RIGA TECHNICAL UNIVERSITY

Vitalii Solomin

SYNTHESIS OF BACTERIAL TWO-COMPONENT SYSTEM INHIBITORS

Doctoral Thesis

RTU Press
Riga 2023

RIGA TECHNICAL UNIVERSITY
 Faculty of Materials Science and Applied Chemistry
 Institute of Technology of Organic Chemistry
 Department of Chemical Technology of Biologically Active Compounds

Vitalii Solomin
Doctoral Student of the Study Program "Chemistry"

SYNTHESIS OF BACTERIAL TWO-COMPONENT SYSTEM INHIBITORS

Doctoral Thesis

Scientific supervisor
Professor Dr. chem. Aigars Jirgensons

Abstract

Synthesis of bacterial two-component system inhibitors. Solomin V., scientific supervisor Prof., Dr. chem. Jirgensons A. Doctoral thesis, 134 pages, 17 figures, 76 schemes, 20 tables, 101 references, 3 appendices. In English.

ANTIBIOTIC RESISTANCE, HISTIDINE KINASE INHIBITORS, AMINOQUINAZOLINES, INDAZOLES, PHENYLAZOLES

Research, presented in the thesis, dedicated to the development of a new histidine kinase two-component systems inhibitors. To find putative inhibitors, fragment-based drug design approach was used. Resolved crystal structures of protein-ligand complexes were analyzed using computer-aided drug design software technics to define modifications which can increase affinity of the ligand to protein (done by Marco Albanese, Oxford Drug Design). Most perspective inhibitors were synthesized and subjected to in vitro studies on bacterial cell lines (Blanca Fernandez, Wageningen University) and proteins of interest (done by Anmol Adhav, Institut de Biomedicina de Valencia CSIC). This research resulted in discovery of a new 2-aminoquinazoline-based inhibitors of histidine kinases two-component systems with high nanomolar affinity. In addition, perspective phenylazole-based antibacterials active against S. Aureus Newman were studied and described. During the synthesis of the series of perspective inhibitors, a new methods dedicated to the synthesis of 2-aminoquinazoline and indazole heterocyclic cores were described.

ABBREVIATIONS

NMP - N-Methyl-2-pyrrolidone
DMA - Dimethylacetamide
DIPEA - N, N-Diisopropylethylamine
S-Phos - Dicyclohexyl(2',6'-
dimethoxy[1,1'-biphenyl]-2-
yl)phosphane
TFA - Trifluoroacetic acid
TEA - Triethylamine
DMEDA - 1,2-
Dimethylethylenediamine
DME - Dimethoxyethane
BINAP - 2,2'-bis(diphenylphosphino)-
1,1'-binaphthyl
NBS - N-Bromosuccinimide
DMF - Dimethylformamide
THF - Tetrahydrofuran
TBAI - Tetra- n-butylammonium iodide
TBAF - Tetra- n-butylammonium iodide
p-TSA - p-Toluenesulfonic acid
HFIP - Hexafluoroisopropanol
DCE - 1,2-Dichloroethane
DBU - 1,8-Diazabicyclo[5.4.0]undec-7-
ene
BOP - Benzotriazol-1-
yloxytris(dimethylamino)phosphonium
hexafluorophosphate
TBHP - tert-Butyl hydroperoxide
MTBE - tert-Butyl methyl ether

CHP - Cumene hydroperoxide
DMSO - Dimethyl sulfoxide
EDC - 1-Ethyl-3-(3-
dimethylaminopropyl)carbodiimide
HOBt - Hydroxybenzotriazole
CDI - 1,1'-Carbonyldiimidazole
DCM - Dichloromethane
X-Phos - Dicyclohexyl[2', $\mathbf{4}^{\prime}, 6^{\prime}$ -tris(propan-2-yl)[1,1'-biphenyl]-2yl]phosphane

ATP - Adenosine triphosphate
TMEDA - $N, N, N, N^{\prime}, N^{\prime}$
Tetramethylethylenediamine
DEAD - Diethyl azodicarboxylate
DIAD - Diisopropyl azodicarboxylate
Dppf - 1,1'-Bis(diphenylphosphino)ferrocene

All - Allyl
tBuBrettPhos - 2-(Di-tert-
butylphosphino)-2', 4', 6^{\prime} - triisopropyl-
3,6-dimethoxy-1,1'-biphenyl
Diox - 1,4-Dioxane
[OMIm]Cl - 1-Methyl-3-
octylimidazolium chloride
TES - Triethylsilane
EtNCO - Ethyl isocyanate

CONTENTS

INTRODUCTION 5
LITERATURE REVIEW: Methods of 2-aminoquinazoline synthesis and their application for drug discovery 10

1. Nucleophilic addition of guanidines to 2-fluorobenzaldehydes 10
2. Copper-catalyzed addition of guanidines to 2-bromobenzaldehydes and 2- bromobenzoic acids 12
3. Condensation of 2-aminobenzaldehydes and anthranilic acids with cyanamides and guanidines 13
4. Cyclization of 2-aminobenzyl amines and 2-aminobenzamides with isonitriles 15
5. Copper-catalyzed addition of guanidines to 2-bromobenzyl amines 17
6. Pd-catalyzed condensation of 2-iodoanilines with cyanamide and carbon monooxide 17
7. Cyclization of phenylguanidine derivatives 18
8. Amination of 2-chloroquinazolines 21
9. Amination of 2-bromo, iodo and fluoroquinazolines 25
10. Literature review summary 28
RESULTS AND DISCUSSION 29
11. Synthetic evolution of HK fragment hits 29
1.1. Pyrazole amide series of compounds 29
1.2. 2-Aminopyrimidine-5-carboxamide and structurally related derivatives 32
1.3. Indazole series of compounds 34
1.4. Development of 2-aminoquinazoline based bacterial HK inhibitors 41
12. Diphenylpyrazoles as antibacterials active against S. Aureus 59
13. New method for synthesis of 2-aminoquinazoline from 2-formylphenylboronic acids and guanidines 66
14. New method for synthesis of indazoles from 2-formylphenylboronic acids and azodicarboxylates or hydrazine dicarboxylates 70
EXPERIMENTAL SECTION 78
CONCLUSIONS 124
REFERENCES 127
Annex I, II, III 135

INTRODUCTION

Bacterial infections have a great impact on public health. ${ }^{1}$ Starting from the middle of the $20^{\text {th }}$ century a lot of deaths were prevented by introducing the antibiotics, and average life expectancy at birth rose almost to 79 years. ${ }^{2}$ A number of antibiotic classes were established between $1930^{\text {th }}$ and $1960^{\text {th }}$, while only few of them were discovered in recent decades. ${ }^{3}$ The long term use of the same lifesaving antimicrobials was the strong evolutionary factor for bacterial species - bacteria developed mechanisms that helps them to neutralize antibiotics. ${ }^{4}$ A bacteria can develop mechanisms of resistance to several types of antimicrobial drugs, which makes it a multidrug resistant bacteria. Such mechanisms can occur either by accumulation of the multiple genes, responsible for resistance to a particular drug, or by overexpression of genes coding efflux pumps of bacteria. ${ }^{5}$ Clinical therapy of infections, caused by resistant bacteria, usually require higher doses of medicines, or the use of more efficient but also more toxic drugs. ${ }^{2,6}$

The above-mentioned reasons have motivated a research to discover new perspective antimicrobials which are able to target antibiotic-resistant strains. Primary task of such a research is the definition of potential target for a new drug. Most of the traditional antibiotics are targeting cell wall synthesis (penicillines, cephalosporines, polypeptides) and bacterial protein synthesis (tetracyclines, amphenicols, macrolides). ${ }^{7}$ All of these drugs induce bacterial death, which is a significant factor to the bacteria for adaptation to such therapeutics. ${ }^{8}$ Prospectively, compounds which are targeting bacterial systems involved in the adaptation to antibiotics can be a solution to the problem of multidrug resistant bacteria. One group of such possible targets are histidine kinase twocomponent systems (HK TCs). ${ }^{9}$

HK TCs of bacteria are responsible for the signal transduction pathways, including regulation of virulence, secretion systems and antibiotic resistance. Additionally, HK TCs are ubiquitous among bacteria and absent in mammalian cells. ${ }^{10}$

Figure 1. Histidine kinase two component system signaling pathway.
Abbreviations: DHp - dimerization and histidine phosphotransfer domain (DHp); CA catalytic domain; REC - receiver domain; H - histidine residue; D - aspartate residue; ATP - adenosine triphosphate; P - phosphate. Numbers in the scheme corresponds to the order of signal transduction pathway: 1 - receiving of extracellular signal; 2 - ATP binding and phosphate transfer to histidine; 3 - phosphate transfer to aspartate residue on receiver domain; 4 - structural change of receiver domain.

Signal cascade in TCs starts from a sensor domain (1), located in periplasmic or extracellular media. ${ }^{11}$ Then ATP binds to catalytic domain (CA) followed by transfer of a γ-phosphate group to a conserved histidine at histidine phosphotransfer domain (DHp). Subsequently the high-energy phosphoryl group is transferred to a conserved aspartate at the receiver domain (REC) of the response regulator. The response regulator, in turn, undergoes conformational change which leads to a specific response. ${ }^{12}$

The most attractive point for targeting in the TCs signaling pathway is the catalytic domain (CA) as this domain is already evolved to bind the small ATP molecule. Using properly designed inhibitors, specifically targeting CA, the transduction pathway can be interrupted leading to reduced bacterial fitness or inducing a bactericidal effect. ${ }^{13}$

Our work was directed to the design and synthesis of novel HK TCs inhibitors starting from hit molecules identified by X-ray crystallography of the corresponding protein-ligand structures. Perspective for the further modification scaffolds then were subjected to computer-aided drug design (CADD) studies to reveal possible structure modifications which can enhance the potency of compounds. After CADD modelling the most perspective compounds were selected for synthesis. Newly synthesized compounds were subjected to the variety of tests to see whether predictions were accurate enough. To measure biological activity of the compounds, both enzymatic assays on bacterial proteins and in vitro tests on bacterial cultures were performed.

Several types of proteins, belongs to the family of HK TCs were selected. One of the proteins used in the enzymatic tests was CheA domain. This protein is the central regulator of bacterial chemotaxis. It belongs to proteins that control gene expression in
response to changing environmental conditions. The CheA binds ATP and catalyzes the phosphorylation of one of its own histidine residues. ${ }^{14}$ The second used in the assays protein - PhoR. It is the sensor kinase in PhoRB two component signal transduction pathway. In live cell PhoR indirectly senses and responds to the level of extracellular inorganic phosphate by phosphorylating and dephosphorylating its cognate response regulator PhoB. ${ }^{15}$ Also HK853 protein was applied for the tests. HK853 is the C-terminal catalytic and ATP-binding domain ${ }^{16}$ which was shown to possess an ATP-dependent autokinase activity in vitro and to support phosphotransfer to PhoP response regulator. ${ }^{17}$ The last member of this protein family used in the assays - EnvZ, playing the key role in phosphorylation of the activator protein OmpR. Phosphorotransfer between EnvZ and OmpR in E. coli regulates adaptation to changes in environmental osmotic pressure. ${ }^{18}$

For the in vitro bacterial growth inhibition assays were used Gram positive bacterial strains: S Aureus Newman, ${ }^{19}$ and E. Faecalis. ${ }^{20}$ Gram negative strains were represented by E Coli. ${ }^{21}$ Additionally, antibiotic resistant strains were used, such as Methicillin-resistant (MRSA) S. Aureus, ${ }^{21}$ and Vancomycin-resistant E. Faecalis. ${ }^{22}$

The research was performed in collaboration with the group of Dr. A. Marina from Instituto de Biomedicina de Valencia, CSIC (X-ray crystallography, screening of fragment library, enzymatic and biophysical binding assays), group of Prof. J. Wells from University of Wageningen (antibacterial cell based assays), and with the team of Prof. P. Finn from company Oxford Drug Design (CADD).

Our main contribution to the discovery of HK TCs inhibitors was the synthetic development of hit compounds resulting from screening libraries. This included the generation of focused libraries based on a defined core of a hit compound as well as fragment merging and fragment growth. To enable access of certain compound classes such as quinazolines and indazoles with expanded functionalization pattern, we also developed new synthetic methods to construct these heterocycles.

Aims and objectives

The aim of the thesis is to develop new potent inhibitors of HK TCs utilizing the fragment-based lead discovery approach and virtual screening hits. Concomitantly a new methods of synthesis of the most potent heterocyclic motifs may be explored. The following tasks were set:

1) to synthesize putative HK TCs inhibitors, virtually designed by project partners derivatives of pyrazole, quinazoline and indazole heterocyclic motifs and analyze their structure-activity relaitionship (SAR), using the data, provided by collaboration institutions;
2) to explore novel milder ways of assembling of the most perspective 2aminoquinazoline and indazole scaffolds, starting from readily available 2formylphenylboronic acids;
3) to synthesize 3,4-diphenylpyrazole derivatives with proved antimicrobial activity, possibly connected with inhibition of HK TCs and analyze their SAR regarding inhibition of growth of S. Aureus Newman;

Scientific novelty and main results

As the result of the thesis, new chemotypes of the HK TCS inhibitors were proposed: 1) indazole derivatives, modified with aryl substituent on the $4^{\text {th }}$ position of heterocyclic ring; 2) 2-aminoquinazoline derivatives, modified on the $7^{\text {th }}$ position with aryl substituents. Additionally, antimicrobial efficiency of arylazoles against S. Aureus Newman and their structure-activity relationship were described. New synthesis methods of heterocycles of interest were discovered: 1) convenient and mild copper-catalyzed synthesis of 2-aminoquinazolines from 2-formylphenylboronic acids and guanidines; 2) copper-mediated synthesis of indazoles from 2 -formylphenylboronic acids and azodicarboxylates or hydrazine dicarboxylates.

Publications and aprobation of the thesis

Scientific publications:

1. V. V. Solomin, A. Seins, and A. Jirgensons. 2-Aminoquinazolines by Chan-Evans-Lam coupling of guanidines with (2-formylphenyl)boronic acids. Synlett, 31, 2020, 1507-10 (IF(2020): 2.454)
2. V. V. Solomin, A. Seins, and A. Jirgensons. Synthesis of indazoles from 2formylphenylboronic acids. RSC Advances, 11, 2021, 22710-14 (IF(2021): 4.036)
3. V. V. Solomin, B. Fernandez Ciruelos, N. Velikova, J. Wells, M. Albanese, A. Adhav and A. Jirgensons. Synthesis and SAR of phenylazoles, active against Staphylococcus Aureus Newman. Chemistry of Heterocyclic Compounds, 58 (12), 2022, 737-748 (IF(2021): 1.490)

Results of the thesis were presented at the following conferences:

1. V. V. Solomin, A. Jirgensons. Synthesis of 2-Aminoquinazolines and Indazoles from 2-Formylphenylboronic Acids. $80^{\text {th }}$ International Scientific Conference of the University of Latvia, February 11, 2022, Riga, Latvia.
2. V. V. Solomin, A. Jirgensons. Synthesis of 2-Aminoquinazolines and Indazoles from 2-Formylphenylboronic Acids. Balticum Organicum Syntheticum (BOS 2022), July 3-6, 2022, Vilnius, Lithuania.
3. V. V. Solomin, A. Jirgensons. Chan-Evans-Lam reaction inspired synthesis of 2Aminoquinazolines and N-protected indazoles. SPRINGBOARD project Summer School: Major milestones in design and development of novel antimicrobials, August 23 - 25, 2022, Apšuciems, Latvia.
4. V. V. Solomin, D. Zaharova. Synthesis of Quinazolines and Indazoles from 2formylphenylboronic acids. $81^{\text {th }}$ International Scientific Conference of the University of Latvia, March 17, 2023, Riga, Latvia

LITERATURE REVIEW: Methods of 2-aminoquinazoline synthesis and their application for drug discovery

Since main part of the experimental work in the theses was devoted to the synthesis of 2-aminoquinazoline derivatives, the literature review was focused on the methods for their synthesis together with the application of 2-aminoquinazolines as enzyme inhibitors.

