑣 = ∫ ∑ 𝑢𝑢𝑗𝑗(𝑡𝑡, 𝑐𝑐(𝑡𝑡)) ∙ 𝑖𝑖𝑗𝑗(𝑡𝑡, 𝑐𝑐(𝑡𝑡))N

𝑗𝑗=1
𝜏𝜏
0 ∙ d𝑡𝑡.      (2.6) 

The electricity consumption of other equipment can be determined as follows:  
𝐸𝐸p = 𝐸𝐸 − 𝐸𝐸v,           (2.7) 

where  
  E – total energy consumption expenditure during maneuver, Ws; 
  Ev – consumed energy by traction drives for maneuver, Ws; 
  Ep – energy consumed by other electrical equipment for the maneuver, Ws; 
  t – momentary time values, s; 
  τ – maneuver completion time, s; 
  c(t) – a set of momentary control signal values, μs;  
  N – the number of UV traction drives (traction motor and electronic speed controllers); 
  j – an index of UV traction drive; 
  uj(t) – a momentary voltage value of j-th traction drive, V; 
  ij(t) – a momentary current value of j-th traction drive, A; 
  u(t) – the battery voltage of the UV at time t is denoted as V; 
  i(t) – the battery current of the UV at time t is denoted as A. 
 
 In discrete [51] form, the energy consumption of UV can be determined as follows: 

𝐸𝐸 = ∑ 𝑃𝑃𝑡𝑡d𝑡𝑡τ
𝑡𝑡=0 = ∑ (𝑢𝑢𝑡𝑡 · 𝑖𝑖𝑡𝑡)𝑑𝑑𝑡𝑡τ

𝑡𝑡=0 /3600,                   (2.8) 
where  
  dt – discrete time step, in seconds, s; 
  Pt – instantaneous power, Wh; 
  ut – measured voltage, V; 
  it – measured current, A. 
 

When solving the problem, we assume that the design and equipment of the UV comply 
with the conditions of electrical equipment coordination: 

– the output voltage of the battery pack and the maximum output current correspond to 
the current and voltage of traction motors and electronic speed controllers; 

– the maximum values of peak and continuous current for electronic speed controllers 
correspond to the current of traction motors. 

 
Development of a mathematical model for calculating the motion of an UV 

In this section, a mathematical model for the motion of the UV is being created. It will allow 
simulating its movement in space and calculating the energy consumption. 

The model is based on the fundamental law of classical mechanics, actually Newton’s 
second law of motion: 

𝐹𝐹vil − 𝐹𝐹gr−𝐹𝐹ga = 𝑚𝑚 · 𝑎𝑎,    (2.9) 



14 
 

where 
  𝐹𝐹vil – UV resultant force, N;  
  𝐹𝐹ga – resistance force, N;  
  𝐹𝐹gr – gravity force, N;  
  𝑚𝑚 – UV mass, kg; 
  𝑎𝑎 – UV acceleration, m/s2. 

 Figure 2.1 shows the vectors of these forces. 

α

Fga

Fgr

Fvil Fver

Fhor

Fga hor

Fga ver

 
Fig. 2.1. Forces acting on the UV. 

 

Distribution of forces into vertical and horizontal components:  
𝐹𝐹ver – vertical lift force of the UV, N;  
𝐹𝐹hor – horizontal lift force of the UV, N. 

𝐹𝐹ga = 𝜌𝜌 ∙ 𝐶𝐶D ∙ 𝐴𝐴eff ∙ 𝑣𝑣2 .    (2.10) 
𝐹𝐹gr = 𝑚𝑚 ∙ 𝑡𝑡0 .            (2.11) 

UV acceleration is calculated from the force equation:   
𝑎𝑎 = 𝐹𝐹vil−𝐹𝐹gr−𝐹𝐹ga

𝑚𝑚
.          (2.12) 

UV velocity: 
𝑣𝑣 = ∫ 𝑎𝑎 d𝑡𝑡𝜏𝜏

0 .            (2.13) 
UV distance: 

𝑠𝑠 = ∫ 𝑣𝑣 d𝑡𝑡𝜏𝜏
0 .           (2.14) 

Mechanical power (instantaneous):  
𝑁𝑁(t) = 𝐹𝐹t · 𝑣𝑣(𝑡𝑡).                    (2.15)                             

 
The following functional dependencies are defined for the UV velocity limits. 

Maximum vertical velocity [24]: 

𝑉𝑉ver = � 2·𝑚𝑚·𝑔𝑔0
𝜌𝜌·𝐶𝐶D·𝐴𝐴eff

∗ �(𝐹𝐹𝐹𝐹 − 1) .        (2.16) 

Maximum horizontal velocity: 

𝑉𝑉ℎ𝑜𝑜𝑜𝑜 = �1 − 1
𝐹𝐹𝑅𝑅2

4 · � 2·𝑚𝑚·𝑔𝑔0
𝜌𝜌·∗𝐶𝐶D·𝐴𝐴eff

       (2.17) 

𝐹𝐹𝐹𝐹 = 𝐹𝐹
𝑚𝑚·𝑔𝑔0

,     (2.18) 
where: 
  𝐹𝐹 – motor summary traction power, N;  
  𝑡𝑡0– gravity acceleration value 9.81 m/s2; 
  𝐶𝐶D – aerodynamic flow factor; 
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  𝐴𝐴eff – UV effective area, m2;  
  𝜌𝜌 – air density, кg/m³. 

Electromechanical models of electric unmanned vehicles 
Mechanical model [6] of the UV defined by following parameters: 

− m – mass of UV, kg;  

− Ahor
eff – area of the UV in horizontal plane, m2; 

− Aver
eff – area of the UV in horizontal plane, m2; 

− Ft – summarized traction force, N;  

− x, y, z – translational position in the space, where z is vertical axis, m; 

− 𝜑𝜑, 𝜃𝜃,𝜓𝜓  – angles of UV rotational position in the space, rad; 

− aver – vertical acceleration of the UV, m/s2  

− ahor – horizontal acceleration of the UV, m/s2 

− vver – vertical speed of the UV, m/s; 

− vhor – horizontal speed of the UV, m/s. 

Battery parameters: 
− Cbat – capacity of the battery, Ah; 

− Ibat – relative maximal current, A; 

− Nbat – number of battery cells; 

− U0 – battery momentary voltage without load, V. 

Motor drive control parameter: 
− PW = {PW1 … PWn} – set of pulse widths for each motor, μs. 

Motor parameters: 
− Pnom – nominal power, W; 

− F jt – traction force of each j-th motor, N; 

− I j(Uunload, F jt) – momentary current of the j-th motor with given traction force, A; 

− P j(Uunload, F jt) – momentary power of the j-th motor with given traction force, W; 

− U jload = P j/I j – momentary voltage of the j-th motor with the given traction force, V. 