1. Nucleophilic addition of guanidines to 2-fluorobenzaldehydes

One of the most used starting materials for the synthesis of 2-aminoquinazolines are 2 -fluorobenzaldehydes ${ }^{23}$ and 2 -fluoroacetophenones ${ }^{24}$ 1. Upon coupling with guanidines $\mathbf{2}$ at elevated temperatures they can be transformed to the target heterocycle $\mathbf{3}$ (Scheme 1).

Scheme 1. Synthesis of 2-aminoquinazolines from ortho-fluorobenzaldehydes and acetophenones. Reaction conditions: NMP or DMA, 100 to $150^{\circ} \mathrm{C}$.

This approach has been described in a number of publications, dedicated to the development of perspective 2-aminoquinazoline-based kinase inhibitors.

Inhibitors of c-Kit tyrosine kinase - mast/stem cell growth factor receptor were developed based on 2-aminoquinazoline core by Hu's group. ${ }^{25}$ Inhibition of this type of kinases can potentially be used for the treatment of the mast cell associated fibrotic diseases. Compound $\mathbf{1 2}$ was declared to have a great selectivity to c-Kit against other structurally similar kinases. The synthesis of $\mathbf{1 2}$ started from 4-bromo-2fluorobenzaldehyde $\mathbf{4}$, which was cyclized to 2-aminoquinazoline $\mathbf{6}$ in the presence of guanidine carbonate at elevated temperature. Following transformations included replacement of bromine in 2 -aminoquinazoline with boron pinacolate to achieve compound $\mathbf{7}$ and subsequent Suzuki-Miyaura coupling with pyridine $\mathbf{8}$ to form compound 9. Finally, after the PMB group deprotection, followed by Buchwald-Hartwig amination reaction with 2-aminoquinazoline 10, compound 12 was obtained (Scheme 2).

10

$\mathrm{IC}_{50}=14 \mathrm{nM}$

Scheme 2. Synthesis of 2-aminoquinazoline inhibitor of c-Kit.
Reaction conditions: a) DIPEA, NMP, $160^{\circ} \mathrm{C}, 48 \%$; b) bis(pinacolato)diboron, KOAc, PdCl_{2} (dppf) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, 85^{\circ} \mathrm{C}, 50 \%$; c) $\mathrm{Pd}(\mathrm{OAc})_{2}$, S-phos, $\mathrm{K}_{3} \mathrm{PO}_{4}, 90 \%$; d) TFA; e) CuI, $\mathrm{K}_{3} \mathrm{PO}_{4}$, DMEDA, NMP, $85^{\circ} \mathrm{C}, 60-80 \%$ two steps.

Similar approach for the synthesis of a potential anticancer agent was presented by Vasbinder and co-authors. ${ }^{26}$ Assembly of 2-aminoquinazoline 6 from aldehyde 4 and guanidine 5 was followed by Suzuki-Miyaura coupling with 4-pyridine boronic acid to give compound 13. Subsequent Buchwald-Hartwig reaction with aryl bromide 14 produced 2-aminoquinazoline 15. Compound $\mathbf{1 5}$ selectively inhibited mutant B-Raf ${ }^{\text {V600E }}$ (Rapidly Accelerated Fibrosarcoma) kinases, which are involved in metastatic melanoma growth (Scheme 3).

Scheme 3. Synthesis of B-Raf inhibitor.
Reaction conditions: a) DMA, $140{ }^{\circ} \mathrm{C}$; b) $20 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, 4-\mathrm{Py}-\mathrm{B}(\mathrm{OH})_{2}$, DME/water, $\left.90^{\circ} \mathrm{C} ; c\right) 5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 10 \mathrm{~mol} \%$ BINAP , $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, dioxane, $100^{\circ} \mathrm{C}$.

Another type of kinase inhibitor, based on 2-aminoquinazoline scaffold was reported in recent article. ${ }^{27}$ Leucine rich repeat kinase 2 (LRRK2), linked to progression of the Parkinson's disease, was successfully targeted by compound 25. The key intermediate, 2-aminoquinazoline 19 was made from densely decorated 2fluorobenzaldehyde 18. Following steps included Boc-protection of 2-aminoquinazoline 19 to give compound 20, which was further subjected to the Ni-mediated coupling with alkyl iodide 21. After hydroxyl group deprotection from newly formed 22 and BuchwaldHartwig reaction with pyrazole bromide 24, an inhibitor 25 was obtained. The inhibitor 25 possessed high potency against LRRK2. According to in vivo tests compound $\mathbf{2 5}$ had a good potential for further drug development (Scheme 4).

Scheme 4. Synthesis of LRRK2 inhibitor.
Reaction conditions: a) NBS, MeCN, 84%; b) $\mathrm{KI}, \mathrm{NaNO}_{2}, 6 \mathrm{~N} \mathrm{HCl},-20{ }^{\circ} \mathrm{C}, 81 \%$; c) DMF, i - $\mathrm{PrMgCl}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}, 67 \% ; d$) guanidine carbonate, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMA, $120^{\circ} \mathrm{C}$, 76%; e) $\mathrm{Boc}_{2} \mathrm{O}$, DMAP, $\mathrm{MeCN}, 45{ }^{\circ} \mathrm{C}, 37 \%$; f) NiCl_{2} dme, picolinamidine, TBAI, Zn , DMF, $55^{\circ} \mathrm{C}, 63 \%$; g) TBAF, then TFA, 70% in two steps; h) $\mathrm{PdCl}_{2}(\text { all })_{2}, t \mathrm{BuBrettPhos}$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, Diox, $100^{\circ} \mathrm{C}$.

2. Copper-catalyzed addition of guanidines to 2-bromobenzaldehydes and 2-bromobenzoic acids

2-Aminoquinazolines $\mathbf{2 8}$ can be readily accessed from 2-bromobenzaldehydes 26a and corresponding 2-bromoaryl ketones $\mathbf{2 6 b}$ using CuI catalysis. ${ }^{28}$ This type of transformation
can also be used to obtain 2-amino-4-quinazolinones from 2-bromobenzoic acid 29 (Scheme 5). ${ }^{28-29}$

Scheme 5 Synthesis of 2-aminoquinazolines and 2-amino-4-quinazolinone, catalyzed by copper. Reaction conditions: $\mathrm{CuI}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, L-proline, DMF, $110^{\circ} \mathrm{C}$.

For the transformation of 2-bromobenzoic acid 29 to 2-amino-4-quinazolinones 30 $\mathrm{Cu}_{2} \mathrm{O}^{30}$ and $\mathrm{CuCl}_{2}{ }^{31}$ were also reported to be efficient catalysts.

3. Condensation of 2-aminobenzaldehydes and anthranilic acids with cyanamides and guanidines

Although 2-aminobenzaldehydes and related ketones $\mathbf{3 1}$ have limited commercial availability, they represent good starting materials for the construction of 2aminoquinazoline derivatives in the reaction with cyanamides 32. ${ }^{32}$ Similarly, 2-amino-4quinazolinones $\mathbf{3 5}$ can be obtained from anthranilic acids $\mathbf{3 4}$ and their esters (Scheme 6). ${ }^{33}$

Scheme 6. Synthesis of 2-aminoquinazolines $\mathbf{3 3}$ and 2-amino-4-quinazolinones $\mathbf{3 5}$ from 2-aminobenzaldehydes 31 and anthranilic acids 34.
Reaction conditions: $\mathrm{HCl}_{\mathrm{aq}}, \mathrm{EtOH}, 90^{\circ} \mathrm{C}$.
Pandya et al. reported synthesis of 2-aminoquinazolines 38, 40 from 2aminobenzophenones 36 in aprotic media. ${ }^{34}$ According to the published data, both acidic
(p-TSA) and basic (KOt Bu) conditions-promoted cyclization is possible in DMF at elevated temperatures (Scheme 7).

Scheme 7. Synthesis of aminoquiazolines from 2-aminobenzophenones.
Reaction conditions: a) p-TSA, DMF, $110^{\circ} \mathrm{C}, 75-78 \%$; b) $\mathrm{KO} t \mathrm{Bu}, \mathrm{DMF}, 110^{\circ} \mathrm{C}, 75-81 \%$.
Mild and efficient protocol of 2-amino-4-quinazolinones synthesis was introduced by Chen et al. ${ }^{35}$ They describe a stepwise process, which includes initial formation of hexfluoroisopropyl (HFIP) ester of anthranilic acid $\mathbf{4 2}$ followed by the reaction with guanidine $\mathbf{4 3}$ at room temperature to afford 2-amino-4-quinazolinone 44 (Scheme 8).

Scheme 8. Synthesis of 2-amino-4-quinazolinone 44.
Reaction conditions: a) HFIP, $\mathrm{NEt}_{3}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; b) $\mathrm{K}_{3} \mathrm{PO}_{4}$, DMF, $25^{\circ} \mathrm{C}, 10 \mathrm{~h}$.
2-Aminoacetophenone 45 has been used by Lin and co-workers ${ }^{36}$ to prepare perspective 2-aminoquinazoline-based inhibitor 51 of phosphatidylinositol 3-kinase (PI3K) (Scheme 9). The reaction of acetophenone $\mathbf{4 5}$ with cyanamide in acidic conditions provided 2-aminoquinazoline 46. After the protection of amino group as a 2,5dimethylpyrrole to achieve compound 47, phenolic oxygen was alkylated with 4bromopyran to obtain compound 48. Further 2,5-dimethylpyrrole protection was cleaved to obtain unprotected compound 49, and 2-aminoquinazoline 49 was reacted with arylboronic acid pinacolate $\mathbf{5 0}$ to give compound 51. The inhibitor $\mathbf{5 1}$ was proposed as potential anti-cancer agent.

Scheme 9. The synthesis of PI3K inhibitor 51.
Reaction conditions: a) conc. $\mathrm{HCl}, 50 \%$ cyanamide in water, $120^{\circ} \mathrm{C}, 15 \mathrm{~min}, 98 \%$; b) 2,5hexanedione, p-toluenesulfonic acid, NMP, toluene, $\left.160{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 87 \% ; c\right) \mathrm{AlCl}_{3}$, DCE, $80^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 77 \% ; d$) alkyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetonitrile, sealed tube, reflux, overnight, 58%; e) hydroxylamine hydrochloride, $\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}$, reflux, overnight, 85%; f) PdCl_{2} (dppf), $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$, dioxane, $100{ }^{\circ} \mathrm{C}$, $\mathrm{Ar}, 4 \mathrm{~h}, 45 \%$.

In the publication by Embrechts et al. ${ }^{37}$ the cyclization of anthranilic acid with cyanamide have been used for the preparation of a potent toll-like receptor (TLR) modulator 55 which could be used for the treatment of Hepatitis B virus infection (Scheme 10).

Scheme 10. Synthesis of TLR modulator 55.
Reaction conditions: a) $\mathrm{HCl}, \mathrm{NH}_{2} \mathrm{CN}, \mathrm{EtOH}, 100{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$, pressure vessel; b) DBU, BOP, anhydrous DMF, rt, 16 h .

4. Cyclization of 2-aminobenzyl amines and 2-aminobenzamides with isonitriles

An example of assembling 2-aminoquinazoline 58 and 2-amino-4-quinazolinone 60 from 2-aminobenzyl amine 56 or 2-aminobenzamide 59 was described by Vlaar and co-workers. ${ }^{38}$ Compounds 56 and 59 were subjected to the reaction with tert-butyl isonitrile 57 in palladium-catalyzed aerobic oxidation process, leading to heterocycles of interest 58 and $\mathbf{6 0}$ respectively (Scheme 11).

Scheme 11. Synthesis of 2-aminoquinazoline 58 and 2-amino-4-quinazolinone 60 from isonitriles using Pd catalysed oxidation.
Reaction conditions: a) $1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, MeTHF, $75^{\circ} \mathrm{C}, 1 \mathrm{~atm} \mathrm{O}, 4 \AA \mathrm{MS}, 79-85 \%$.
Similar approach was reported by Wang. ${ }^{39}$ In this case, the reaction of 2aminobenzyl amine 56 with isonitriles 61 was perfomed in the presence of I_{2}-tert-butyl hydroperoxide (TBHP) system as an oxidant. In contrast to the previous example, this process proceeds under metal-free conditions. Remarkably, different types of isonitriles 61 were compatible with the reaction conditions (Scheme 12).

Scheme 12. Synthesis of 2-aminoquinazolines 62 from isonitrile using $I_{2} /$ TBHP oxidation.
Reaction conditions: $10 \mathrm{~mol} \% \mathrm{I}_{2}$, 2 equiv TBHP, MTBE, $50^{\circ} \mathrm{C}$, $12 \mathrm{~h}, 40-83 \%$.
Another oxidation, leading to formation of 2-amino-4-quinazolinones $\mathbf{6 5}$ from 2aminobenzamides 63 was also described. ${ }^{40}$ Herein, cumene hydroperoxide (CHP) acted as a stoichiometric oxidant while iodine was added in catalytic amount (Scheme 13).

Scheme 13. Synthesis of 2-amino-4-quinazolinones $\mathbf{6 5}$ using $\mathrm{I}_{2} / \mathrm{CHP}$.
Reaction conditions: $10 \mathrm{~mol} \% \mathrm{I}_{2}$, 2 equiv CHP, MTBE, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 76-93 \%$.

5. Copper-catalyzed addition of guanidines to 2-bromobenzyl amines

Liu et al. reported synthesis of quinazoline derivatives, including 2aminoquinazoline 69, from 2-bromobenzyl amine 66 and guanidine. ${ }^{41}$ According to the proposed mechanism, an initially formed arylguanidine 67 further undergoes cyclization to 3,4 -dihydroquinazolin-2-amine $\mathbf{6 8}$ followed by aerobic oxidation providing 2 aminoquinazoline 69 (Scheme 14).

Scheme 14. Synthesis of 2-aminoquinazolines 69 from 2-bromobenzylamine 66.
Reaction conditions: a) $20 \mathrm{~mol} \% \mathrm{CuBr}, 2$ equiv. guanidine hydrochloride, 3 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMSO, air, $120^{\circ} \mathrm{C}, 24 \mathrm{~h}, 68-86 \%$.

6. Pd-catalyzed condensation of 2-iodoanilines with cyanamide and carbon monooxide

2-Iodoanilines 70, 72 could be used as starting materials in a process of carbonylative coupling with cyanamide 37, which results in formation of 2-amino-4quinazolinones 71, 73. ${ }^{42}$ The reaction works both for the non-substituted and substituted anilines 70. N-alkyl 2-iodoanilines 72 also can be used as starting materials leading to N substituted 2-amino-4-quinazolinones 73 (Scheme 15).

Scheme 15. Synthesis of 2-amino-4-quinazolinones 71, 73 from 2-iodoanilines 70, 72.
Reaction conditions: $5 \mathrm{~mol} \% \mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4}, 3 \text { equiv. cyanamide, } 2 \text { equiv. } \mathrm{Et}_{3} \mathrm{~N}, 1,4 \text {-dioxane, }}$ $65{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$, MW 20 min ; separate CO generation vessel: 1 equiv. $\mathrm{Mo}(\mathrm{CO})_{6}, 3$ equiv. DBU, 1,4-dioxane, $65^{\circ} \mathrm{C}, 20 \mathrm{~h}$.

In this case, $\mathrm{Mo}(\mathrm{CO})_{6}$ which decomposes in separate vessel, acts as a source of CO for the reaction. For the complete conversion of the formed intermediates, microwave irradiation was used as the last step of the transformation.