Approximated functions for motor current and power in the following form of second-
order polynomial by obtaining empirical data: 

𝐼𝐼𝑗𝑗�𝑈𝑈0,𝐹𝐹𝑡𝑡
𝑗𝑗� = 𝛼𝛼𝑚𝑚(𝑈𝑈0) ∙ � 𝐹𝐹𝑡𝑡

𝑗𝑗�
2

+ β𝑚𝑚(U0) ∙  𝐹𝐹𝑡𝑡
𝑗𝑗 + 𝛾𝛾𝑚𝑚(𝑈𝑈0)      (2.19) 

𝑃𝑃𝑗𝑗�U0,𝐹𝐹𝑡𝑡
𝑗𝑗� = 𝛼𝛼p(𝑈𝑈0) ∙ � 𝐹𝐹𝑡𝑡

𝑗𝑗�
2

+ βp(𝑈𝑈0) ∙  𝐹𝐹t
j + 𝛾𝛾p(U0).       (2.20) 

where each coefficient is a linear function: 
𝛼𝛼𝑚𝑚(𝑈𝑈0) = 𝜅𝜅iα ∙ 𝑈𝑈unload + 𝛿𝛿iα;                            (2.21) 
𝛽𝛽𝑚𝑚(𝑈𝑈0) = 𝜅𝜅i

β ∙ 𝑈𝑈unload + 𝛿𝛿i
β       (2.22) 

𝛾𝛾𝑚𝑚(𝑈𝑈0) = 𝜅𝜅i
γ ∙ 𝑈𝑈unload + 𝛿𝛿i

γ       (2.23) 
𝛼𝛼p(𝑈𝑈0) = 𝜅𝜅pα ∙ 𝑈𝑈unload + 𝛿𝛿pα       (2.24) 
𝛽𝛽p(𝑈𝑈0) = 𝜅𝜅p

β ∙ 𝑈𝑈unload + 𝛿𝛿p
β        (2.25) 
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𝛾𝛾p(𝑈𝑈0) = 𝜅𝜅p
γ ∙ Uunload + 𝛿𝛿p

γ.       (2.26) 
 

For UV movement simulation forces are calculated by following equations: 
 𝐹𝐹t = ∑ 𝐹𝐹𝑡𝑡

𝑗𝑗n
𝑗𝑗=1                 (2.27) 

 𝐹𝐹z = 𝐹𝐹ver = 𝐹𝐹t ∙ cos𝜑𝜑 cos 𝜃𝜃               (2.28) 
 𝐹𝐹hor = �(𝐹𝐹t)2 − (𝐹𝐹ver)2             (2.29)  

 𝐹𝐹x = 𝐹𝐹hor ∙ cos𝜓𝜓 sin𝜑𝜑 cos𝜃𝜃 + sin𝜓𝜓 sin 𝜃𝜃            (2.30)  
 𝐹𝐹y = 𝐹𝐹hor ∙ sin𝜓𝜓 sin𝜑𝜑 cos𝜃𝜃 − cos𝜓𝜓 sin 𝜃𝜃            (2.31)  

 𝐹𝐹g = 𝑚𝑚 ∙ 𝑡𝑡                             (2.32)  
 𝐹𝐹resver = 𝜌𝜌 ∙ 𝑐𝑐d ∙ 𝐴𝐴effver ∙ (𝑣𝑣ver)2               (2.33)  
 𝐹𝐹reshor = 𝜌𝜌 ∙ 𝑐𝑐d ∙ 𝐴𝐴effhor ∙ (𝑣𝑣hor)2,                                         (2.34)  

where 
  g = 9.81 – the Earth’s gravity constant, m/s2; 
 ρ = 1.2255 – air density assumed as a constant, kg/m3. 
 

For UV hovering the following condition should be satisfied: 
 𝐹𝐹ver = 𝐹𝐹g, 𝐹𝐹hor = 0.     (2.35)  

For UV vertical lift up the following condition should be satisfied: 
 𝐹𝐹ver > 𝐹𝐹g, 𝐹𝐹hor = 0.     (2.36)  

For UV horizontal movement on the constant altitude the following condition should 
be satisfied: 

 𝐹𝐹ver = 𝐹𝐹g, 𝐹𝐹hor > 0.                   (2.37)  
 

Energy consumption in Wh and battery capacity consumption in Ah is calculated by 
the following equations: 

 𝐸𝐸cons = ∫ �∑ 𝑃𝑃𝑗𝑗�𝑈𝑈0,𝐹𝐹t
j�n

𝑗𝑗=1 �𝜏𝜏
0 d𝑡𝑡               (2.38)  

 𝐶𝐶cons = ∫ �∑
𝐼𝐼j�𝑈𝑈0 ,𝐹𝐹t

j�

3600
n
𝑗𝑗=1 �𝜏𝜏

0 d𝑡𝑡,             (2.39) 

where τ – time moment 
 

Mechanical power (instantaneous): 
𝑁𝑁(t) = 𝐹𝐹t · 𝑣𝑣(𝑡𝑡).                                                      (2.40)  

Mechanical work: 
                         𝐴𝐴 = ∫ 𝑁𝑁 · d𝑡𝑡𝜏𝜏

0 /3600.                                            (2.41)  
Power consumption: 

P = U·I.             (2.42)  
Torque on the motor shaft: 

𝑀𝑀sl = 9950 𝑃𝑃
𝑚𝑚

.                                                        (2.43)  
Efficiency of UV: 

𝜂𝜂 = ∑𝐴𝐴
∑𝐸𝐸

.         (2.44)  

Mathematical model of a neural network 
Neural network notations. Let us define the following designations in neural network 

models [31], [24]: 
  t – time moments;  
  i, j, k – neural network indices. Neuron j is a neuron in the hidden layer and is located in the 
 layer following layer i, while neuron k is located in the layer following neuron j; 
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  n – iteration corresponding to the n-th training sample; 
  In(t) – an input signal of m dimensions at time moment t; 
  Ini(n) – the i-th element of the input vector X(n) in the n-th iteration; 
  d(t) – scalar system output signal at time moment t; 
  y(t) – neural network output at time moment t; 
  e(t) – error, the deviation of the output signal y(t) from the desired signal d(t) at time 
 moment t; 
  ej(n) – error of neuron j in the n-th iteration; 
  dj(n) – target result of the j-th neuron; 
  yj(n) – functional signal of the j-th neuron; 
  wji(n) – weight between the i-th neuron in the previous layer and the j-th neuron in the 
 current layer; 
  – correction of the weight between the i-th neuron in the previous layer and the j-th 
neuron in the current layer.; 
  bj – bias of the j-th neuron; 
  – bias in the form of a weight, with x0 = +1; 
  vj(n) – induced local field (weighted sum of all weight-input and bias) of neuron j in the n-th 
iteration; 
  φj (yj(n)) – activation or transfer function of the j-th neuron; 
  E(n) – current sum of squared errors (error energy) in the n-th iteration; 
  Eav – average error for the entire training set; 
  – gradient operator; 
  – training rate parameter; 
  k – size of the input layer; 
  nq – size of the hidden layer; 
  m – size of the output layer. 

General mathematical model for a neural network 
Each neuron has an input data vector, weights for each input vector element, an 

activation function, and an output. A neural network typically consists of multiple layers. Each 
layer can have a defined or undefined number of neurons. Neural networks [52] enable the 
analysis of an object based on the input parameter vector and determine the object's affiliation 
to a specific class. This means that neural networks need to be trained in order to determine the 
object's affiliation to predefined classes.  
 
 The mathematical model of a neural network can be defined as follows: 
o neural network input signal vector: In = {𝑖𝑖𝑖𝑖1, 𝑖𝑖𝑖𝑖2, …, 𝑖𝑖𝑖𝑖𝑘𝑘}; 
o set of neurons in the hidden layer: P = {p1, p2, …, pnq}; 
o neural network output vector: 𝑐𝑐opt = {copt1, 𝑐𝑐opt2, …, 𝑐𝑐opt𝑚𝑚 }; 
o set of weight vectors for each input of the i-th neuron in the j-th layer: Wi 

j = {wi1, wi2, …, 
win}; 

o bias for each i-th neuron in the j-th layer: bi 
j; 

o summation function for each i-th neuron in the j-th layer: si 
j = ∑(Wi 

j·X) + bi 
j; 

o activation function for all neurons in the j-th layer: F j(s j). 
  

)(nwji∆

jj bw =0

∇
η
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 Algorithms for a self-learning optimal control system  
UV general optimal control algorithm 

All the optimal value search methods discussed in the Thesis are based on comparing the 
values of two target functions and making the corresponding decisions based on the 
improvement (success) or deterioration (failure) of the target function value. 

UV optimal control algorithm [45], [46] in general form: 
Step 1. Generation of initial control signal – specify the value of the control signal. 
Step 2. Measurement – measure or calculate the value of the target function. 
Step 3. Optimization – apply a specific optimization method to make a decision and 
execute an action for the next value of the control signal. 
Step 4. Checking the reached optimal value – if the optimal value has not been reached, 
return to step 2 with a new control signal until the optimal control value is achieved, 
then proceed to step 5. 

 Step 5. Waiting – after reaching the optimal value, after a certain time, it is necessary to 
recheck the optimal value because the motion conditions may change, then  
 repeat step 2. 
 Defining the algorithm in more detail, taking into account the information available 
from the OC controller and its sensors, the steps of the UV energy consumption minimization 
algorithm would look as follows: 
Step 1. Specify the initial control signal c. 
Step 2. Measuring the acceleration a, find the time moment when a < eps ~ 0, then set  
 v = const. Such a transition process is not taken into account. 
Step 3. Save the energy consumption value at the given moment as e0, time as t0, and  
 distance as s0. 
Step 4. After a fixed time tf = const, calculate the energy consumption per meter.   
 (Wh/m) 

de = (e – e0)/(s – s0).     (3.1) 
Step 5. If de1 has not been saved yet, then save de1 = de; otherwise, de2 = de. 
Step 6. If de2 is defined, then proceed to step 7. 
Step 7. If de2 < de1,  
 a) then, if the current control signal is better than the previous one and   
    movement occurs in an extreme direction and according to the chosen   
    optimization method, the next signal c is generated (in case of an    
    unsuccessful attempt); 
  b) otherwise, if the current control signal is worse than the previous one and  
    according to the chosen optimization method, the next signal c is generated  
    (in case of an unsuccessful attempt). 
Step 8. Check the fulfillment of the condition for reaching the optimal values: 
 a) if it is completed, then the waiting mode is skipped and the next search for  
    the optimal value will occur after time tg; 
  b) if the condition is not fulfilled, then proceed to step 2. 
 

 The Thesis considers two deterministic and two stochastic methods for further testing 
and suitability for optimal UV control: 

• Uniform search method 
(deterministic) 

• Halving method (deterministic) 

• Algorithm with backtracking to 
unsuccessful step (stochastic) 

• Random search method (stochastic)
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Uniform search algorithm 
 Uniform search algorithm [50] is defined for optimization with constraints, and its task 
is formulated as follows: find the minimum of a one-dimensional unimodal function Φ(x) 
defined on a closed interval D = [a, b], 𝑥𝑥𝝐𝝐[𝑎𝑎, 𝑏𝑏]. 
 

min𝛷𝛷(𝑋𝑋) = 𝛷𝛷(𝑥𝑥∗).     (3.2) 
 

 This algorithm belongs to a group of methods where the main idea is to reduce the 
uncertainty interval of the search and exclude subintervals from the search process where the 
point x* does not exist, taking into account the unimodality of the function 𝛷𝛷(𝑥𝑥). 
 The current interval with uncertainty is denoted as TIN, and its length is represented by 
| TIN |. So, if TIN = [a, b], then |TIN| = b – a. 
 In the uniform search algorithm, attempts are made by uniformly dividing the interval 
[a, b] into N equal subintervals. 
 Among the calculated values of the function 𝛷𝛷(𝑥𝑥), the smallest value is chosen. Assume 
that this value is at the point 𝑥𝑥𝑘𝑘. Then, taking into account the unimodality of the function 𝛷𝛷(𝑥𝑥), 
the subintervals [a, 𝑥𝑥𝑘𝑘−1] and [𝑥𝑥𝑘𝑘+1, 𝑏𝑏] can be excluded from consideration and the new interval 
[𝑥𝑥𝑘𝑘−1,  𝑥𝑥𝑘𝑘+1] is chosen (Fig. 3.1). The algorithm refers to passive search methods. In the 
uniform search algorithm, attempts are made by dividing the interval [a, b] into N equal 
subintervals. The minimum value is chosen from the computed values of the function 𝛷𝛷(𝑥𝑥). Let 
us assume that this value is found at point 𝑥𝑥k. Then, considering the unimodality of the function 
𝑥𝑥k, the subintervals [a, 𝑥𝑥𝑘𝑘−1] and [𝑥𝑥𝑘𝑘+1, 𝑏𝑏] can be excluded from consideration, and the new 
interval [𝑥𝑥𝑘𝑘−1,  𝑥𝑥𝑘𝑘+1] is selected (Fig. 3.1). The algorithm belongs to passive search methods. 
 

 

 

Fig. 3.1. Partitioning of the current interval of uncertainty and defining a new reduced 
interval. 

 

 Any point from the current interval of uncertainty found can be considered as an 
approximate minimum point x* with equal conditions.  

Algorithm with the halving method 
 The halving method [50] is also defined for optimization with conditions, and its task is 
formulated as follows: find the minimum of a unimodal function 𝛷𝛷(𝑥𝑥) in a closed interval D = 
[a, b]. 
 In the halving method, also known as the uniform dichotomous search algorithm, 
attempts are made in pairs. The coordinates of each pair differ from the coordinates of another 
pair by a certain magnitude. 

𝛿𝛿x < 𝜀𝜀x,        (3.3) 
where 𝜀𝜀x − the required accuracy of the solution. 
 An attempt is made within the TIN. After obtaining the values of the function 𝛷𝛷(𝑥𝑥) at 
these points, a portion of the TIN is excluded from the search due to its unimodality. The size 
𝛿𝛿x is determined by the required solution accuracy. The algorithm belongs to the class of 
sequential search methods. 
 Mathematically, the algorithm can be described by the following scheme: 

Step 1. Performs the assignment 𝑡𝑡 = 1, 𝑎𝑎1 = 𝑎𝑎,  𝑏𝑏1 = 𝑏𝑏,𝑇𝑇𝐼𝐼𝑁𝑁1 = [𝑎𝑎1,  𝑏𝑏1].            
Step 2. Calculates the values 
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𝑥𝑥0r = 𝑚𝑚r−𝑏𝑏r

2
, 𝑥𝑥1r = 𝑥𝑥0r −

𝛿𝛿x
2

,𝑥𝑥2r = 𝑥𝑥0r + 𝛿𝛿x
2

 .   (3.4) 
Step 3. Calculates the function 𝛷𝛷(𝑥𝑥) value 𝛷𝛷 (𝑥𝑥1𝑜𝑜),𝛷𝛷 (𝑥𝑥2𝑜𝑜). 
Step 4. If  𝛷𝛷 (𝑥𝑥1r) <  𝛷𝛷 (𝑥𝑥2r),  
 then performs the assignments 

𝑎𝑎r+1 = 𝑎𝑎𝑜𝑜, 𝑏𝑏r+1 = 𝑥𝑥0𝑜𝑜, 𝑇𝑇𝐼𝐼𝑁𝑁r+1 = [𝑎𝑎r+1, 𝑏𝑏r+1]   (3.5) 
otherwise, performs the assignments. 