7. Pd-catalyzed addition of isonitriles to N -alkyl- N^{\prime}-(2-iodophenyl)ureas

Sharma et al ${ }^{43}$ reported ligand-free palladium assisted insertion of isonitriles $\mathbf{5 7}$ to urea derivatives 74 that leads to 2-amino-4-quinazolinones 75. Reaction proceeded in aprotic media (DMF) with cesium carbonate as a base and palladium (II) acetate as a catalyst (Scheme 16).

Scheme 16. Synthesis of 2-amino-4-quinazolinones 75 from N-alkyl- N^{\prime}-(2iodophenyl)ureas 74.
Reaction conditions: $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 2$ equiv. $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 12 \mathrm{~h}, 45-71 \%$.
The same research group also described a modified approach, ${ }^{44}$ where the flow reactor and solid-supported NHC-Pd catalyst were used leading to increased yields of products 75 (up to 88%).

8. Cyclization of phenylguanidine derivatives

Microwave-assisted solvent-free approach to access 2-aminoquinazolines was reported by Kumar and co-workers. ${ }^{45} \mathrm{~N}$-Imidoyliminophosphoranes 76 were reacted with benzaldehydes 77 giving the corresponding 2-aminoquinazolines 78 (Scheme 17).

Scheme 17. Synthesis of 2-amino-4-phenylquinazolines 78 from imidoyliminophosphoranes 76. Reaction conditions: MW $300 \mathrm{~W}, 4 \mathrm{~min}, 65-80 \%$.

Perspective anxiolytic and anti-convulse activity was claimed for the compound 78 series. ${ }^{45 b}$

2-Amino-4-quinazolinones $\mathbf{8 2}$ can be obtained by the cyclization of ethoxycarbonyl-protected guanidines $\mathbf{8 1 .} .^{46}$ Reaction proceeds in DMF at $80{ }^{\circ} \mathrm{C}$ using excess TMSCl. Corresponding ethoxycarbonyl guanidines $\mathbf{8 1}$ can be accessed from anilines 79a-d using one-pot protocol, which involves initial reaction of aniline with ethyl isothiocyanatoformate $\mathbf{8 0}$ followed by a subsequent reaction of intermediate thioureas with n-propylamine (Scheme 18).

Scheme 18. Synthesis of 2-amino-4-quinazolinones $\mathbf{8 2}$ from anilines 79.
Reaction conditions: a) 1.2 equiv. $\mathrm{EDCI}, 2$ equiv. n-propylamine, 3 equiv. $\mathrm{Et}_{3} \mathrm{~N}, 6 \mathrm{~h}$; b) 10 equiv. TMSCl, DMF, $80^{\circ} \mathrm{C}$.

Similar approach has been used by Debray at al l^{47} - who showed that ethoxycarbonyl-protected guanidines $\mathbf{8 3}$ can be transformed to 2-amino-4-quinazolinones 84 without catalyst just by heating the starting material suspended in water under microwave irradiation (Scheme 19).

Scheme 19. Synthesis of 2-amino-4-quinazolinones from ethoxycarbonyl protected guanidines 83. Reaction conditions: a) $\mathrm{H}_{2} \mathrm{O}, \mathrm{MW}, 130^{\circ} \mathrm{C}, 20 \mathrm{~min}, 70-97 \%$.

Compounds 84a, 84c, and 84d exhibited low micromolar potency as DYRK1A kinase inhibitors. ${ }^{47}$ Polymorphism of DYRK1A kinase was associated with HIV-1 replication in monocyte-derived macrophages. ${ }^{48}$ Mutations in this type of kinase are also associated with autism disorder. ${ }^{49}$

Simple route to 2-amino-4-quinazolineones was introduced by Sales and coworkers. ${ }^{50}$ In their method, carbonyldiimidazole (CDI) was used as a source of carbonyl group to cyclize phenylguanidines 85 into 2-aminoquinazolinones 86 (Scheme 20).

Scheme 20. Synthesis of 2-amino-4-quinazolinones 86 from phenylguanidines 85 and CDI. Reaction conditions: 1.5 equiv. CDI, $\mathrm{MeCN}, 80^{\circ} \mathrm{C}, 5 \mathrm{~h}, 52-91 \%$.

This type of reaction required no additional catalyst - just heating the components in MeCN was performed. An additional advantage of the method - large variety of functional groups were shown to tolerate the reaction conditions.

Ionic liquid-assisted cyclization of guanidine derivative $\mathbf{8 9}$ to give 2-alkylamino-4-phenylquinazolines 90 was reported by Debray. ${ }^{51}$ Corresponding guanidines can be obtained from anilines 79a-b, $\mathbf{8 7}$ using one-pot protocol of transformation with benzoyl isothiocyanate $\mathbf{8 8}$ and piperidine. [OMIm]Cl was used as an ionic liquid, and the reaction was facilitated by a MW irradiation. Despite the fact that only limited number of examples of such a cyclization was presented in the paper, this approach could offer very mild conditions for the Bishler-Napieralski type transformation (Scheme 21).

Scheme 21. Synthesis of 2-amino-4-phenylquinazolines 95.
Reaction conditions: a) 2 equiv. piperidine, 1.2 equiv. $\mathrm{EDCI}, 3$ equiv. $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 6 \mathrm{~h}$, $91-95 \%$; b) [OMim]Cl, MW, $110^{\circ} \mathrm{C}, 10 \mathrm{~min}, 62-81 \%$.

2,4-Diaminoquinazoline $\mathbf{9 3}$ was obtained from an electron-rich aniline $\mathbf{9 1}$ using N cyano guanidine $\mathbf{9 2}$ as a suitable intermediate. ${ }^{52}$ The corresponding guanidine $\mathbf{9 2}$ was cyclized in presence of Lewis acid (boron trifluoride diethyl etherate) to give the target quinazoline 93 (Scheme 22).

Scheme 22. Synthesis of 2,4-diaminoquinazoline 93.
Reaction conditions: a) 2.5 equiv. $\mathrm{NaN}(\mathrm{CN})_{2}$, DMF, $40{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 90 \%$; b) 5 equiv. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}, 76 \%$.

Chen and co-workers described synthesis of compound $\mathbf{9 3}$ derivatives and described their anti-tumor activity. ${ }^{53}$ Using the above-mentioned approach for the construction, 2,4diaminoquinazoline 93 was obtained, and the indole core was further selectively acylated to give compounds $\mathbf{9 4}$. Curiously, using sodium hydride in DMF, the acyl group was shifted to the nitrogen of aminoquinazoline substructure, resulting in compounds 95 (Scheme 23).

Scheme 23. Synthesis of 2,4-aminoquinazoline derivatives 95 .
Reaction conditions: a) 1.1 equiv. $(\mathrm{RCO})_{2} \mathrm{O}, 1.1$ equiv. $\mathrm{NaH}, \mathrm{DMF}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 73-78 \%$; b) 1.1 equiv. $\mathrm{NaH}, \mathrm{DMF}, 1 \mathrm{~h}, 25^{\circ} \mathrm{C}, 24-32 \%$.

Compounds 95 exhibited potency against breast cancer cell lines MDA-MB-231 and MDA-MB-468 at micromolar concentrations. ${ }^{53}$

9. Amination of 2-chloroquinazolines

Nucleophilic substitution of halogens at the second position of quinazolines 96 has proven as a powerful and one of the most used methods for the synthesis of various 2aminoquinazoline derivatives 98. 2-Aminoquinazolines ${ }^{54}$, 2-amino-4-quinazolinones ${ }^{55}$ and 2,4-diaminoquinazoline ${ }^{56}$ can be easily accessed with this approach (Scheme 24).

Scheme 24. Synthesis of 2-aminoquinazolines 98 from 2-haloquinazolines 96.
2-Chloroquinazoline derivatives can be transformed to the corresponding amino derivatives by the reaction with ammonia, primary or secondary amines. ${ }^{57}$ The substitution with amines can be facilitated by organic (triethylamine, ${ }^{58}$ diisopropylethylamine, ${ }^{54 \mathrm{~b}}$ pyridine ${ }^{59}$) or inorganic (potassium carbonate, ${ }^{54 \mathrm{a}}$ sodium hydride ${ }^{60}$) bases.

To illustrate the application of such type of transformation for the synthesis of biologically active compounds, some selected examples shall be mentioned. One of such
examples is the synthesis of a new inhibitor series of cyclin-dependent kinase 4 (Cdk4) by Bathini and co-workers. ${ }^{61}$ This kinase is playing key role in cell division mechanism, therefore molecules targeting Cdk4 are potential anti-proliferative agents. Synthesis starts from 2-chloroquinazoline 99, which undergoes amination at elevated temperatures with aniline $\mathbf{1 0 0}$ to produce 2 -aminoquinazoline 101. This aminoquinazoline was sequentially deprotected from Boc on piperazine moiety (102) and from methyl group on phenolic moiety to obtain 2 -aminoquinazoline $\mathbf{1 0 3}$. Compound $\mathbf{1 0 3}$ showed high inhibitory potency of Cdk4 and was selective Cdk4 inhibitor over the structurally-related kinase Cdk2a (Scheme 25).

Scheme 25. Synthesis of Cdk4 inhibitor 103.
Reaction conditions: a) MeCN, $110^{\circ} \mathrm{C}$; b) TFA; c) EtSNa.

Recent research dedicated to the development of G protein-coupled receptor kinase 6 (GRK6) inhibitors resulted in compound $\mathbf{1 0 8}$ based on 2,4-aminoquinazoline scaffold. ${ }^{62}$ GRK6 was found to be crucial for the surviving of multiple myeloma cells, so selective inhibitor of this enzyme would be applicable for therapy of such a cancer type. In this article, a modular approach was shown for assembling 2,4-diaminoquinazolinebased structure. A chlorine atom at the $4^{\text {th }}$ position of 2,4 -dichloroquinazoline building block 104 was replaced with an amine $\mathbf{1 0 5}$ under mild conditions. Using elevated temperatures, the chlorine atom in $2^{\text {nd }}$ position of the intermediate heterocycle $\mathbf{1 0 6}$ could be replaced with an amine nucleophile 107 to give the product $\mathbf{1 0 8}$ (Scheme 26).

Scheme 26. Synthesis of 2,4-aminoquinazoline-based GRK6 inhibitor 108.
Reaction conditions: a) 3 equiv. TEA, EtOH, $25^{\circ} \mathrm{C}, 76 \%$; b) butan-1-ol, MW, $200{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 63 \%$.
2-Chloroquinazoline derivatives can be subjected for amination to give 2aminoquinazolines by using the Buchwald-Hartwig reaction protocol. Usually such a reaction can be catalyzed with tris(dibenzylideneacetone)dipalladium in pair with a phosphine ligand.

Wenwen et al presented a novel class of inhibitors of fibroplast growth factor receptor 4 (FGFR4) which is associated with development of Hepatocellular Carcinoma. ${ }^{63}$ One of the key steps of the transformations towards the active compounds $\mathbf{1 1 3}$ was palladium-catalyzed amination of 2-chloroquinazoline 109 with 2-methyl-6-nitroaniline. On the first stage of transformation compound 109 reacted with (3,5dimethoxyphenyl)boronic acid under the Suzuki-Miyaura reaction conditions to form quinazoline 110, which was further chlorinated to obtain compound 111.

Scheme 27. Synthesis of FGFR4 inhibitor 113.
Reaction conditions: a) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, THF/Dioxane $/ \mathrm{H}_{2} \mathrm{O}, 100{ }^{\circ} \mathrm{C}, 3 \mathrm{~h} ; b$) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$, THF, $-20^{\circ} \mathrm{C}, 1 \mathrm{~h}$, c) 2-methyl-6-nitroaniline, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, X-Phos, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMA, $100^{\circ} \mathrm{C}, 3 \mathrm{~h} ;$ d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, MeOH , r.t. 4 h ; e) EDCI, DCM, r.t. 4 h.

Buchwald-Hartwig reaction between quinazoline 111 and 2-methyl-6-nitroaniline provided 2-aminoquinazoline 112. This compound was reduced and transformed to amides with general formula $\mathbf{1 1 3}$ (Scheme 27).

Catalytic amination of 2-chloroquinazoline was also used in recently reported putative pyrimidine-based inhibitors of valine-containing proteins VCP/p9764. This
protein associated with maintaining protein homeostasis and mediation of degradation of misfolded polypeptides. In the reaction sequence, chlorine atom in the $4^{\text {th }}$ position of 2,4dichloroquinazoline $\mathbf{1 1 4}$ was replaced with 3-(aminomethyl)phenol to produce compound 115.

Scheme 28. Synthesis of VCP/p97 inhibitors 121.
Reaction conditions: a) IPA, TEA, $80^{\circ} \mathrm{C}$; b) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}$, X-Phos, dioxane, $105^{\circ} \mathrm{C}$; c) $\mathrm{PhNTf}_{2}, \mathrm{TEA}, \mathrm{THF}, 5{ }^{\circ} \mathrm{C}$; d) $(\mathrm{BPin})_{2}, \operatorname{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}, \mathrm{KOAc}$, dioxane, $\left.110{ }^{\circ} \mathrm{C} ; e\right)$ $\mathrm{NaIO}_{4}, \mathrm{NH}_{4} \mathrm{OA}$, THF, $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt} ; f$) TFA, DCM, rt; g) carboxylic acid, $N, N N^{\prime}$ dicyclohexylcarbodiimide, $\quad \mathrm{DCM}$; or carboxylic acid, N-ethyl- N^{\prime}-(3dimethylaminopropyl)carbodiimide, 1-hydroxybenzotriazole, DIPEA, DMF; or acid chloride, TEA, DCM.

Further chlorine in $2^{\text {nd }}$ position was replaced with indole using Buchwald-Hartwig reaction to obtain 2,4-diaminoquinazoline 116. Then, free hydroxyl group of compound 116 was transformed to triflate. Triflate 117, in turn, was transformed to phenylboronic acid pinacolate 118. Pinacol protection cleaved to obtain phenylboronic acid 119, which
after acidic cleavage of Boc group provided compound 120. Amino group in intermediate $\mathbf{1 2 0}$ was acylated using EDCI to obtain final amides $\mathbf{1 2 1}$ (Scheme 28).

10. Amination of 2-bromo, iodo and fluoroquinazolines

A nucleophilic replacement of bromine or iodine is not so frequently used for 2aminoquinazoline formation in comparison with replacement of chlorine. Huang at al reported replacement of bromine at the $2^{\text {nd }}$ position of quinazoline ring with aniline when heating a mixture of reagents $\mathbf{1 2 2}$ and $\mathbf{1 2 3}$ in dioxane in the presence of acetic acid. ${ }^{65}$ (Scheme 29).

Scheme 29. Synthesis of 2-aminoquinazoline 124 from 2-bromoquinazoline 122. Reaction conditions: 1.5 equiv. $\mathrm{PhNH}_{2}, 1$ equiv. AcOH, dioxane, $110^{\circ} \mathrm{C}, 22 \mathrm{~h}, 70 \%$.

Relatively mild conditions for bromine substitution at 2-bromoquinazoline $\mathbf{1 2 5}$ with amine $\mathbf{1 2 6}$ to give the product $\mathbf{1 3 2}$ were also reported (Scheme 30). ${ }^{66}$

Scheme 30. 2-Bromoquinazoline $\mathbf{1 2 5}$ amination.
Reaction conditions: 3 equiv. TEA, i-PrOH, $85^{\circ} \mathrm{C}, 2 \mathrm{~h}, 100 \%$.
Perspective quinazoline-based inhibitor $\mathbf{1 3 8}$ of lymphocyte-specific kinase (Lck) were synthesized, using nucleophilic replacement of iodine in 2-iodoquinazoline building block 135. ${ }^{67}$ The corresponding 2-iodoquinazoline $\mathbf{1 3 5}$ was made from non-substituted 2aminoquinazoline $\mathbf{1 3 4}$ which in turn was synthesized from 2-fluorobenzaldehyde 133 2Aminoquinazoline 136, obtained from 2-iodoquinazoline 135, further reacted with phenylboronic acid pinacolate $\mathbf{1 3 7}$ to give the target inhibitor $\mathbf{1 3 8}$ (Scheme 31).