𝑎𝑎𝑜𝑜+1 = 𝑥𝑥0𝑜𝑜 , 𝑎𝑎𝑜𝑜, 𝑏𝑏r+1 = 𝑏𝑏𝑜𝑜, 𝑇𝑇𝐼𝐼𝑁𝑁r+1 = [𝑎𝑎𝑜𝑜+1, 𝑏𝑏r+1].       (3.6) 
Step 5. If |𝑇𝑇𝐼𝐼𝑁𝑁r+1| ≤ 𝜀𝜀x, then the algorithm ends, otherwise, it continues to execute 𝑡𝑡 =
𝑡𝑡 + 1 and goes to step 2. 

Algorithm with backtracking to unsuccessful step 
 It is useful to use stochastic search methods for multidimensional unconditional 
optimization to find the minimum of the optimality criterion 𝛷𝛷(𝑥𝑥), which is defined in the n-
dimensional Euclidean space ℝn. 
 For UV control, it is necessary to enter a condition and limit the desired values in the 
range of allowed control signal values x = <R, P, T, Y>, 𝑥𝑥𝝐𝝐ℝ4: 

min 𝛷𝛷(𝑥𝑥) = 𝛷𝛷(𝑥𝑥∗) = 𝛷𝛷∗           (3.7) 

�

𝑎𝑎R ≥ 𝐹𝐹 ≥ 𝑏𝑏R
𝑎𝑎P ≥ 𝑃𝑃 ≥ 𝑏𝑏P
𝑎𝑎T ≥ 𝑇𝑇 ≥ 𝑏𝑏T
𝑎𝑎Y ≥ 𝑌𝑌 ≥ 𝑏𝑏Y

               (3.8) 

 
 When solving the task with a return to the failed attempt [50] (one-step optimization 
method), the iteration formula is used: 

𝑥𝑥r+1 = 𝑥𝑥r + 𝜆𝜆r 𝜓𝜓r

‖𝜓𝜓r‖
 ,                  (3.9) 

where: 
  𝜆𝜆r– the step size of the r-th iteration; 
   Ψr = (Ψ1r,Ψ2r, … ,Ψnr) – realization of an n-dimensional random vector; 
  ‖∗‖ – vector norm (numeric value of a vector). 

 
 As a search termination condition, one of the traditional iteration termination 
conditions can be used: 

                                              (3.10) 
where  ɛX – required search precision by X: 

                                           (3.11) 

where  ɛΦ  – required search precision by Φ. 

Repeated random search algorithm 
Repeated random search algorithm [50] is also commonly used for multidimensional 

unconditional optimization in finding the minimum of the optimality criterion 𝛷𝛷(𝑥𝑥) defined 
in the n-dimensional Euclidean space ℝn. 
But for UV control, it is also necessary to enter conditions and limit the searchable values in 
the range of allowed control signal values x = <R, P, T, Y>, 𝑥𝑥𝝐𝝐ℝ4: 

min 𝛷𝛷(𝑥𝑥) = 𝛷𝛷(𝑥𝑥∗) = 𝛷𝛷∗        (3.12) 
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�

𝑎𝑎R ≥ 𝐹𝐹 ≥ 𝑏𝑏R
𝑎𝑎P ≥ 𝑃𝑃 ≥ 𝑏𝑏P
𝑎𝑎T ≥ 𝑇𝑇 ≥ 𝑏𝑏T
𝑎𝑎Y ≥ 𝑌𝑌 ≥ 𝑏𝑏Y

 .              (3.13) 

 
This repeated random search method uses an iteration scheme 

 

                                                  (3.14) 
where 
  λr – step size in the r-th iteration; 
  Δr – (n × 1) – unit vector, which shows the search direction in the r-th iteration: 

 

                   (3.15)                                        
where 
  𝑆𝑆𝑜𝑜 = 𝛾𝛾𝑆𝑆𝑜𝑜−1 + (1 − 𝛾𝛾)𝑆𝑆𝑜𝑜−2 − the “prehistory” vector that started the average search 
 direction from the previous two steps; 
  ‖∗‖ − vector norm (numeric value of a vector); 
  𝑃𝑃𝑚𝑚 − n-dimensional vector of uniformly distributed random numbers in the interval [0, 1]; 
  β𝝐𝝐 [0,1] – coefficient, which determined the influence of "prehistory" (determined part) for 
 the choice of the next step; 
  𝛥𝛥𝑜𝑜 − random component in vector; 
  𝛾𝛾𝝐𝝐[0,1] − coefficient that gives the value of “prehistory” 𝑆𝑆𝑜𝑜−1,𝑆𝑆𝑜𝑜−2  in the vector 𝑆𝑆𝑜𝑜; 

  𝑆𝑆𝑟𝑟

||S𝑟𝑟||
−  𝑆𝑆𝑡𝑡 direction vector with length 1; 

   
𝑃𝑃𝑟𝑟

||𝑃𝑃𝑟𝑟||
 −   𝑃𝑃𝑜𝑜  direction vector with length 1. 

 
 As a search termination condition, one of the traditional iteration termination 
conditions can be used: 

                                            (3.16) 
where  ɛX – required search precision by X. 

                                         (3.17) 
 

where  ɛΦ  – required search precision by Φ. 
 

A neural adaptive filtering algorithm in a general form 
 The algorithm is intended for a dynamic system whose mathematical characteristics 
are unknown [22]. 
Initialization. 
Assume that the given sets of labeled input and output data are generated by the system at 
discrete time intervals: 

x(t) – input m-dimensional signal; 
d(t) – scalar system output signal; 
where  
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t = 1, 2, ..., n; 
In this way, the external behavior of the system can be described by the following 
set of data: 

, (3.18) 

where 
. (3.19) 

Step 1. Filtration procedure. 
The output of the neural network is  

, (3.20) 

where 
y(t) – neural network output; 
e(t) – offset of the output signal y(t) from d(t). 

Step 2. Adaptation procedure. 
Given the linearity of the neuron, the output signal y(t) coincides with the induced 
local field v(t): 

 (3.21) 

in the form of matrices: 
, (3.22) 

where 
 (3.23) 

. (3.24) 

Step 3. Evaluation procedure. 
Let us consider the continuously differentiable function E(w) that depends on the 
vector w. The function E(w) represents the elements of the vector w to the set of real 
views and is the optimality condition for a selected adaptive filtering algorithm of the 
vector w. 
Step 3.1. We must find such a w* that 

. (3.25) 

It poses an unconditional optimization problem: 
 (3.26) 

An optimality condition is required: 
. (3.27) 

Step 3.2. Calculate , 
where  – gradient operator;  

 (3.28) 

but . (3.29) 
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Step 4. The correction of the weights takes place in the direction of decreasing the function of 
the maximum value, opposite to the gradient vector: 

, (3.30) 

where 
 – positive constant, training rate parameter; 

g(n) – gradient vector at point w(n). 
Step 5. Weight correction calculation. When moving from the n-th iteration to the n + 1 

iteration, the algorithm performs the correction of the weight coefficients: 
. (3.31) 

Step 6. Transition to the next iteration to the 1st steps at the condition 
, (3.32) 

where 
w(n) – is the previous value of the weight vector;  
w(n + 1) – the next value and with n = n +1. 

 
Backpropagation algorithm for neural network training. If a set of training states is given, 
then we will define the following algorithms for training neural networks. 
 Algorithm [27] cycles examples from the training set . 
Initialization. 
 The weights W(0) are generated as case numbers with a uniform distribution with 

mean 0. The variance is chosen so that the standard deviation lies in the linear part 
of the sigmoid function. 

Step 1. Defining the training set.  
 The training images from the training set – epoch – are passed to the network. 

Forward propagation and reverse propagation are performed sequentially for each 
image. 

Step 2. Direct propagation of signals.  
 Let each training image be a pair (x(n), d(n)),  
 where 
 x(n) – vector of input signals; 
 d(n) – the target output of the neural network. 
Step 3. Computation of weighted sums v(n) and functional signals φ(v(n)), say from the input 

layer. The weighted sum for the j-th neuron in the l-th layer is calculated according 
to the formula: 

, (3.33) 

where 
 – the output functional signal for the i-th neuron located in the previous 

layer l – 1 in the n-th iteration; 
 – weight for the connection of the j-th neuron of the l-th layer with the i-th 

neuron of the l – 1 layer.   
Step 4. Conditions of direct distribution. If the sigmoid activation function is used, then the 

output signal for the j-th neuron of the l-th layer is 
. (3.34) 

If neuron j is in the first layer, at l = 1 
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. (3.35) 

If the neuron is in the output layer, at l = L 
. (3.36) 

Step 5. The error is calculated by the formula: 
, (3.37) 

where  – the j-th element of the vector d(n). 
Step 6. Reverse signal propagation. 
Step 7. The local gradients of the nodes are calculated: 

, (3.38) 

where (n) – the derivative of the function by argument. 
Step 8. Therefore, the changes in the weights of the l-th layer in training take place according 
to the delta-law: 

, (3.39) 

where 
 – training rate parameter; 
 – moment constant. 

Step 9. Iterations. The algorithm repeats, returning to step 2, successively applying forward 
and reverse propagation, cyclically using examples from the epoch, until the 
stopping criterion is reached. 

 
 Results of experimental research on developed models and algorithms  

Experimental devices 
For the research of traction motors, it is necessary to measure the parameters – current, 

voltage, rotation speed and traction force at set values of the control signal. For this purpose 
and for computer modeling at work, a frame was made: test bench (Fig. 4.1 a)). To conduct 
experiments on testing the developed algorithm for optimizing energy consumption with a self-
learning neural network, the following devices were made: UAV – unmanned aerial vehicle – 
quadcopter (Fig. 4.1 b)), and Train – a model of a railroad with an unmanned electric train (Fig. 
4.2). 
 

 
 

Fig. 4.1. a) Test bench; b) UAV. 
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Fig. 4.2. Model of a railroad with an unmanned electric train. 
 

 Electrical boards of optimization controller (OC) of UAV are shown in Fig. 4.3 a). 
The train control board with OC is shown in Fig. 4.3 b). 
 

 
 

Fig. 4.3. a) Electrical boards OC UAV; b) train control electrical boards with OC. 
 
Electric motors used in experimental devices. Let us take DC brushless motors BR2216-

KV810, BR2212-KV920, and BR2212-KV980, which are usually used in amateur quadcopters, 
and one DC motor without precisely known parameters, let us call it LKD-24 (Fig. 4.4). 

 
 

Fig. 4.4. a) BR2216-KV810; b) BR2212-KV920; c) BR2212-KV980; d) LKD-24. 
 

 Parameters of electric motors BR2216-KV810, BR2212-KV920, and BR2212-KV980 
are shown in Table 1. 
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Table 1 
 

Parameters Defined by Electric Motor Manufacturers 
 

Motor KV 
[rpm/V] 

U 
[V] 

I 
[A] 

F 
[g] 

P 
[W] 

Eff. 
[g/W] 

LiPo 
Cell 

m 
[g] 

BR2216 810 14.8 15.6 1065 231 4.6 2S-4S 66 
BR2212 920 11.1 9.5 642 105 6.1 2S-4S 50 
BR2212 980 11.1 10.6 710 118 6 2S-4S 50 

 
 

Device and calibration of an electronic odometer for measuring the distance traveled 
by a train model. An electronic odometer is made to measure the distance traveled. The 
odometer mechanism is shown in Fig. 4.5. 

IR diodePhototransistor

On the train control block  7p pin On the train control block  8i pin 

Shaft

IR rays

Encoder circuit

 
 

Fig. 4.5. Odometer mechanism. 
 

The infrared diode is supplied with power and emits infrared rays. When rotating the 
axis on which a transparent coding disk with holes is attached, the microcontroller input is 
supplied with voltage from the transistor, which varies from 0 volts to 5 volts as the disk moves, 
passing through transparent and opaque areas. The 10-bit analog-digital converter (ADC) of the 
microcontroller converts the voltage values into discrete values from 0 to 1024. In the absence 
of IR radiation, the ADC value is 0, when exposed to IR radiation – 1024. The passage of one 
transparent and one opaque area is counted as one tact cycle. The passage of the transparent 
region is considered when the ADC value is greater than 900, followed by the opaque region 
with an ADC value less than 700. Next, we measure the number of cycles when the train travels 
the route once. The length of the experimental route is 11 m. To fix one passage, a reed switch 
is installed on the train, and a permanent magnet is installed on the rails. When traveling 11 m, 
800 cycles are recorded. Thus, one odometer cycle is equal to 1.1375 cm. 

The control structure of experimental device – quadcopter. The proposed control 
structure of the UAV consists of the following components. The existing UAV already has 
flight controller, traction groups with electronic speed controllers ESC and permanent magnet 
brushless DC motors, accumulator, voltage regulator, radio receiver and built-in sensor 
components. It is proposed to improve the existing structure by additional optimization 
controller and additional sensor group containing voltmeter, current meter (hall sensor), 
accelerometer, barometric altimeter, and satellite positioning module.  The radio receiver in the 
improved structure is used to get the flight goal from the operator to the optimization controller 
or, in fully autonomous UAV case, the optimization controller is able to define the mission goal 
by itself (it requires the development of additional decision-making algorithms and is not 
described in this work). 
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The control structure of experimental device – train. To monitor the operation of the 
optimization controller, collect data, and control the startup, a computer [43] with the 
ARDUINO IDE programming environment is used [48]. The train and the computer exchange 
data using the Xbee radio module.  
 