Scheme 31. Synthesis of Lck inhibitor 131.
Reaction conditions: a) 1.3 equiv. guanidine carbonate, 2.6 equiv. DIPEA, NMP, $160{ }^{\circ} \mathrm{C}$, $3 \mathrm{~h}, 48 \%$; b) 1 equiv. CuI, 5 equiv. $\mathrm{CH}_{2} \mathrm{I}_{2}, 3$ equiv. i-amyl nitrite, THF, $70^{\circ} \mathrm{C}, 2 \mathrm{~h}, 35 \%$; c) 5 equiv. 2-morpholinoethanamine, 1.5 equiv. DIPEA, i - $\mathrm{PrOH}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \% ; d$) $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5$ equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O} 3: 1,60^{\circ} \mathrm{C}, 3 \mathrm{~h}, 17 \%$.

The same 2-iodoquinazoline $\mathbf{1 2 8}$ was used for the construction of a non-covalent bonding probes for protein kinases 136. 2-Iodoquinazoline $\mathbf{1 2 8}$ was aminated with substituted aniline 132, and further reacted with phenylboronic acid pinacolate $\mathbf{1 3 4}$ to produce compound $\mathbf{1 3 5}$. Compound $\mathbf{1 3 5}$ was further decorated with polyethoxyl chain to obtain product 136 (Scheme 32). Compound 136 was capable to interact with ATPbinding sites of the corresponding protein kinases and hold them in inactive conformation. ${ }^{68}$

Scheme 32. Synthesis of a non-covalent ATP inhibitor 136.
Reaction conditions: a) 2 equiv. TFA, i- $\mathrm{PrOH}, 70^{\circ} \mathrm{C}, 12 \mathrm{~h}, 47 \%$; b) $5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, 2 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, DME: $\mathrm{H}_{2} \mathrm{O} 3: 1,85^{\circ} \mathrm{C}, 77 \%$; c) TFA:DCM 1:2, $3 \mathrm{~h}, 25^{\circ} \mathrm{C}, 58 \% ; d$) 1.3 equiv. EDCI, 1.3 equiv. HOBt, 3 equiv. DIPEA, $12 \mathrm{~h}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; e) TFA:DCM 1:2, $5 \mathrm{~h}, 25^{\circ} \mathrm{C}, 20 \%$.

Limited amount of data in the literature describes nucleophilic substitution of fluorine at the $2^{\text {nd }}$ position of a quinazoline ring. One of such examples is a construction of IRE1- α inhibitor 144. Inhibitors of this type are claimed to be perspective drugs against cell degenerative diseases, such as diabetes and Alzheimer disease. ${ }^{69}$ In the synthetic scheme, 2-aminoquinazoline 138, obtained from 2-fluorobenzaldehyde 137, was subjected to Balz-Schiemann reaction to obtain 2-fluoroquinazoline 139. This further was transformed to phenyl boronic acid pinacolate 140, which was reacted in Suzuki-Miyaura coupling with aryl bromide 141. Fluorine atom in the second position of quinazoline ring in compound 142 was replaced with substituted cyclohexylamine to obtain 2aminoquinazoline 143, which was deprotected from Boc group to obtain final structure 144 (Scheme 33).

140

Scheme 33. Synthesis of IRE1- α inhibitor 144.
Reaction conditions: a) 1.5 equiv. guanidine carbonate, 3 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $160{ }^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 30 \%$; b) 2 equiv. t-BuNO 2 , HF•Py, Py, $-40^{\circ} \mathrm{C}, 1 \mathrm{~h}, 33 \%$; c) $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$, 1.2 equiv. (BPin) $2,1.5$ equiv. KOAc , dioxane, $90^{\circ} \mathrm{C}, 18 \mathrm{~h}$; d) $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$, 4 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, dioxane, $90{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}, 73 \%$; e) 4 equiv. tert-butyl ($(1 R, 4 R)-4-$ aminocyclohexyl) carbamate, 5 equiv. DIPEA, n-butanol, $\left.100^{\circ} \mathrm{C}, 18 \mathrm{~h}, 33 \% ; f\right) 4 \mathrm{M} \mathrm{HCl}$ in dioxane, $2 \mathrm{~h}, 2 \mathrm{~h}, 25^{\circ} \mathrm{C}, 30 \%$.

11. Literature review summary

Currently existing methods for assembling 2-aminoquinazolines mostly start from benzaldehydes, phenylketones or benzoic acids with halogen (or amino group) in the ortho- position to carbonyl group. In the case of halogen-substituted benzaldehydes, phenylketones, or benzoic acids, the commonly used reaction partners are guanidines or guanidine derivatives. The process in such case proceeds via a nucleophilic aromatic substitution of a halogen with guanidine, with subsequent formation of quinazoline cycle. Usually process of cyclization proceeds at an elevated temperature higher than $100^{\circ} \mathrm{C}$ and requires presence of a strong base. Reaction partners for 2-aminosubstituted phenylcarbonyl derivatives are mostly cyanamide derivatives. Cyclization of 2aminoquinazoline core in this case usually posess milder conditions, but frequently required temperatures up to $100^{\circ} \mathrm{C}$ and acid catalysis.

Substitution of halogen of 2-haloquinazolines can be achieved either via nucleophilic mechanism or using palladium-catalyzed Buchwald-Hartwig type amination. These are the mildest ways of 2-aminoquinazoline synthesis, described in literature at the date. Large variety of functional and protective groups can tolerate these conditions. However, most of such substitution protocols involves elevated temperature and presence of a strong base.

The reasons, mentioned above, promoted our interest for a search of a new methods of 2-aminoquinazoline assembling (see Results and Discussion, section 3).

RESULTS AND DISCUSSION

1. Synthetic evolution of HK fragment hits

To find a perspective inhibitor of HK TCs we pursued the fragment-based drug discovery approach starting from the fragments hits which were identified by crystallography screening of the fragment library (project partners: group of Dr. A. Marina, Instituto de Biomedicina de Valencia CSIC). Computational studies of the ligandprotein structures and proposed possible structure modifications to increase potency of initial hits were performed by M. Albanese (Oxford Drug Design, Oxford). Blanca Fernandez (Prof. Jerry Wells group, Wageningen University) studied the effect of synthesized compounds on different bacterial strains. Synthesis of target compounds together with SAR analysis were made by V. Solomin.

1.1. Pyrazole amide series of compounds

Ethyl 1H-pyrazole-4-carboxylate $\mathbf{1 4 5}$ was one of the fragment hits which was cocrystallized with CA domain of CheA (Figure 2).

Figure 2. Crystal structure of CA domain of CheA from T. Maritima in a complex with compound 145.

Compound $\mathbf{1 4 5}$ was particularly attractive for further modifications because of accessibility of modifications which can be made with the carboxyl group of the molecule. A virtual library of amides 148a-j was created in collaboration with Marco Albanese (Oxford Drug Design) which was subjected to the docking studies, using computer-aided drug design (CADD). After several refinements of the results, the most promising compounds 148a-j were selected for the synthesis. Amides 148a-j were
prepared from pyrazole-4-carboxylic acid 146 and corresponding amines 147a-j by using EDCI in pair with HOBt as coupling agents (Scheme 34).

Scheme 34 Synthesis of amides 148.
Reaction conditions: a) 1.1 equiv. HOBt, 2 equiv. EDC, 4 equiv. TEA, MeCN, $25^{\circ} \mathrm{C}, 14 \mathrm{~h}$.
The amides 148a-j were subjected to enzymatic assay and bacterial growth assay. Unfortunately, the compounds 148a-j showed no detectable activity in any of the assays. The initial unsuccessful results promted to propose more rigid compounds without flexible chain between structural elements of the molecule. Using CADD, another series of pyrazole amides 150a-i was designed as potential inhibitors for histidine kinases. Using EDCl as a coupling reagent and pyridine as a solvent, anilines 149a-i were converted to the corresponding amides 150a-i (Scheme 35).

Scheme 35. Synthesis of anilides 150a-i.
Reaction conditions: a) 1.6 equiv. EDCI, pyridine, $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
Several anilides were made by hydrolysis of ester groups in amides $\mathbf{1 5 0 d}, \mathbf{e}, \mathbf{i}$ to give carboxylic acid derivatives 151a-c (Scheme 36).

Scheme 36. Hydrolysis of compounds $\mathbf{1 5 0 d}$,e, \mathbf{i} to carboxylic acid salts 151a-c. Reaction conditions: a) 2.2 equiv. $\mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Compounds 150a-i and 151a-c showed weak inhibitory potency in the case of target proteins PhoR and EnvZ. Autophosphorylation inhibition assay in pair with these proteins revealed that all of the compounds $\mathbf{1 5 0 a} \mathbf{- i}$ and $\mathbf{1 5 1 a} \mathbf{c}$ have IC_{50} less than 1 mM .

Another type of assays was performed with proteins CheA and Hsp90. In the case of CheA TNP-ATP displacement assay ${ }^{70}$ showed that K_{D} for all of the compounds is less than $500 \mu \mathrm{M}$. Radicicol replacement assay ${ }^{71}$ in the case of Hsp90 protein indicated that K_{D} of the compounds $\mathbf{1 5 0 a}$-i and 151a-c is lower than $100 \mu \mathrm{M}$.

Upon crystallography studies in IBV CSIC X-Ray crystal structure of compound $148 f$ with CheA protein was revealed (Figure 3, A). Generally, this structure confirmed predictions made by CADD. Real structure position (in red) and predicted binding mode (in green) are almost identical (Figure 3, B).

Figure 3. X-ray crystal structure of $\mathbf{1 4 8 f}$ in complex with CheA.
A) Crystal binding mode of $\mathbf{1 4 8 f}$ (red tubes) in complex with CheA. Water sites are shown as solid spheres coloured by free energy (green: negative free energy, red: positive free energy). Black arrows indicate the regions of positive energy in the proximity of the ligand.
B) Top - Crystal bound conformation of $\mathbf{1 4 8 f}$ (in red tubes). Bottom - an overlay of the crystal-bound conformation (red tubes) onto the energy minimized crystal bound conformation (green tubes).

However, none of the pyrazole amide derivatives 150a-i and 151a-c, derived from the second fragment $\mathbf{1 4 5}$ development series, did not show any activity to inhibit the growth of Gram positive and Gram negative bacterial cultures.

1.2. 2-Aminopyrimidine-5-carboxamide and structurally related derivatives

Another fragment hit $\mathbf{1 5 2}$ identified by X-ray screening of fragment library (group of Dr. A. Marina at CSIC) was analysed by CADD (M. Albanese at Oxford Drug Design). These studies suggested 8-amino-1,7-naphtyridine 153, 2-aminopyrimidine 154 and 3,4-dihydroisoquinolin-1(2H)-one 155 as putative HK ligands (Figure 4).

152

153

154

155

Figure 4. Proposed as analogues of a fragment hit 152 compounds 153-155.
Following the literature procedure, ${ }^{72}$ 1,7-naphtyridine 161 was synthesized starting from 3-chloropicolinonitrile 156 (Scheme 37). After arylation of diethyl malonate obtained ester 158 was de-carboxylated to obtain ester 159. Ester 159 was subjected to the reaction with DMF-DMA to obtain enamine 160, which further was cyclized to $1,7-$ naphtyridine 161. Ethyl ester 161 was hydrolysed to carboxylic acid 162 using aqueous sodium hydroxide. The carboxylic acid $\mathbf{1 6 2}$ was converted to cyclopentylamide 153 using EDCI in pair with HOBt as coupling reagents (Scheme 37).

2-Aminopyrimidine derivative $\mathbf{1 5 4}$ was made starting from 2-aminopyrimidine-5carboxylic acid 163 (Scheme 38). This was N-acylated with propionic anhydride at elevated temperature to receive compound $\mathbf{1 6 4}$ and then coupled with cyclopentylamine using EDCI to give the target compound 154.

Additionally, an analogues aminopyrimidine $\mathbf{1 6 8}$ containing sulphonamide instead of carboxamide moiety was prepared. 2-Aminopyrimidine 165 was converted to sufonyl chloride 166, using chlorosulfonic acid mixture with thionyl chloride. Newly formed sulfonyl chloride 166 reacted with cyclopentylamine to produce sulfonamide $\mathbf{1 6 7}$. This was acylated using propionic anhydride to obtain amide 168 (Scheme 39).

Scheme 37. Synthesis of 1,7-naphtyridine 153.
Reaction conditions: a) 2 equiv. $\mathrm{NaH}, 0.2$ equiv. KF, DMF, $130{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}, 69 \%$; b) 2 equiv. LiCl, 2 equiv $\mathrm{H}_{2} \mathrm{O}$, DMSO, $140{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 86 \%$; c) 3 equiv. DMF-DMA, neat, $100^{\circ} \mathrm{C}, 6 \mathrm{~h} ; d$) 18 equiv. $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{AcOH}, 100^{\circ} \mathrm{C}, 14 \mathrm{~h}, 39 \%$ over 2 st ; e) 2 equiv. $\left.\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, 100{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 77 \% ; f\right) 1.5$ equiv. cy-Pent- $\mathrm{NH}_{2}, 1.5$ equiv. $\mathrm{EDCl}, 1.2$ equiv. HOBt, 4 equiv. $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 25^{\circ} \mathrm{C}, 14 \mathrm{~h}, 84 \%$.

Scheme 38. Synthesis of 2-aminopyrimidine 154.
Reaction conditions: a) 6 equiv. propionic anhydride, neat, $140{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 49 \%$; b) 1.5 equiv. EDCI, 1.2 equiv. HOBt, 2 equiv. cy-Pent-NH2, DMF, $25^{\circ} \mathrm{C}, 14 \mathrm{~h}, 55 \%$.

Scheme 39. Synthesis of sulphonamide 168.
Reaction conditions: a) 8.5 equiv. $\mathrm{HSO}_{3} \mathrm{Cl}, 4$ equiv. $\mathrm{SOCl}_{2}, 0$ to $150{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 30 \% ; b$) 1.5 equiv. cy-Pent- $\mathrm{NH}_{2}, 2$ equiv. $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 76 \%$; c) 12 equiv. propionic anhydride, neat, $140^{\circ} \mathrm{C}, 2 \mathrm{~h}, 48 \%$.

3,4-Dihydroisoquinolin-1(2H)-one 155 was synthesized starting from 7-fluoro-2,3-dihydro-1H-inden-1-one 169 (Scheme 40). The Schmidt rearrangement ${ }^{73}$ was applied to transform the ketone $\mathbf{1 6 9}$ to lactam $\mathbf{1 7 0}$. This was subjected to $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction with thiophenol $\mathbf{1 7 1}$ to give the target product 155 .

Scheme 40. Synthesis of 3,4-dihydroisoquinolin-1(2H)-one 155.

Reaction conditions: a) 2 equiv. NaN_{3}, 23 equiv. $\mathrm{MeSO}_{3} \mathrm{H}, \mathrm{DCM}, 0{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}, 35 \%$; b) 1.5 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $120^{\circ} \mathrm{C}, 14 \mathrm{~h}, 62 \%$.

Unfortunately, compounds $\mathbf{1 5 3 - 1 5 5}$, 168 showed no measurable biological activity in in vitro tests with different bacterial cell lines. Compounds were not inhibiting growth of S. Aureus Newman, E. Coli D21F2, E. Coli 25922, E. Faecium and E. Faecalis up to concentrations of $250 \mu \mathrm{~g} / \mathrm{mL}$.