RF module UART/USB
converter ComputerTrain control 

device + OC
 

 

Fig. 4.6. The structure of data exchange between the computer and the train. 
 

 The data exchange structure between the computer and the train is shown in Fig. 4.6. 
 

Researching the possibility of optimization 
Removal of UAV electric drive characteristics. The thrust force of the motor was 

measured using a test bench, calculating the force according to the formula: 
𝐹𝐹vil = 𝑚𝑚 ∙ 9.81,     (4.1) 

where m is measured thrust, kg.  
 The motor power is calculated as  

𝑃𝑃electric drive = 𝑈𝑈 · 𝐼𝐼.        (4.2) 
Since in real conditions the optimisation algorithm does not consider the elements of 

the electric drive separately but takes into account the total energy consumption, the losses in 
the wires and the losses in the speed controller are not calculated. Thus, the power consumed 
by the electric drive consists of 

      𝑃𝑃electric drive = ∆𝑃𝑃wire + ∆𝑃𝑃esc + ∆𝑃𝑃motor,                                  (4.3) 
where 
   Δ𝑃𝑃wire – power loses in wires; 
   Δ𝑃𝑃esc – power loses in the speed converter;  
   𝑃𝑃motor – motor power (including loses). 
 

 Analyzing the minimum function values for different masses, it can be seen that the 
energy consumption is higher for motors with a higher kV ratio (Fig. 4.7). 

 
 

Fig. 4.7. Analysis of the minimum values of the E(m) function for different motors and 
different UV masses. 

 

Removal of train model electric drive characteristics. The power characteristics of the 
electric drive on different sections of the road with a constant control signal C = 255 with a 
train weight of 9.6 kg is shown in Fig. 4.8.  

C – electric drive control signal using PWM, varying from 0 to 255. 
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Fig. 4.8. The power characteristics of the electric drive on different sections of the road with 
a constant control signal C = 255 with a train weight of 9.6 kg. 

 

 The power characteristics of the electric drive on a straight section of the track under 
different C control signals, with a train mass of 4.1 kg, is shown in Fig. 4.9. 
 

 
 

Fig. 4.9. The power characteristics of the electric drive on a straight section of the track under 
different C control signals, with a train mass of 4.1 kg. 

 The non-linear nature of the power characteristics of the electric drive under different 
control signals and the varying power on different sections of the track indicate the potential 
for energy consumption optimization. 

Development of the UV computer model for studying energy consumption minimization 
target function. The computer model is designed for modeling the vertical motion of a 
quadcopter [38], [39] towards a specified target point, specifically the target altitude, which is 
chosen to be sufficient for calculations and further optimization. 

Empirical data [47] obtained during the motor research time in the computer model are 
implemented as a four-dimensional array with the defined number of measurements n: control 
signal array c, current value array I, voltage value array u, thrust force array f. 
 To obtain the parameter values between measurements, linear interpolation method is 
used in the computer model, which, based on the control signal c, allows finding the desired 
value of another parameter y (current i, voltage u, or force f): 
 

𝑦𝑦 = (𝑐𝑐−𝑐𝑐𝑖𝑖)
(𝑐𝑐𝑖𝑖+1−𝑐𝑐𝑖𝑖)

(𝑦𝑦𝑚𝑚+1 − 𝑦𝑦𝑚𝑚) + 𝑦𝑦𝑚𝑚 .              (4.4) 
  

 The given parameters for the quadcopter are mass m, effective area Aeff, drag coefficient 
Cd, and air density ρ, which is considered constant at the altitude of the quadcopter (ρ = 1.2255). 
The first analysis of the target function was performed with varying mass and three different 
motors: mass ranging from 1 kg to 1.9 kg with a step of 0.1 kg, motors with 810 kV, the constant 
parameters are Cd = 1.06 and Aeff = 0.25 m2. 
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Fig. 4.10. E(c, m) analysis for motors BR2216 810 kV. 

 

In Fig. 4.10, it can be observed that the energy consumption function exhibits a unimodal 
nature for any given mass and different motors. The only difference lies in the launch thrust 
control signal required to lift the quadcopter in the air and the value of consumed energy. 
Therefore, we can conclude that in the study of the target function's dependence on the 
quadcopter's area and drag coefficient, it is sufficient to evaluate the function for any chosen 
mass, for example, m = 1.5 kg. Figure 4.11 shows the dependency of the target function E on 
the effective area Aeff, ranging from 0.2 m2 to 0.4 m2 with a step of 0.01 m2.  

 

 
 

Fig. 4.11. Analysis of the values of the function E(c, Aeff). 
 

 It can also be seen from the figures that the nature of the function is similar and unimodal 
and the power consumption increases with increasing effective area and streamline ratio. 

Research of the target function of the energy consumption of the train model. To 
research the target function of energy consumption for the electric train model, let us take a 
train with different masses of 4.1 kg, 9.6 kg, and 19.3 kg and measure the energy and different 
control signals in the range from 100 to 255 on a straight section. The measurement results are 
shown in Fig. 4.12. 
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Fig. 4.12. Energy consumption of the electric drive with different control signals and with 
different masses of the train. 

 
Development of computer models for verification of optimization methods 
Searching the optimal control signal for the railway. The search is conducted using a 

uniform search algorithm with different values of the control signal C step change – from 5 to 
30, and a signal change distance ranging from 0.3 meters to 5.5 meters. The table and graphs 
display the results of the energy consumption measurement experiment using the uniform 
search algorithm for a combination of C control signal step change of 15 and a signal change 
distance of 5.5 meters, which demonstrated the lowest energy consumption at a power supply 
voltage of 24 V. The energy consumption dynamics of an electric train with a constant control 
signal C = 255 and a uniform search algorithm for a distance traveled of 115 meters is shown 
in Fig. 4.13. 

 

 
 

Fig. 4.13. Energy consumption dynamics of an electric train with a constant control signal and 
C = 255 and a uniform search algorithm. 

  
From the dynamics of the control signal graph, it can be observed that the signal 

gradually increases until reaching its maximum value. However, due to the changing nature of 
the load, the minimum search algorithm fails to find the optimal control signal. The value of 
dE/dS decreases with an increase in the control signal value and approaches optimal values. 
Energy consumption (E) increases with the distance covered. The speed varies depending on 
the control signal changes and the nature of the load (straight section or turn). 
 From previous measurements, it is known that a train with a mass of 4.6 kg has the 
lowest energy consumption for a complete circuit of movement when driven with a constant 
control signal of C = 255, compared to other signals. From the graph, it can be observed that 
the minimum search algorithm consumes more energy than a single constant signal on all 
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sections of the path. Therefore, the minimum search algorithm consumes more energy in the 
search for minimal energy consumption and cannot find the optimal control signal under such 
load variation. 
 Based on the experimental results with the train, it is evident that there is no definitive 
optimal signal, and the search algorithm fails to find it in time. It is necessary for the system to 
learn to immediately output the required control signal. The proposed solution is a neural 
network that requires data for training. 
 Due to legislative restrictions applied to aerial vehicles, experiments with quadcopters 
are not conducted. Further experiments will be carried out on a train model. 
 