1.3. Indazole series of compounds

Structural information of the binding for fragment hits ethyl 1 H -pyrazole-4carboxylate 145 and 4-[4-(4-chlorophenyl)-5-(trifluoromethyl)- $1 H$-pyrazol-3-yl]benzene-1,3-diol 172 was available from crystallography studies (group of prof. A. Marina at CSIC, Figure 5).

172

Figure 5 Ligands 145 (in orange) and 172 (in yellow) superposition of X-Ray crystal structures with CheA protein.

The two hits were virtually combined using CADD software resulting in indazole based compound 173 (Figure 6, on the top). Analysis of possible options for modification of virtual fragment $\mathbf{1 7 3}$ was made and it was proposed to introduce an aryl substituent at the $4^{\text {th }}$ position of the indazole. Preferably aryl group at $4^{\text {th }}$ position shall contain hydrogen bond acceptor, such as pyridine nitrogen (additional interaction showed with arrows). In this way indazole 174 was determined as perspective compound (Figure 6, on the bottom).

Figure 6. A predicted binding mode of 1 H -indazol-6-ol 173 (on the top) and 4-(pyridin-3-yl)-1H-indazol-6-ol 174 (on the bottom) with CheA.

Suzuki reaction of bromoindazole 176 with aryl boronic acids was chosen to introduce an aryl group at the indazole ring (Scheme 41). The synthesis of the key intermediate bromoindazole 176 was performed starting from 2-fluorobenzaldehyde $\mathbf{1 7 5}$ which was cyclized with hydrazine at elevated temperature. ${ }^{74}$

Scheme 41. Synthesis of indazoles 174, 178a-b.
Reaction conditions: a) 22 equiv. $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, Dioxane, $110{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 93 \%$; b) 1.4 equiv. $\mathrm{R}-\mathrm{B}(\mathrm{OH})_{2}, 7 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}, 4$ equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, dioxane: $\mathrm{H}_{2} \mathrm{O} 4: 1.100{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; c) 5 equiv. $\mathrm{BBr}_{3}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$ to r.t., 15 h .

Further compound $\mathbf{1 7 6}$ was subjected to Suzuki reaction with arylboronic acids to obtain compounds 177a-c, followed by deprotection of hydroxy group using boron tribromide to obtain indazoles 174, 178a-b.

The indazoles 174, 178a-b were subjected to bacterial growth assays. Compounds 174, 178a-b showed no inhibition of growth of S. Aureus representing Gram-positive bacteria. Nevertheless, indazoles 174, 178a-b were found to be weak inhibitors of growth of E. Coli representing gram-negative bacteria (Table 1).

Table 1. The growth inhibition of E.Coli by indazoles 174, 178a-b

Number	Indazole	MIC $($ E. Coli, $\boldsymbol{\mu g} / \mathbf{m L}$)
$\mathbf{1 7 8 a}$	250	
$\mathbf{1 7 8 b}$		250

Unfortunately, indazoles 174, 178a-b showed no inhibition of target PhoR activity (IC_{50} was higher than 2 mM). It is known that this type of protein belongs to the family of highly structurally conserved proteins, ${ }^{75}$ and most likely other proteins of this type could not be inhibited too. This fact implies that the antibacterial activity of these indazoles is linked to other mechanism of action not involving inhibition of HK TCs.

Second series of indazole-based compounds retained the main scaffold, but were modified at $4^{\text {th }}$ position using Buchwald-Hartwig amination reaction with aniline using Boc-protected indazoles 179a-b as a starting materials (Scheme 42). At the final step, Boc group was cleaved from the compound 180a together with methyl ester to produce compound 181. A simplified analog 183 was made lacking OH group at the $6^{\text {th }}$ position of the indazole ring. For this purpose, bromoindazole 179b was used as a starting material. This was coupled with aniline $\mathbf{1 5 0 d}$ in amination reaction to obtain intermediate $\mathbf{1 8 0 b}$. Then, protection groups were sequentially removed. After Boc deprotection with TFA, compound $\mathbf{1 8 2}$ was obtained; further hydrolysis of ester with sodium hydroxide provided compound 183 (Scheme 42):

Scheme 42. Synthesis of indazoles 181, 183.
Reaction conditions: a) $3 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 6 \mathrm{~mol} \%$ Xantphos, 1.5 equiv. $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{PhMe}$, $100{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$; b) $48 \% \mathrm{HBr}_{\text {aq }}$, neat, $100^{\circ} \mathrm{C}, 3 \mathrm{~h}, 20 \%$; c) 30 equiv. TFA, DCM, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}$, 80%; d) 3 equiv. $\mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}, 16 \mathrm{~h}, 84 \%$.

Compound 188 was synthesized in a similar way, using aminopyrazole 150 e as a building block for the coupling with bromoindazoles 186a-b (Scheme 43). Aminopyrazole 150 e was prepared by reduction of nitropyrazole 185 , which, in turn, was synthesized by alkylation of 3-nitropyrazole 184. Deprotection of all of three protecting groups of compound 187a was done in one step using aqueous HBr to obtain compound 188.

A simplified analog 190 lacking OH group at the $6^{\text {th }}$ position of the indazole ring was synthesized as well. After the Pd-catalyzed amination reaction between 186b and 150e, compound 187b was deprotected with TFA to obtain compound 189. Ester group was further hydrolyzed to obtain compound 190 (Scheme 43).

Scheme 43. Synthesis of indazoles 188-190.
Reaction conditions: a) 1.2 equiv. ethyl bromoacetate, 2 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{DMF}, 80^{\circ} \mathrm{C}, 16 \mathrm{~h}$, 80%; b) $1 \mathrm{~atm} \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$, quant; c) $3 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$, $6 \mathrm{~mol} \%$ Xantphos, 1.5 equiv. $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{PhMe}, 100^{\circ} \mathrm{C}, 48 \mathrm{~h}$; d) $48 \% \mathrm{HBr}_{\text {aq }}$, neat, $100{ }^{\circ} \mathrm{C}$, $3 \mathrm{~h}, 49 \%$; e) 30 equiv. TFA, DCM, $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 71 \%$; f) 3 equiv. $\mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, $70^{\circ} \mathrm{C}, 16 \mathrm{~h}, 44 \%$.

The third type of indazole based compound 199 was made with with ethoxy substituent in $7^{\text {th }}$ position and phenylethyl substituent in the $4^{\text {th }}$ position as suggested by the CADD studies. The synthesis of compound started from phenol 191, which was alkylated with ethyl bromide to obtain compound 192. Ortho-lithiation with LDA leaded to fluorobenzaldehyde 193 in an excellent yield. Further this was converted towards indazole 194, which was protected with trimethylsilylethoxymethyl (SEM) group to obtain compound 195. Heck reaction of indazole 195 with styrene 196 leaded to alkene 197, which was further reduced to produce compound 198. SEM group was cleaved in acidic media to obtain final indazole 199 (Scheme 44).

Scheme 44. Synthesis of indazole 199.
Reaction conditions: a) 2 equiv. EtBr, 2 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 91 \%$; b) 1.3 equiv. LDA, 2 equiv. DMF, THF, $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 94 \%$; c) 18 equiv. $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, DMSO, $120^{\circ} \mathrm{C}, 16 \mathrm{~h}, 88 \%$; d) 1.3 equiv. SEM-Cl, 1.1 equiv. NaH 60%, THF, $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$, 37%; e) $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 20 \mathrm{~mol} \% \mathrm{P}(\mathrm{o}-\mathrm{Tol})_{3}, 10$ equiv. TEA, DMF, $100{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$, 98%; f) $5 \mathrm{~mol} \% 10 \% \mathrm{Pd} / \mathrm{C}, 6$ equiv. TES, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 57 \%$; g) 12 M HCl , $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 49 \%$.

The compounds 181-183, 188-190, 199 were investigated for their ability to bind bacterial protein PhoR from E. Coli and S. Aureus strains, and a structurally similar human protein Hsp90 using microscale thermophoresis (MST) assay. ${ }^{76}$ Results of the MST experiments are summarized in Table 2.

Compounds 182 and 188 bearing hydroxy group at $6^{\text {th }}$ position of indazole ring showed no measurable binding to S. Aureus PhoR and E.Coli PhoR - in both cases tests indicated that activity level was higher than 1 mM . Nevertheless, K_{d} data in tests with Hsp90 revealed nanomolar affinity levels for these compounds - 241 nM for $\mathbf{1 8 1}$ and 187 nM for 188.

Simplified compounds without hydroxy group in $6^{\text {th }}$ position of indazole 182, 183, 189, 190 and 199 also exhibited affinity to Hsp90 in range 300-700 nM. But only compounds 189 and 190 showed activity with tests in pair with S. Aureus PhoR and E.Coli PhoR. Remarkably, higher potency was exhibited in the case of S. aureus PhoR protein ($67 \mu \mathrm{M}$ for $\mathbf{1 8 9}$ and $86 \mu \mathrm{M}$ for $\mathbf{1 9 0}$), and slightly lower in the case of E. Coli PhoR ($162 \mu \mathrm{M}$ for $\mathbf{1 8 9}$ and $143 \mu \mathrm{M}$ for 190). Compound $\mathbf{1 9 9}$ showed weak results in pair with S. Aureus PhoR ($486 \mu \mathrm{M}$), but in pair with E. Coli PhoR no binding was detected.

Table 2. IC_{50} data for the synthesized indazoles 181-183, 188-190, 199

1.4. Development of 2-aminoquinazoline based bacterial HK inhibitors

Screening of fragment library by X-ray chrystallography using CheA as a HK TCs protein revealed 2-aminoquinazoline bound to ATP binding domain (Figure 7).

69

Figure 7. 2-Aminoquinazoline 69 in the complex with CheA protein. Tyrosine residue showed in blue, growth vectors are showed in green.

Analysis of the crystal structure of the ligand-protein complex suggested several fragment 69 growth vectors for the improvement of the molecule affinity (green arrows on Figure 7). From these the $7^{\text {th }}$ position of 2-aminoquinazoline was prioritized as the best attachment point for an additional structural element according to CADD modelling data. The first set of aminoquinazoline analogues were targeted bearing the substituents attached to the heterocycle at the $7^{\text {th }}$ position via oxygen as a linker. Starting from commercially available 2-fluoro-4-hydroxybenzaldehyde 200, small set of compounds 201a-e was synthesized. On the second stage 2-fluorobenzaldehyde moiety was converted to 2-aminoquinazoline, using cyclization with guanidine at $150^{\circ} \mathrm{C}$ to achieve compounds 202a-e (Scheme 45).

Scheme 45. Alkylation and cyclization cascade towards 2-aminoquinazolines 202a-e.
Reaction conditions: a) 1.2 equiv. R-Hal, 1.5 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $25^{\circ} \mathrm{C}$; b) 1.4 equiv. guanidine carbonate, 1.4 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, DMA, $150^{\circ} \mathrm{C}$.

Some of the synthesized compounds (202a-b) were crystallized together with CheA protein and obtained protein-ligand complexes were analysed using X-Ray
crystallography (group of prof. A. Marina) (Figure 8). This showing general tendency that compounds shall contain aryl groups as substituents to show better affinity towards protein of interest.

Figure 8. X-ray crystal structures of CheA in complex with 202a (A) and 202b (B). Two alternate positions of 202b were built in the crystal model: alternate one in dark pink tubes and alternate two in pink. Key residues are shown in green tubes.

Unfortunately, aminoquinazolines 202a-e showed no inhibitory potency for PhoR (S. Aureus) and EnvZ (E. Coli) histidine kinases. Negative results were obtained also for the growth inhibition of S.Aureus and E.Coli cells.

According to CADD results (M. Albanese, Oxford Drug Design), putative HK TCS inhibitors should contain an additional structural element attached at $7^{\text {th }}$ position of quinazoline ring via a flexible linker. For such type of compounds the Heck reaction was chosen as the most feasible way to connect the building blocks. For this purpose, 7-bromoquinazolin-2-amine $\mathbf{2 0 4}$ was synthesized from 4-bromo-2-fluorobenzaldehyde 203 in the reaction with guanidine. ${ }^{77}$

The Heck reaction of bromoquinazoline 204 with terminal alkenes 205a-g provided disubstituted alkenes 206a-g. On the next step, alkene was reduced to form compounds 207a-g with alkyl linker. Precise amount of equivalents of reducing agents was essential to avoid concomitant reduction of 2-aminoquinazoline heterocyclic core (Scheme 46).

Scheme 46. Synthesis of 2-aminoquinazolines 207a-g using the Heck reaction.
Reaction conditions: a) 1.4 equiv. guanidine carbonate, 1.4 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, DMA, $150{ }^{\circ} \mathrm{C}, 69 \%$; b) $10 \mathrm{~mol} \%$ tris-(o-tolyl)P, $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 3$ equiv. TEA, DMF, $100^{\circ} \mathrm{C}$, $8 \mathrm{~h} ; c) 10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 3$ equiv. TEA, 2.5 equiv. $\mathrm{HCOOH}, \mathrm{DMF}, 6{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Compounds 207b and 207c, bearing an ester group, were hydrolyzed under basic conditions to obtain carboxylic acids sodium salts 208a and 208b (Scheme 47). Compounds 209a and 209b were obtained by acidic cleavage of Boc and t-Bu groups from the 207f and 207e, respectively (Scheme 48).

Scheme 47. Synthesis of 2-aminoquinazolines 208a-b using basic hydrolysis of esters. Reaction conditions: a) 1.8 equiv $\mathrm{NaOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}$.

Scheme 48. Synthesis of 2-aminoquinazolines 209a-b using acidic cleavage of protecting groups.
Reaction conditions: a) 20 equiv. TFA, DCM, 16 h .

The structural investigations of the compounds 207a-g, 208a-b, 209a-b binding to the CheA protein were attempted by X-ray crystallography (group of prof. A. Marina). However, it appeared that the density maps of ligand-protein complexes were too hard to resolve. 2-Aminoquinazoline core was located properly in the area predicted by CADD while the location of "tail" part of the compound inside the crystal structure was unclear. This was assumed to be the result of several energetically similar conformations of the molecule inside the crystal pocket. For one of the compounds (207c) was possible to distinguish two possible way of binding inside the pocket. CheA protein consist of two similar, but not identical, assymetric parts. Compound 207c has different conformation of the flexible part in each of these two structural units (Figure 9).

Figure 9. X-ray crystal structure of two structural elements of CheA in complex with 207c.
Facing these problems, the $3^{\text {rd }}$ series of 2 -aminoquinazoline derivatives was designed bearing aryl substituents, attached to the $7^{\text {th }}$ position of quinazoline ring. According to the CADD predictions the aryl substituent should contain hydrogen bond acceptor group such as ketone, amide or sulphonamide. To prepare such analogues, Suzuki-Miyaura reaction of 7-bromoquinazolin-2-amine 204 with arylboronic acids $\mathbf{2 1 0}$ or the corresponding pinacolates 211 were used to attach the arylgroup at the required position of 2-aminoquinazoline (Scheme 49). Using this approach, small library of the compounds 212a-o was synthesized (Table 3).

Scheme 49. Synthesis of 7-aryl 2-aminoquinazolines from 7-bromoquinazolin-2-amine 204. Reaction conditions: a) $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}(\mathrm{dppf})$, 2.5 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dioxane: $\mathrm{H}_{2} \mathrm{O} 5: 1$, $100^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

Table 3. Starting boronic acids and products 212a-o of the Suzuki-Miyaura reaction
212a

Table 3 (continuous)

Number	Boronic acid 219a-m, or pinacolate 220a-b	Product	Yield, \%
2120			

To expand the range of synthesized compounds, a boronic acid building block 213 was prepared from 7 -bromoquinazolin- 2 -amine 204. Then it was used to prepare arylsubstituted 2 -aminoquinazolines by the coupling with wide variety of readily available aryl bromides (Scheme 50, Table 4).