Analysis of data for creating a training set 
Estimation of load characteristics for use in a neural network. In this experiment, the 

energy consumption characteristics were measured for different train masses, with different 
control signals, and on different sections of the track. Figure 4.14 displays the energy 
consumption characteristic dE/dS during the train's one complete circuit. The graph includes 
values with calculated moving averages. Moving averages are used because instantaneous 
values exhibit significant fluctuations. 
 Hypothesis: It is possible to assess the load characteristics at each point on the track 
independently of the control signal and movement speed. 
 
 

 
 

Fig. 4.14. The characteristic of energy consumption dE/dS when the train travels one circle. 
With train masses m = 4.1 kg and m = 9.6 kg. 

  
It can be seen from the energy consumption graph that for different masses of a train in the 
same sections, energy consumption will differ. 
 Let us calculate a value that describes the nature of the load – LC, this will be the last n 
floating average of the ratio of the current floating average speed V2 to the previous floating 
average speed V1 over the last n samples. The floating average is needed for smoothing. Let us 
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calculate the LC values for a train with a mass of 4.1 kg and 9.6 kg for all sections of the road. 
In order to see how the nature of the load looks like on different sections of the road, we will 
build a graph in Fig. 4.15, from the calculated LC values for the speed values. 

 

 
 

Fig. 4.15. The load characteristics LC for a train mass of m = 4.1 kg and m = 9.6 kg. 
 

 In the graph, it can be observed that for different masses, the LC curves intersect at 
certain points. During the train's movement, the track may have a negative or positive slope, 
thereby changing the load as if the train's mass has increased. To differentiate the nature of the 
effective mass, let us analyze the energy consumption and speed values at all possible sections 
of the track. When the speed decreases, the LC parameter is less than 1, indicating an increased 
load. Conversely, when the speed increases, the LC parameter is greater than 1, indicating a 
decreased load (with a constant control signal). This value will serve as an auxiliary (primary) 
element for determining the track section. Thus, the hypothesis that the load characteristics can 
be assessed at each point on the track independently of the control signal and movement speed 
is confirmed. 

Checking the automatic training set generation algorithm. The train passes through 
different sections of the track using a single control signal while recording the values of LC, 
speed, control signal, and dE/dS for each section. This process continues until all the new 
sections are covered. Then, the control signal is increased, and the process described above is 
repeated. The energy consumption values are also compared, and this process continues until 
all control signals have been tested and the minimum dE/dS value is found for each section. 
The control signal corresponding to the minimum dE/dS becomes the optimal signal for that 
particular section of the track. The obtained values are recorded in the training set. 
 The dynamics of the control signal C are shown in Fig. 4.16. The dynamics of forming 
the training set LQ are shown in Fig. 4.17. 
 

 
 

Fig. 4.16. The dynamics of control signal C (C = f(S)). 
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Fig. 4.17. The dynamics of the formation of the training set LQ (LQ = f(S)). 
 

 The dynamics of the control signal C = f(S) and the quantity of the training set LQ = f(S) 
show that the train covers different distances at different control signals, i.e., the formation of 
the training set is not proportional to the distance traveled. Initially, the formation of the training 
set occurs faster and then slows down. As the control signal increases, there is a trend of 
decreasing instantaneous energy consumption. 

Training set data for neural network training. As a result of the experiment, the automatic 
training set generation algorithm created a training set for the neural network. The algorithm 
for automatic creation of a training dataset for the neural network found optimal values of 
control signals for 35 road sections with varying load characteristics, covering a distance of 
62.2 m. 

Usage of the complete search algorithm and selection of search parameter settings. Now, 
using the trained neural network, we will investigate and select the values of dS and the type of 
velocity input to be used for the neural network – instantaneous or average. To do this, we will 
conduct a series of experiments with different values of dS in combination with the average 
velocity and instantaneous velocity, with U = 28V. 
 For each combination, the experiment was repeated 8 times, and the train traveled a 
distance of 115 m in each experiment. The measurement results are shown in Table 2. 
 

Table 2 
Energy Consumption when Operating Different Search Algorithms and a Constant Control 

Signal at Different Values of dS, Average Speed and Instantaneous Speed at voltage U = 28 V 
 

  

  U = 28 V 
  𝑪𝑪𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 Developed self-learning algorithm 
  -  Vavg  Vmom 

dS   - 0.25 0.25 0.5 1.0 1.5 2.5 3.5 5.5 
Emax   1420.1 1389.2 1364.0 1376.3 1451.3 1484.8 1475.5 1507.2 1543.3 
Emin   1410.5 1362.2 1307.2 1345.6 1344.7 1370.9 1396.2 1423.3 1407.0 
Eavg   1415.3 1372.2 1335.6 1361.0 1398.0 1427.8 1435.8 1465.3 1475.1 

 

Designations in the table: 
 

developed algorithm – developed self-learning optimal algorithm with a neural 
network; 
dS – step of energy measurement and control signal С change, m; 
Vmom – instantaneous value of measured speed, m/s; 
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Vavg – average speed over distance dS, m/s; 
Emin – the minimum amount of energy consumed to travel 115 m in a series of 8 
experiments, Ws; 
Emax – the maximum amount of energy consumed to travel 115 m in a series of 8 
experiments, Ws; 

Eavg – average energy consumed to travel 115 m in a series of 8 experiments, Ws; 
Cconst = 255. 

 

 
 

Fig. 4.18. Energy consumption of the train's electric drive depending on the measurement step 
and changes in the optimization algorithm (E = f(dS)). 

 

 From the graph in Fig. 4.18, it can be observed that there is a trend of increasing energy 
consumption with an increase in the measurement step dS. The lowest consumption using the 
developed algorithm is achieved at 28 volts with dS = 0.3 m and using the instantaneous velocity 
value. It was noticed that the overall energy consumption (relative to the work done) increases 
when the voltage is set to 28 V compared to 24 V. It was assumed that the motor is designed 
for a voltage of 24 V, and the decision was made to continue the experiments using the 24 V 
voltage. 
 

Comparison of the results of the developed self-learning algorithm for optimal energy 
consumption with a neural network 

Below are the results of experiments for a constant control signal C with the lowest 
energy consumption (in the range from 60 to 255), an algorithm for finding the minimum with 
the best value based on the results of previous measurements, and a developed algorithm for 
learning optimal energy consumption using a neural network at a voltage of 24 volts. 
In Fig. 4.19, the dynamics of the control signal C are displayed, while Fig. 4.20 shows the 
dynamics of the train speed. Figure 4.21 depicts the dynamics of dE/dS for the train. 
 From the dynamics of the control signal graph, it can be observed that the signal quickly 
reaches the target value and changes according to the load characteristics. The speed V varies 
depending on changes in the control signal and the load characteristics. The energy 
consumption E increases with the distance traveled. 
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Fig. 4.19. The dynamics of the control signal of the developed algorithm can be observed 
in the graphs (C = f(S)). 

 

 
 

Fig. 4.20. The dynamics of the train speed when applying the developed algorithm. 
 

 
 

Fig. 4.21. The dynamics of dE/dS for the train electric drive when applying the developed 
algorithm. 

 From the graph, it can be seen that the control signal quickly reaches the desired value 
and changes according to the load characteristics. The speed V varies depending on the changes 
in the control signal and the load characteristics. Energy consumption E increases with the 
distance traveled [49]. Table 3 shows the energy consumption values for a constant control 
signal C with the lowest energy consumption (in the range from 60 to 255), the algorithm for 
finding the minimum with the best value based on the results of previous measurements, and 
the developed self-learning algorithm for optimal energy consumption with a neural network. 