Scheme 50 Synthesis and Suzuki-Miyaura reaction with (2-aminoquinazolin-7-yl)boronic acid 213.
Reaction conditios: a) $3 \mathrm{~mol} \% \mathrm{PdCl}_{2}$ (dppf), 1.5 equiv. (BPin)2, 3 equiv. KOAc, dioxane, $100{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 76 \%$; b) $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}$ (dppf), 2.5 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dioxane: $\mathrm{H}_{2} \mathrm{O} 5: 1,100{ }^{\circ} \mathrm{C}$, 16 h .

Table 4. Starting aryl bromides and products of the Suzuki-Miyaura coupling reaction
Number

An additional modifications of 2-aminoquinazoline scaffold were performed based on CADD predictions which revealed possibility to increase the affinity of the compounds through the acylation of amino group of 2-aminoquinazoline. To check the hypothesis, the
corresponding N-acylated derivative of 7-bromoquinazolin-2-amine 216 was obtained (Scheme 51). Amide 216 was further subjected to the Suzuki-Miyaura coupling providing the target compound 217.

Scheme 51. Acylation of 7-bromoquinazolin-2-amine 204 and Suzuki-Miyaura reaction towards 217.
Reaction conditions: a) 6 equiv. propionic anhydride, pyridine, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 74 \%$; b) $3 \mathrm{~mol} \% \mathrm{PdCl}_{2}$ (dppf), 2 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dioxane: $\mathrm{H}_{2} \mathrm{O} 5: 1,100{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 37 \%$.

In a similar way the reaction with ethyl isocyanate was used to prepare the corresponding ethylcarbamate 218 (Scheme 52). This was coupled with arylboronic acids 210k-l to give the target compounds 219a-b.

Scheme 52. Synthesis of ethylcarbamates 219a-b.
Reaction conditions: a) 3 equiv. EtNCO, DMF, $100{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$, quant.; b) $3 \mathrm{~mol} \%$ PdCl_{2} (dppf), 2 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dioxane: $\mathrm{H}_{2} \mathrm{O} 5: 1,100^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

To have more clear picture of the influence of acylation of free NH_{2} group of aminoquinazoline on its properties, one of the simplest compounds 202e was acylated as well. Using propionic anhydride compound 220a was made, and reaction with acetic anhydride leaded to compound 220b. Analogously to compound 218, ethylcarbamate 220c was made using ethylisocyanate (Scheme 53).

Scheme 53. Synthesis of amides 220a-b (procedure a) and ethylcarbamate 220c (procedure b).
Reaction conditions: a) 4 equiv. acid anhydride, pyridine, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 36 \%$ for 220 a and 58% for $220 \mathrm{~b} ;$ b) 6 equiv. EtNCO, DMF, $100^{\circ} \mathrm{C}, 12 \mathrm{~h}, 90 \%$.

In order to increase the solubility of aminoquinazoline type of compounds, N, N -dimethyl-1,2-ethanediamine was attached as a solubilizing group (Scheme 54). This particular derivatisation was chosen due to the fact that this is one of the smallest groups whish should not significantly influence binding of the compound. 5-Fluoroquinazolin-2amines 222a-b were made from 2,6-difluorobenzaldehydes 221a-b. Nucleophilic aromatic replacement of fluorine in the condensation product 222a with N, N-dimethyl-1,2-ethanediamine provided target compound 223. More complex 2-aminoquinazoline 225 with aryl substituent on $7^{\text {th }}$ position was prepared by coupling of bromoquinazoline 222b with boronic acid 2101 followed by replacement of fluorine in intermediate 224.

Scheme 54. Synthesis of 2-aminoquinazolines 223 and 225.
Reaction conditions: a) 1.6 equiv. guanidine carbonate, 1.6 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$, NMP, $145{ }^{\circ} \mathrm{C}$, $12 \mathrm{~h}, 23 \%$ for 222a and 14% for 222b; b) N, N-dimethyl-1,2-ethanediamine, neat, $120^{\circ} \mathrm{C}$, $24 \mathrm{~h}, 70 \%$; c) 1.2 equiv. 2101, $3 \mathrm{~mol} \% \mathrm{PdCl}_{2}$ (dppf), 2 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dioxane: $\mathrm{H}_{2} \mathrm{O}$ 5:1, $100^{\circ} \mathrm{C}, 12 \mathrm{~h}, 58 \%$; d) N, N-dimethyl-1,2-ethanediamine, neat, $120^{\circ} \mathrm{C}, 24 \mathrm{~h}, 27 \%$.

Crystallography studies showed that polar substituent on phenyl ring points towards proper point of the protein pocket to find additional interactions. Both of the structural units of CheA protein can effectively interact with 212k by formation of additional hydrogen bonds with methylsulfone moiety (shown in superposition on Figure 10, A). Compounds $\mathbf{2 1 2 I}$ and $\mathbf{2 1 2 m}$ could form the same type of interactions (Figure 10, B).

Figure 10. X-ray crystal structures of CheA in complex with $\mathbf{2 1 2 k}$ (A) and 2121-m (B).
The synthesized compounds 202a-e, 207a-g, 208a-b, 209a-b, 212a-o, 215a-f, 217, 219a-b, 223, 225 were tested for their binding to bacterial proteins CheA, PhoR and HK853 using MST. ${ }^{76}$ Again, as in the case of indazoles 181-183, 188-190, 199 compounds tests, human protein Hsp90 was used as the control. Results of the in vitro tests are depicted in Table 5 (the results are provided Anmol Adhav from IBV CSIC).

CONFIDENTIAL

2. Diphenylpyrazoles as antibacterials active against S. Aureus

In line with the search of new HK TCS inhibitors our attention was attracted by 3,4-diarylpyrazole based antibacterial compound series which was repurposed from compounds with anticancer activity acting as a heat shock protein 90 (Hsp90) inhibitors (Figure 17). ${ }^{81}$ The antibacterial activity was proposed to be linked to the inhibition of bacterial histidine kinases by the binding of 3,4-diarylpyrazoles to ATP binding domain which share high similarity to the ATPase domain of eukaryotic Hsp90. The representative compound $\mathbf{2 2 6}$ displayed micromolar inhibition of histidine kinases C. crescentus CckA and Salmonella PhoQ and medium activity against certain Gramnegative and Gram-positive bacterial strains. Structurally similar hit 227 with good potency against S. Aureus was revealed in prof. J. Wells lab by screening of compounds libraries in antibacterial susceptibility tests. ${ }^{82}$

226
$\operatorname{MIC}(B$. Subtilis $)=50-74 \mu \mathrm{~g} / \mathrm{mL}$ $\operatorname{MIC}(E$. Coli $)=12-25 \mu \mathrm{~g} / \mathrm{mL}$

227
MIC (S. Aureus $)=6.25 \mu \mathrm{~g} / \mathrm{mL}$

Figure 17. Pyrazole-based antimicrobials 226 and 227.
To explore the potential of 3,4-diarylpyrazoles as antibacterial compounds series of compounds were made according to the general Scheme 55. The key intermediates for the synthesis of 3,4-diarylpyrazoles 233a-l were isoflavones 232a-j. ${ }^{83}$ These were synthesized form readily available resorcinol 228 and phenylacetic acid derivatives 229ac in two steps. ${ }^{833,84}$ The first step included Friedel-Crafts acylation of resorcinol 228, catalysed by boron trifluoride diethyl etherate. The resulting acylresorcinols 230a-c underwent condensation with acid anhydride followed by the cyclization to give isoflavones 231a-d. O-Alkylation provided isoflavone derivatives 232a-j which were condensed with hydrazine to provide the novel target compounds 233a-l.

Scheme 55. Synthesis of 3,4-diarylpyrazoles 233a-I.
Reaction conditions: a) 3 equiv. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{PhMe}, 100{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 55-78 \%$; b) 4 equiv. $\left(\mathrm{R}^{2} \mathrm{CO}\right)_{2} \mathrm{O}$, pyridine, $25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 19-79 \%$; c) $1.5-4$ equiv. $\mathrm{R}^{3} \mathrm{Hal}, 2$ equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, 25-60 ${ }^{\circ} \mathrm{C}, 25-98 \% ;$ d) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, 9{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 62-97 \%$.

Furthermore, to check importance of each part of the molecule, series of derivatives with changed or removed substructures were synthesized.

Synthesis of previously reported monoaryl pyrazoles 235a,c and novel 235b,d was achieved by the condensation of diketones 234a-c with hydrazine (Scheme 56). One of the monoaryl pyrazoles, compound 235a, was further brominated to obtain bromo derivative 236 which was subjected to Suzuki-Miyaura coupling to provide the novel diaryl pyrazole 237 (Scheme 56).

Scheme 56. Synthesis 3-aryl and 3,4-diarylpyrazoles 235a-d, 237.
Reaction conditions: a) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, $\mathrm{EtOH}, 90^{\circ} \mathrm{C}, 3 \mathrm{~h}, 65-91 \%$; b) 4 equiv. $\mathrm{BBr}_{3}, \mathrm{DCM}$, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 14 \%$; c) 2 equiv. NBS, DMF, $75{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 50 \%$; d) $6 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, 1.3 equiv. 4-chlorophenylboronic acid, 2.6 equiv. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, dioxane: $\mathrm{H}_{2} \mathrm{O} 4: 1,100{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$, 26%.

Additionally, a possibility to replace the pyrazole core with isoxazole moiety was explored. Novel isoxazole based analogues 247a-e, 248, and 249 were obtained from isoflavone derivatives 232a-e (Scheme 57). Their reaction with hydroxylamine provided isoxazoles 238a-e. ${ }^{85} O$-MOM protected product 238c was methylated at the free phenolic OH group and the resulting derivative $\mathbf{2 3 9}$ was subjected to MOM deprotection in acid media to obtain isoxazole 240.

Scheme 57. Synthesis of 4,5-diarylisoxazoles 238a-e, 239, 240.
Reaction conditions: a) 2 equiv. $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, pyridine, $100{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 63-97 \%$; b) 3 equiv. MeI, 2.5 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $2 \mathrm{~h}, 99 \%$; c) 4 equiv. $12 \mathrm{M} \mathrm{HCl}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}, 3 \mathrm{~h}, 96 \%$.

New de-oxygenated diaryloxazole analogues $\mathbf{2 4 3}$ and $\mathbf{2 4 5}$ were prepared starting from isoflavone derivative 231c (Scheme 58). This was transformed to triflate 241 in which the C-O bond was cleaved under palladium-catalyzed hydrogenolysis conditions using triethylsilane as a hydrogen transfer reagent.

Scheme 58. Synthesis of 4,5-diarylisoxazoles 243 and 245.
Reaction conditions: a) 1.1 equiv. trifluoromethanesulfonic anhydride, 2 equiv. TEA, DCM, $0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \%$; b) $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, 2.5 equiv. $\mathrm{Et}_{3} \mathrm{SiH}$, DMF, $60^{\circ} \mathrm{C}, 30 \mathrm{~min}$, 58%; c) 2 equiv. $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, Pyridine, $100{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 99 \%$; d) 1.4 equiv. trifluoromethanesulfonic anhydride, 2 equiv. TEA, DCM, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 97 \%$; e) $5 \mathrm{~mol} \%$ $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, 2.5 equiv. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 30 \mathrm{~min}, 72 \%$.

The resulting isoflavone derivative $\mathbf{2 4 2}$ was converted to isoxazole 243. It was then transformed to the triflate $\mathbf{2 4 4}$ which was reduced to give the product $\mathbf{2 4 5}$.

Previously reported isoxazole $\mathbf{2 4 6} \mathbf{a}^{86}$ and the novel isoxazole 246b without a substituent at the $4^{\text {th }}$ position of the heterocycle were prepared starting from diketones 234a,b (Scheme 59).

Scheme 59. Synthesis of 4,5-diarylisoxazoles 246a,b.
Reaction conditions: a) 2 equiv. $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{EtOH}, 90{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$, then 4 equiv. $\mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{AcOH}, 2 \mathrm{~h}, 100^{\circ} \mathrm{C}, 38-63 \%$.

All of the synthesized compounds 233a-l, 235a-d, 237, 238a-e, 240, 243, 245, 246a,b were subjected to in vitro growth inhibition tests of S. aureus str. Newman. The results of these tests are summarized in Tables 7-11.

Table 7. Antibacterial activity of the compounds 233a-l

Entry	Number	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{R}^{\mathbf{3}}$	$\mathbf{M I C}^{\mathbf{a}}, \boldsymbol{\mu \mathbf { g } / \mathbf { m L }}$
1	$\mathbf{2 3 3 a}$	$4-\mathrm{Cl}$	Me	H	25
2	$\mathbf{2 3 3 b}$	$4-\mathrm{Cl}$	CF_{3}	Me	3.12
3	$\mathbf{2 3 3 c}$	H	CF_{3}	Me	12.5
4	$\mathbf{2 3 3 d}$	$4-\mathrm{OMe}$	CF_{3}	Me	12.5
5	$\mathbf{2 3 3 e}$	$4-\mathrm{Cl}$	CF_{3}	Bn	1.56
6	$\mathbf{2 3 3 f}$	H	CF_{3}	Bn	1.56
7	$\mathbf{2 3 3 g}$	$4-\mathrm{Cl}$	CF_{3}	MOM	3.12
8	$\mathbf{2 3 3 h}$	$4-\mathrm{Cl}$	CF_{3}	$2,5-\mathrm{Cl}^{2}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}$	1.56
9	$\mathbf{2 3 3 i}$	$4-\mathrm{Cl}$	CF_{3}	$4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	1.56
10	$\mathbf{2 3 3 j}$	$4-\mathrm{Cl}$	CF_{3}	PhSO_{2-}	1.56
11	$\mathbf{2 3 3 k}$	$4-\mathrm{Cl}$	CF_{3}	$i-\mathrm{Pr}$	0.78
12	$\mathbf{2 3 3}$	$4-\mathrm{Cl}$	CF_{3}	$i-\mathrm{Amyl}$	<0.39

${ }^{a}$ Staphylococcus aureus Newman
Compound with methyl group as R^{2} substituent (233a; Table 7, entry 1) exhibited fourfold lower potency compared to the original hit 227. An improvement of the antibacterial potency was achieved by addition of methyl group as R^{3} substituent ($\mathbf{2 3 3 b}$; Table 7, entry 3). Replacement of 4-chlorophenyl with phenyl group as R^{1} substituent
(233c; Table 7, entry 4) or 4-methoxyphenyl group (233d; Table 7, entry 4) slightly decreased the antibacterial potency. However, O-benzyl group as R^{3} substituent had a positive effect to antibacterial potency (233e, 233f; Table 7, entries 5,6). Curiously, in the case of compounds 233e and 233f, the difference in R^{1} substitution did not affect MIC values which were retained around $1.56 \mu \mathrm{~g} / \mathrm{mL}$ for both of the compounds. MOM group as R^{3} substituent ($\mathbf{2 3 3 g}$; Table 7, entry 7) only slightly increased activity in comparison with hit compound 227. Substitution of benzyl group with 2,5-dichlorobenzyl (233h; Table 7, entry 8), 4-bromobenzyl ($\mathbf{2 3 3 i}$; Table 7, entry 9) and phenylsulfonyl ($\mathbf{2 3 3 j}$; Table 7, entry 10) group did not change the activity of the compounds in comparison with the benzyl analogue 233e. The best antimicrobial activity in this series was exhibited by the compounds bearing lipophilic R^{3} substituents such as iso-propyl group (233k, Table 7, entry 11) and iso-amyl group (2331 Table 7, entry 12).

Table 8. Antibacterial activity of the compounds 235a-d, 237

Entry	Number	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{M I C}^{\mathbf{a}}, \boldsymbol{\mu g} / \mathbf{m L}$
1	$\mathbf{2 3 5 a}$	H	Ph	50
2	$\mathbf{2 3 5 b}$	H	2-HO-4-MeO-C $\mathrm{C}_{6} \mathrm{H}_{3}$	25
3	$\mathbf{2 3 5 c}$	H	2-HO-C6 H_{4}	125
4	$\mathbf{2 3 5 d}$	H	$2,4-$ di-HO-C $\mathrm{C}_{6} \mathrm{H}_{3}$	250
5	$\mathbf{2 3 7}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	Ph	1.56

${ }^{a}$ Staphylococcus aureus Newman
Derivatives 235a-d lacking substituents at the $4^{\text {th }}$ position of pyrazole showed significantly worse results in comparison with the hit compound 227 (Table 8, entries 14). However, compound 237 with 4-chlorophenyl group as R^{1} substituent and phenyl group as R^{2} substituent exhibited activity four times higher than compound $\mathbf{2 2 7}$ (Table 8, entry 5). These results point to the importance of the two aryl substituents at the pyrazole to ensure high antimicrobial potency. In addition, the high antimicrobial potency of compound 237 implies that hydroxyl groups at the phenyl group as the R^{1} substituent are not essential.

Table 9. Antibacterial activity of isoxazole-based compounds 238a-e

Entry	Number	$\mathbf{R}^{\mathbf{3}}$	$\mathbf{M I C}^{\mathbf{a}}, \boldsymbol{\mu g} / \mathbf{m L}$
1	238a	H	3.12
2	238b	Bn	0.78
3	238c	MOM	3.12
4	238d	i-Pr	0.78
5	238e	i-Amyl	<0.39

${ }^{a}$ Staphylococcus aureus Newman
Table 10. Antibacterial activity of simplified isoxazole-based compounds 240, 243, 245, 246a,b

Entry
Number
1

${ }^{a}$ Staphylococcus aureus Newman
The isoxazole analogues 238a-d (Table 9) showed similar potency and structure activity relationships to their pyrazole peers 227, 233e, 233g, 233k, 233I, respectively (Table 7). An interesting deviation was observed for isoxazoles 240, 243, 245 and 246a,b (Table 10) Compound 246a, contrary to its pyrazole-based analogue 235a, completely lost activity against S. Aureus. Compound 246b increased activity level in comparison with 235b. Surprisingly, methylation of ortho hydroxy group in R^{2} substituent (compound 240, Table 10, entry 3) did not affected MIC value - it was retained at $3.12 \mu \mathrm{~g} / \mathrm{mL}$. Finally, compound 245 totally lost the antimicrobial potency (Table10, entry 5) in comparison with pyrazole derivative 237 with the same substitution pattern (Table 8).

The SAR of the compounds provides the directions for further structural improvements to achieve more potent phenylazole based antimicrobials. Thus, introduction of the lipophilic groups at the $5^{\text {th }}$ position of phenolic ring of the molecule increased the potency of the compounds (233k, 233I). Further increase of lipophilicity in these positions could increase the potency. Additionally, further work should explore
another suitable 5 -membered cycles such as imidazole, 1,2,3-triazole or isothiazole as scaffolds to improve the potency of the compounds. Nevertheless, the SAR of the pairs of the compounds $\mathbf{2 4 3}$ and $\mathbf{2 4 5}$, or $\mathbf{2 3 7}$ and $\mathbf{2 4 5}$ implies that at least one NH or OH group shall be retained in the inhibitor to preserve its potency.

Autophosphorylation inhibition assay in pair with PhoR and EnvZ proteins revealed that only diarylpyrazole 233b with small substituents had high micromolar IC_{50} values (Table 11, Entry 1). For the most active in bacterial growth inhibition tests compounds 233e,k,l IC 50 range lays above 2 mM (Table 11, Entries 2-4).

Table 11. IC_{50} values of the compounds $\mathbf{2 3 3} \mathbf{b , e}, \mathbf{k}, \mathbf{l}$

Entry	Number	\mathbf{R}	IC $\boldsymbol{5 0}$ PhoR, $\boldsymbol{\mu M}$	IC $\boldsymbol{5 0}$ EnvZ, $\boldsymbol{\mu} \mathbf{M}$
1	233b	Me	55	98
2	233e	Bn	>2000	>2000
3	233k	i-Pr	>2000	>2000
4	233l	i-Amyl	>2000	>2000

This data convincing that antibacterial activity of the diarylpyrazoles connected with mechanism different from inhibition of two-component systems.

3. New method for synthesis of 2-aminoquinazoline from 2formylphenylboronic acids and guanidines

Facing with problems during the synthesis of proposed by CADD 2-aminoquinazoline-based structures, we looked for possibilities to find a mild and an efficient process to assemble 2-aminoquinazoline core.

The Chan-Evans-Lam coupling ${ }^{87}$ is an attractive C-N bond forming reaction as it can be done under relatively mild copper catalyzed conditions and tolerates alcoholic solvents. We explored if the Chan-Evans-Lam coupling can be applied also for the synthesis of aminoquinazolines at mild reaction conditions using readily available reagents (Table 12). The screening of the reaction conditions was performed for the synthesis of unsubstituted 2-aminoquinazoline 69 from boronic acid 247 and guanidine hydrochloride 248. The representative results are given in Table 12. Due to the polarity of the product 69 , its purification by chromatography was difficult. Therefore, it was purified by trituration from ethyl acetate. Identical scale and the workup was applied for all experiments in order to compare the efficiency of other reaction parameters. Methanol as a reaction solvent, CuI as a catalyst, and KOH as a base were found to be productive conditions for 2-aminoquinazoline 69 formation from boronic acid 247 and

Scheme 60. Synthesis of aminoquinazoline 69. Reaction conditions: a) see conditions in Table 12.

Table 12 Chan-Evans-Lam conditions for the synthesis of 2-aminoquinazoline 69

Entry	Solvent $^{\text {a }, \mathbf{t}^{\mathbf{0}}}$	$\mathbf{2 4 8}$ or 5, equiv.	Catalyst, mol\%	Base, eq	Yield, \%
1	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}$	$\mathbf{2 4 8 , 1 . 5}$	$\mathrm{CuI}, 15$	$\mathrm{~K}_{2} \mathrm{CO}_{3}, 2.5$	31
2	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}$	$\mathbf{2 4 8}, 2.5$	$\mathrm{CuI}, 15$	$\mathrm{~K}_{2} \mathrm{CO}_{3}, 3$	44
3	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}$	$\mathbf{2 4 8}, 2.5$	$\mathrm{Cu}(\mathrm{OAc})_{2}, 15$	$\mathrm{~K}_{2} \mathrm{CO}_{3}, 3$	35
4	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}$	$\mathbf{2 4 8}, 2.5$	$\mathrm{CuCl}, 15$	$\mathrm{~K}_{2} \mathrm{CO}_{3}, 3$	23
5	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}$	$\mathbf{2 4 8}, 1.5$	$\mathrm{CuI}, 15$	$\mathrm{KOH}, 1.5$	34
6	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}$	$\mathbf{2 4 8 , 3}$	$\mathrm{CuI}, 15$	$\mathrm{KOH}, 3$	$\mathbf{5 1 (6 5)}{ }^{\text {c }}$
7	$\mathrm{EtOH}, 90^{\circ} \mathrm{C}$	$\mathbf{2 4 4 ,} 3$	$\mathrm{CuI}, 15$	$\mathrm{KOH}, 3$	52
8	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}$	$\mathbf{5 , 3}$	$\mathrm{CuI}, 15$	-	13
9	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}$	$\mathbf{5 , 1 . 5}$	$\mathrm{CuI}, 15$	$\mathrm{KOH}, 3$	17

${ }^{\text {a }}$ Reactions were performed open to air, reaction time $12-17 \mathrm{~h}$; ${ }^{\mathrm{b}}$ The product 69 purified by trituration with EtOAc to reach purity $98+\%{ }^{\text {c }}$ NMR yield using 1,3,5-trimethoxybenzene as an internal standard.
guanidine hydrochloride 248 (Table 12, entries 1,2). Excess of base and guanidine was beneficial to improve the yield of product 69 (Table 12, entry 2). Other copper catalysts
such as CuCl and $\mathrm{Cu}(\mathrm{OAc})_{2}$ were found to be less efficient (Table 12, entries 3,4). The use of KOH as base improved the yield of product $\mathbf{6 9}$ when excess of guanidine was used (Table 12, entries 5,6). EtOH could also be successfully used as the reaction solvent (Table 12, entry 7). Guanidine carbonate 5 was explored as the reaction partner, however, this provided reduced yield of quinazoline 69 (Table 12, Entries 8,9). 2Formylphenylboronic acid $\mathbf{2 4 7}$ was subjected to the reaction with the range of guanidines under the most productive reaction conditions (Table 12, entry 6). Both N monosubstituted guanidines 249a-g and N, N-disubstituted guanidines 249h-j provided 2aminoquinazolines 250a-j in fair yields (Table 13).

Scheme 61. Synthesis of aminoquinazolines 250a-j.
Reaction conditions: a) $15 \mathrm{~mol} \% \mathrm{CuI}, 3$ equiv. $\mathrm{KOH}, \mathrm{MeOH}, 70^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
Table 13. Guanidine scope for the synthesis of aminoquinazolines

Entry	249 ${ }^{\text {a }}$	\mathbf{R}^{1}	\mathbf{R}^{2}	250, yield \% ${ }^{\text {b }}$
1	249a	H	Me	250a, 63
2	249b	H	Ph	250b, 56
3	249c	H	PhCH_{2}	250c, $66^{\text {c }}$
4	249d	H	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	250d, 52
5	249e	H	n-Pent	250e, 54
6	249f	H	cy-Pent	250f, 55
7	249g	H	cy-Hex	250g, 37
8	249h	Me	Me	250h, 43
9	249i	-($\left.\mathrm{CH}_{2}\right)_{4}{ }^{-}$		250i, 47
10	249j	$-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{2}-$		250j, 39

${ }^{\text {a }}$ Guanidines 249a,c-g, i,j used as hydrochlorides, 249b as carbonate, 249h as sulphate ${ }^{\text {b }}$ Purified by column chromatography if not stated otherwise. ${ }^{\text {c Purified by trituration with }}$ EtOAc.

Scheme 62. Synthesis of aminoquinazolines 252a-f, 253a-f.
Reaction conditions: a) $15 \mathrm{~mol} \% \mathrm{CuI}, 3$ equiv. $\mathrm{KOH}, \mathrm{MeOH}, 70^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Table 14. Boronic acid scope for the synthesis of aminoquinazolines

Entry	Boronic acid 251	Product	252 or 253, Yield, \% ${ }^{\text {a }}$
1	251a, $\mathrm{R}=4-\mathrm{MeO}$		252a, 55
2			253a, $59{ }^{\text {b }}$
3	251b, $\mathrm{R}=4-\mathrm{BnO}$		252b, 32 (53) ${ }^{\text {c }}$
4			253b, $57{ }^{\text {b }}$
5	251c, $\mathrm{R}=5-\mathrm{MeO}$		252c, 17 (53) ${ }^{\text {c }}$
6			253c, $48^{\text {b }}$
7	251d, $\mathrm{R}=5-\mathrm{F}$		252d, 36 (45) ${ }^{\text {c }}$
8			253d, $52^{\text {b }}$
9	251e, $\mathrm{R}=3-\mathrm{F}$		252e, 52
10			253e, $46{ }^{\text {b }}$
11	251f, $\mathrm{R}=5-\mathrm{Cl}$		252f, 35
12			253f, $55{ }^{\text {b }}$

${ }^{\text {a }}$ Purified by trituration with EtOAc if not stated otherwise. ${ }^{\text {b }}$ Purified by column chromatography. ${ }^{\text {c }}$ NMR yield using 1,3,5-trimethoxy benzene as an internal standard.

Several 2-formylphenylboronic acids 251a-f were explored as substrates for the synthesis of amino quinazolines 252a-f and 253a-f (Table 14). Both guanidines 248 and 249a gave the expected products, however the isolated yields in most cases were somewhat higher in the case of N-methylsubtituted guanidine 249a (Table 14, entries 3 vs 4,5 vs 6,7 vs 8).

Boronic acid derivatives such as pinacolate ester 254a and trifluoroborate 254b were also competent substrates providing aminoquinazoline derivative 250a in yields comparable to boronic acid 247 (Scheme 63). These results complement relatively few cases of the use of boronic acid derivatives as partners for Chan-Evans-Lam coupling. ${ }^{88}$

Scheme 63 Synthesis of 2-aminoquinazoline 250a from boronic acid ester 254a and trifluoroborate 254b.
Reaction conditions: a) $15 \mathrm{~mol} \% \mathrm{CuI}, 3$ equiv. $\mathrm{KOH}, \mathrm{MeOH}, 7{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 58 \%$ from pinacolate 254a, 51\% from trifluoroborate 254b.

In contrast, boronic acids $\mathbf{2 5 5} \mathbf{a}, \mathbf{b}$ bearing a keto group were found to be unsuitable reaction partners for the synthesis of quinazolines 256a,b (Scheme 64). In the case of
these substrates, complex mixtures were obtained with O-arylation products 257a,b as the only identified by-products. The failure of 2-acyl-phenyl boronic acids 255a,b to give the expected products imply that, for the synthesis of aminoquinozolines $\mathbf{6 9}, \mathbf{2 5 0}, \mathbf{2 5 2}, 253$ arylidene guanidine formation is the first step followed by intramolecular arylation

Scheme 64 An attempt to condense the keto group containing boronic acids $\mathbf{2 5 5 a}, \mathbf{b}$ with guanidine 248.
Reaction conditions: a) $15 \mathrm{~mol} \% \mathrm{CuI}, 3$ equiv. $\mathrm{KOH}, \mathrm{MeOH}, 70^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
In summary, the method of synthesis of 2-aminoquinazolines we proposed, is much more attractive than the traditional ones. Relatively mild reaction conditions enable the use of this method for the synthesis of pharmacologically relevant compounds bearing 2 -aminoquinozaline scaffold. The drawback of such approach is relatively low availability of 2-formylphenyl-boronic acids from the commercial sources.

4. New method for synthesis of indazoles from 2-formylphenylboronic acids and azodicarboxylates or hydrazine dicarboxylates

Inspired by the application of 2-formylphenylboronic acids for the construction of 2-aminoquinazolines we aimed to expand the use of these building blocks for assembly of indazole core.

Initial attempts to synthesize indazole starting from 2-formylphenylboronic acid and hydrazine hydrate under copper-catalyzed conditions failed. Next, we tried a stepwise protocol based on the work of Uemura and Chatani ${ }^{89}$ who have reported that phenylboronic acids undergo smooth reaction with azodicarboxylates providing arylhydrazine derivatives. Using 2-formylphenylboronic acid 247 as substrate, the addition to $\mathrm{N}=\mathrm{N}$ bond in azadicarboxylates $\mathbf{2 5 8}$ would give N-arylhydrazine intermediate 259 which could be further transformed to indazoles 260 and 261 (Scheme 65).

247

258

259

260, $\mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{R}^{1}$
261, $R^{2}=H$

Scheme 65. Indazole synthesis from 2-formylphenylboronic acid 247.
Reaction conditions: a) Cu (II) catalyst; b) acid $\left(\mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{R}^{1}\right)$ or base $\left(\mathrm{R}^{2}=\mathrm{H}\right)$.
The investigation of the arylation conditions was performed for the reaction of 2formylphenylboronic acid 247 with diethylazodicarboxylate (DEAD, 258a) using $\mathrm{Cu}(\mathrm{OAc})_{2}$ as a catalyst in a range of solvents (Table 15, entries 1-9). Solvents such as MeCN, DMF and DMA were found to be appropriate to obtain the product $\mathbf{2 5 9}$ in a good yield (Table 15, entries 5-6). Decreased catalyst loading was also possible using DMA as a solvent without affecting the product 259a yield (Table 15, entries 7-9). Range of other copper sources was investigated (Table 15 , entries $10-14$). $\mathrm{CuCl}_{2} \mathrm{Cu}(\mathrm{OTf})_{2} \mathrm{Cu}(\mathrm{acac})_{2}$ performed as efficient catalysts for $\mathrm{C}-\mathrm{N}$ bond formation giving the product 259a in high yield (Table 15, entries 10-12). Copper (I) source such as CuCl proved to be ineffective catalyst, while catalytic amount of CuI enabled product 259a formation in good yield (Table 15, entries 13,14).