40

90

140

190

240

290

0 1 2 3 4 5 6 7

C

S, m

0

1

2

0 5 10 15 20

V,
 m

/s

S, m

V = f(S)

0

20

40

60

80

100

120

0 5 10 15 20

dE
/d

S,
 W

s/
m

S, m

dE/dS = f(S)



36 
 

8 series of experiments were carried out for each algorithm and in all experiments the train 
traveled a distance of 115 m, which is approximately 10 laps of the experimental railway. 
 

Table 3 

Energy Consumption when Operating Different Search Algorithms and a Constant Control 
Signal at Different Values of dS, Average Speed and Instantaneous Speed at Voltage  

U = 24 V 

 U = 24 V 

  Cconst 𝑴𝑴𝑴𝑴𝑴𝑴 Developed self-learning algorithm 
 - -   Vavg Vmom  

dS - - 0.3 1 0.08 0.3 
Emax 1326.3 1799.6 1276.0 1267.3 1193.95 1335.1 
Emin 1198.9 1475.41 1168.4 1208.3 1028.05 1154.6 
Eavg 1237.1 1685.1 1219.4 1249.3 1077.14 1206.3 

 

Designations in the table: 
 

developed self-learning algorithm – developed self-learning optimal algorithm with a 
neural network; 
MSA – minimum search algorithm; 
dS – the step of energy measurement and control signal С change, m; 
Vmom – instantaneous value of measured speed, m/s; 
Vavg – average speed over distance dS, m/s; 
Emin – the minimum amount of energy consumed to travel 115 m in a series of 8 
experiments, Ws; 
Emax – the maximum amount of energy consumed to travel 115 m in a series of 8 
experiments, Ws; 

Eavg – average energy consumed to travel 115 m in a series of 8 experiments, Ws; 
Cconst – constant control signal set to 255, experimentally proved as the best if keeping 
it unchanged. 

 
 From Table 3, it can be seen that the developed algorithm for optimal energy 
consumption with automatic generation of the training set for the neural network shows the best 
result. With a parameter measurement step of 0.08 m and using instantaneous velocity, it 
consumed 1077.14 Ws. The worst performing algorithm was the minimum search algorithm, 
which consumed 1685.1 Ws. The usage of the developed method allowed for a reduction in 
energy consumption of the electric train model by 159.96 Ws or 12.93 %, compared to a 
constant control signal of C = 255.  
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Conclusions  
1. A control structure for the UV and a self-learning optimization controller with a neural 
network have been developed for optimal energy consumption of electric unmanned vehicles. 
2. A mathematical model has been developed to calculate the movement of the UV, allowing 
calculating optimal control parameters under uncertain conditions and simulating the 
movement of unmanned vehicles in three-dimensional space. 
3. A mathematical model of a neural network has been developed for optimal energy-efficient 
control of UV, enabling optimal control of the electric drive system. 
4. A new algorithm for optimal energy-efficient control of the UV has been developed, 
consisting of a minimum search algorithm, an algorithm for automatic creation of a training set 
for the neural network and a neural network training algorithm, which includes procedures for 
adaptation, filtering, evaluation, and weight adjustment. 
5. The considered minimum search algorithms allow finding the minimum energy consumption 
of the UV required to travel a given path. 
6. The adaptive filtering algorithm can be used for training the neural network and 
unconditional weight optimization for optimal control of the UV. 
7. Experimental devices for testing have been developed and manufactured, including a test 
stand, a quadcopter, and a model of a railway with an electric train. 
8. The characteristics of the electric drives of the UV quadcopter and the electric train model 
have been investigated. 
9. Comparing the effects of different parameter configurations on the nature of the target 
function, it can be concluded that the nature of the function remains unchanged. The optimal 
energy consumption point shifts in the direction of increasing control signal when the UV mass 
increases. The UV area and aerodynamics do not affect the optimal value of the control signal 
sought but increase energy consumption. This allows concluding that the developed target 
function and algorithm work equally well, adapting to different UV configurations: different 
motors and mass. 
10. A computer model has been created to demonstrate that the energy consumption function 
for vertical ascent of the quadcopter has a unimodal nature for different motors, which 
facilitates optimization for specific maneuver types. Minimum search algorithms defined in the 
study are capable of finding the optimal value of the target function with a deviation of 0.6–
1.6 % from the optimal value for a lower mass and 6.37–11.23 % for a higher mass on a straight 
section with a constant load. However, considering the unimodal nature of the target function 
in the case of one-dimensional functions, i.e., when it is necessary to find only one optimal 
control signal value, it is recommended to use deterministic search algorithms, as they provide 
the most stable optimization results, as demonstrated by the modeling results. Among the 
deterministic algorithms, algorithm 2 – the algorithm with halving method can be considered 
the most suitable among the compared algorithms. This algorithm allows finding the optimal 
control point in less time and with the smallest deviation. 
11. Based on the experiments with the train, it is evident that there is no single optimal signal, 
and the search algorithm fails to find the optimal signals. With uniform search algorithm train 
consumes 1685 Ws, which is 36.2 % more than using a single constant C signal of 255 
throughout the path, covering a distance of 115.59 m. Therefore, the uniform search algorithm 
for finding the minimum energy consumption consumes more energy and cannot find the 
optimal control signal under such load characteristic changes. 
12. Data analysis for creating a training set has shown that the load characteristic can be 
assessed at each point of the path independently of the control signal and velocity of movement. 
13. The developed algorithm for automatic creation of a training set for the neural network has 
demonstrated the ability to form a training set under conditions of changing load and has found 
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optimal control signal values for 35 road sections with different load characteristics, covering 
a distance of 62.2 m.  
14. The results of experiments on selecting optimal parameters for the neural network show 
that the larger the training dataset with optimal neural network parameters, the more accurate 
the computed results are. The best accuracy is achieved with a deviation of 0.7503 and is 
produced by a neural network with 12 neurons. Under optimal parameters, there is an 
exponential relationship between the accuracy of computations and the number of iterations. 
The accuracy of computations also depends on time. To achieve the smallest deviation from the 
result of 0.752251, it requires 4017 ms.  
15. The experimental results on the electric train model prove that the developed self-learning 
algorithm with neural network allows to increase energy-efficiency reducing electric energy 
consumption by 12.93 % in electric unmanned vehicles. With an algorithm’s parameter of 
measurement step 0.08 m and utilizing instantaneous velocity values, the unmanned vehicle 
consumed 1077.14 Ws to cover a distance of 115 m. In comparison, when moving with a 
constant control signal C = 255, the energy consumption was measured at 1237.1 Ws. 
 

The following development prospects can be highlighted:  
• Research on constraint generation – defining or verifying minimum and 

maximum control signals.  

• Checking the combination of optimized control signal proportions for 

compatibility with the performed maneuver or route.  

• Improve the system and algorithm ensuring safe, reliable, and comfortable (in 

the case of passenger transportation) control criteria.  

• Adaptation of control signals, their decoding and encoding for compatibility 

with different interfaces and control signal transmission protocols. 
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