Scheme 66: Synthesis of hydrazine dicarboxylate 259a.
Reaction conditions: a) see conditions in Table 15.
Table 15 Conditions for the arylation of DEAD 258a

Entry	Copper catalyst	Solvent	Yield, \%
1	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	MeOH $^{\text {a }}$	0
2	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	PhMe^{2}	0
3	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	THF	64
4	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	MeCN	80
5	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	DMF	83
6	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	DMA	98
7	$15 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	DMA	98
8	$10 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	DMA	98
9	$5 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	DMA	96
10	$10 \mathrm{~mol} \% \mathrm{CuCl}$	94	
11	$10 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OTf})_{2}$	DMA	94
12	$10 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{acac})_{2}$	DMA	99
13	$10 \mathrm{~mol} \% \mathrm{CuCl}$	DMA	97
14	$10 \mathrm{~mol} \% \mathrm{CuI}$	DMA	25

${ }^{\text {a }}$ Violent DEAD decomposition observed;
Next, the conditions were investigated for the indazole ring closure using arylhydrazine 259a (Table 16). Acidic reaction conditions enabled the condensation of arylhydrazine 259a to $1 N$-etoxycarbonyl indazole 260a (Table 16, entries 1-5). TFA in DCM and in MeCN gave the expected product 260a in good yield (Table 16, entries 1, 2). Neat AcOH at r.t. did not enable the cyclization of arylhydrazine 259a, while heating in a solution of MeCN induced formation of indazole 260a (Table 16, entries 3, 4). Formic acid was strong enough to enable the formation of indazole 260a at room temperature in a solution of MeCN (Table 16, entry 5).

Scheme 67. Synthesis of indazoles 260a and 261.
Reaction conditions: a) acid-promoted cyclization (Table 16, entries 1-5); b) basepromoted cyclization (Table 16, entries 6-8)

Table 16. Cyclization of arylhydrazine 259a to indazoles 260a and 261

Entry	Reagent	Solvent	Temp., time	Product	Yield, \%
1	5 equiv. TFA	DCM	$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$	$\mathbf{2 6 0 a}$	63
2	5 equiv. TFA	MeCN	$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$	$\mathbf{2 6 0 a}$	64
3	AcOH	neat	r.t., 12 h	$\mathbf{2 6 0 a}$	0
4	30 equiv. AcOH	MeCN	$70^{\circ} \mathrm{C}, 12 \mathrm{~h}$	$\mathbf{2 6 0 a}$	56
5	30 equiv HCOOH	MeCN	r.t., 12 h	$\mathbf{2 6 0 a}$	56
6	3 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$	MeOH	$70^{\circ} \mathrm{C}, 1 \mathrm{~h}$	$\mathbf{2 6 1}$	67
7	3 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$	MeOH	$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$	$\mathbf{2 6 1}$	67
8	4 equiv. KOH	EtOH	r.t., 12 h	$\mathbf{2 6 1}$	59

The use of a base in alcoholic solvent provided unprotected indazole 261 (Table 16 , entries 6-8). Both $\mathrm{K}_{2} \mathrm{CO}_{3}$ and KOH could be efficiently used for the ring closure deacylation reaction of arylhydrazine 259a.

Next, the one pot formation of $1 N$-etoxycarbonyl indazole 260a from 2 formylphenylboronic acid 247 was investigated (Table 17). Unfortunately, DMA which was the solvent of choice for high yielding arylation of DEAD was not suitable for the ring closure step in the presence of TFA (Table 17, entry 1). In this case, the arylhydrazine 259a intermediate was not transformed to product 260a, according to LCMS. In turn, the addition of TFA in DCM in an amount to sufficiently dilute DMA, enabled the formation of expected product 260a in a good yield (Table 17, entry 2). The use of DCM as a solvent for both steps was less productive (Table 17, entry 3). However, MeCN was found as an appropriate solvent for both arylation and ring closure in the presence of TFA to give $1 N$-protected indazole 260a in a good overall yield (Table 17, entry 4).

Scheme 68. Synthesis of indazole 260a.
Reaction conditions: a) 1) $10 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}, 1.5$ equiv. DEAD, $25^{\circ} \mathrm{C}, 18 \mathrm{~h} ; 2$) see Table 17 conditions.

Table 17. One-pot conversion of boronic acid 247 to indazole 260a

Entry	Solvent	Conditions, step 2	Yield, \%
1	DMA	10 equiv. TFA, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$	0
2	DMA	TFA:DCM $1: 4^{\mathrm{a}}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$	73
3	DCM	5 equiv. TFA, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$	48
4	MeCN	5 equiv.TFA, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$	78

[^0]With one-pot conditions in hand, the synthesis of other alkoxycarbonylindazoles 260b-d was performed by the reaction of boronic acid $\mathbf{2 4 7}$ with azodicarboxylates 258b-d (Table 18). The best yield of product 260b was obtained with diisopropyl azodicarboxylate (DIAD, 258b, Table 4, entry 1).

Scheme 69. Synthesis of indazoles 260b-d.
Reaction conditions: a) 1) $20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{MeCN}$, r.t., 18 h ; 2) 5 equiv.TFA, r.t. 2 h.
Table 18. Azodicarboxylate 258b-d scope for the synthesis of indazoles 260b-d

Entry	\mathbf{R}	Yield, \%
1	$i-\mathrm{Pr}$	$\mathbf{2 6 0 b}, 86$
2	Bn	$\mathbf{2 6 0 c}, 60$
3	$i-\mathrm{Bu}$	$\mathbf{2 6 0 d}, 45$

The scope of boronic acid substitution was investigated in the reaction of a range of formylboronic acids 251a-c,e,f with DIAD 258b followed by cyclization (Scheme 70). Substrates 251a-c bearing methoxy and benzyloxy groups provided indazoles 262a-c in a good to moderate yield. In the case of substrates 251e,f bearing electron-withdrawing substituents, yields of products $\mathbf{2 6 2 d}$, \mathbf{e} were decreased.

Scheme 70. The reaction of substituted formylboronic acids 251a-c,e,f with DIAD 258b. Reaction conditions: a) 1) $20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{MeCN}$, r.t., $\left.18 \mathrm{~h} ; 2\right) 5$ equiv. TFA, r.t. 2 h .

Thiophene boronic acid 263 was found a suitable substrate to obtain thienopyrazole derivative 264 in a good yield (Scheme 71).

Hydrazine dicarboxylate 265a was also explored as a reagent for the synthesis of indazoles instead of azodicarboxylate 258a (Table 19). 2-Formylphenylboronic acid 247

Scheme 71. The reaction of tiophene boronic acid 263 with DIAD 258b.
Reaction conditions: a) 1) $20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{MeCN}$, r.t., 18 h ; 2) 5 equiv. TFA, r.t. 2 h , 69\%.
was subjected to the reaction with diethyl hydrazine dicarboxylate 265a using the twostep one-pot procedure for the formation of indazole 260a. A catalytic amount of $\mathrm{Cu}(\mathrm{OAc})_{2}$ together with excess of triethylamine was not sufficient to achieve good yield of product 260a formation (Table 19, entry 1). The use of equimolar amount of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and an excess of triethylamine for the first step enabled good yield of product 260a over two steps, while increasing the amount of $\mathrm{Cu}(\mathrm{OAc})_{2}$ reduced the yield of product 260a (Table 19, entries 2,3). The transformation of 2-formylphenylboronic acid 247 to indazole 260a was not efficient in the absence of base for the first step, however, TEA could be replaced by TMEDA and DIPEA without significantly reducing the product 260a yield (Table 19, entries 5, 6). Several other Cu salts were tried for the first step of indazole 260a formation, however, were found to be ineffective (Table 19, entries 7, 8). The need for an equimolar amount of $\mathrm{Cu}(\mathrm{OAc})_{2}$ for successful synthesis of indazole 260a using hydrazine dicarboxylate 265a implies in situ oxidation of reagent 265a to azodicarboxylate 258a. However, C - N bond formation with hydrazine dicarboxylate 265a in the Chan-Evans-Lam reaction cannot be excluded. ${ }^{90}$

Scheme 72. Synthesis of indazole 260a from hydrazine dicarboxylate 265a.
Reaction conditions: a) 1) 2 equiv 265a, MeCN, $25^{\circ} \mathrm{C}$, conditions Table 19; 2) 30 equiv TFA, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Table 19. Synthesis of indazole using of hydrazine dicarboxylate 265a

Entry	Catalyst	Additive	Yield ${ }^{\text {a }}, \boldsymbol{\%}$
1	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	3 equiv. TEA	25
2	1 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	3 equiv. TEA	66
3	1.5 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	3 equiv. TEA	50
4	1 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	none	26
5	1 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	2 equiv. TMEDA	67
6	1 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	3 equiv. DIPEA	60
7	1 equiv. CuCl	3 equiv. TEA	35
8	1 equiv.CuCl	3 equiv. TEA	25

${ }^{\text {a }}$ NMR yield, using 1,3,5-trimethoxybenzene as internal standard

Next, a range of hydrazine dicarboxylates 265a-g was explored as reaction components for a one-pot two-step synthesis of indazoles 260a-g (Table 20). TFA was a suitable acid for the cyclization step to give the corresponding products 260a-f from the reaction of boronic acid $\mathbf{2 4 7}$ with hydrazine dicarboxylates 265a-f (Table 20, entries 1-6). For the synthesis of product $\mathbf{2 6 5 g}$ bearing acid labile t -Bu group, acetic acid at elevated temperature was used instead of TFA (Table 20, entry 7). This approach successfully provided product $\mathbf{2 6 0 g}$ in a very good yield (Table 20, entry 7).

Scheme 73. Synthesis of indazoles 260a-g.
Reaction conditions: a) 1) 1 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}, 3$ equiv. TMEDA, $18 \mathrm{~h}, 25^{\circ} \mathrm{C}$; 2$) 30$ equiv. TFA, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$ (260a-f) or 30 equiv. AcOH, $50^{\circ} \mathrm{C}, 2 \mathrm{~h}(\mathbf{2 6 0 g})$.

Table 20. Hydrazine dicarboxylate 265a-g scope for the synthesis of indazoles 260a-g

Entry	265, \mathbf{R}	Acid	Yield, \%
1	$\mathbf{2 6 5 a}, \mathrm{Et}$	TFA	$\mathbf{2 6 0 a}, 63$
2	$\mathbf{2 6 5 b}, \mathrm{i}-\mathrm{Pr}$	TFA	$\mathbf{2 6 0 b}, 47$
3	$\mathbf{2 6 5 c}, \mathrm{Bn}$	TFA	$\mathbf{2 6 0 c}, 46$
4	$\mathbf{2 6 5 d}, \mathrm{i}-\mathrm{Bu}$	TFA	$\mathbf{2 6 0 d}, 61$
5	$\mathbf{2 6 5 e}, \mathrm{Me}$	TFA	$\mathbf{2 6 0 e}, 63$
6	$\mathbf{2 6 5 5}, \mathrm{Allyl}$	TFA	$\mathbf{2 6 0 f}, 40$
7	$\mathbf{2 6 5 g}, \mathrm{t}-\mathrm{Bu}$	AcOH	$\mathbf{2 6 0 g}, 73$

The scope of phenyl boronic acids 251a-h was explored with di-tert-butyl hydrazine dicarboxylate $\mathbf{2 6 5}$ g as a reaction component for the synthesis of $1 N$-Boc indazoles 266a-h (Scheme 74). The major reason for the yields reduction was formation of N -acetyl indazoles 267 as by-products.

The mechanism for the $\mathrm{C}-\mathrm{N}$ bond formation in the copper catalysed reaction of arylboronic acids with diazadicarboxylates has been proposed by Uemura and Chatani. ${ }^{89}$ According to this, the transmetalation reaction of arylboronic acid 247 with a copper catalyst would form an arylcopper species 268 (Scheme 75). Addition of intermediate 268 to $\mathrm{N}=\mathrm{N}$ double bond gives an arylhydrazine 269 which undergoes the transmetalation with boronic acid 247 to give intermediate 270 and return arylcopper species $\mathbf{2 6 8}$ into catalytic cycle. Work-up would produce arylhydrazine 259a. Noteworthy, it was shown by Uemura and Chatani that dialkoxycarbonyl hydrazines are not competent substrates for this reaction unless additional oxidant is added. This implies that hydrazine 265a is likely oxidised to diazadicarboxylate 258a by stoichiometric amount of copper source.

Scheme 74. Synthesis of indazoles 266a-h.
Reaction conditions: a) 1) 1 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}, 3$ equiv. TMEDA, $18 \mathrm{~h}, 25^{\circ} \mathrm{C}$; 2$) 30$ equiv. $\mathrm{AcOH}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Scheme 75. Proposed mechanism for the C-N bond forming step.
The proposed mechanism for the condensation of arylhydrazine intermediate into indazole is given in Scheme 76. In the presence of acid, N-acyliminium ion 272 is formed. Selective hydrolytic cleavage of one ethoxycarbonyl group in intermediate 272 gives 1 N ethoxycarbonyl indazole 260a. In turn, basic conditions would enable cleavage of both ethoxycarbonyl groups leading to intermediate $\mathbf{2 7 3}$ which eliminates water to give indazole 261.

Scheme 76. Proposed mechanism for the condensation step.
In summary, copper catalysed reaction of 2-formylphenylboronic acids with diazadicaboxylates followed by acid or base induced ring closure is a convenient method for the synthesis of $1 N$-alkoxycarbonyl indazole derivatives. The indazole synthesis can also be performed using hydrazine dicarboxylates as reaction partners for the synthesis of indazoles, however, required a stoichiometric amount of copper (II) acetate for the $C-N$ bond formation step. The method is based on readily available building blocks and can be performed at relatively mild reaction conditions which enables its application for the synthesis of indazole motif containing compounds.

EXPERIMENTAL SECTION

1. General information

Reagents and starting materials were obtained from commercial sources and used as received. The solvents were purified and dried by standard procedures prior to use. Flash chromatography was carried out using silica gel (230-400 mesh). NMR spectra were recorded on 300 and 400 MHz spectrometers with chemical shift values (δ) in parts per million using the residual chloroform, dimethylsulfoxide signal as the internal standard. LCMS spectra were recorded on UPLC Waters Acquity, column: Acquity UPLC BEH$\mathrm{C} 18,1.7 \mu \mathrm{~m}, 2.1 \mathrm{~mm} \times 50 \mathrm{~mm}$, column temperature $(30.0 \pm 5.0){ }^{\circ} \mathrm{C}$, gradient: $0.01 \% \mathrm{TFA}$ in water/ $\mathrm{CH}_{3} \mathrm{CN} 90 \% / 10 \%-5 \% / 95 \%$; flow: $0.500 \mathrm{~mL} / \mathrm{min}$; time: 8 min ; detector: PDA, $220-320 \mathrm{~nm}$, SQ detector with an electrospray ion source (ESI/APCI). Exact molecular masses (HRMS) were determined on a hybrid quadrupole time-of-flight mass spectrometer equipped with an electrospray ion source.
2. Synthetic procedures and characterization data for the compounds 227-246 described in Annex I, compounds 250-253 - in Annex II, compounds 260-266 - in Annex III.
3. Synthetic procedures for compounds 148a-j, 150a-i, 151a-c, 153-170, 174, 176, 177a-c, 178a-b, 179a-b, 181a-b, 181-186, 187a-b, 188-199, 201a-d, 202a-d, 204, 206ah, 208a-b, 209a-b, 212a-o, 213, 215a-f, 216-218, 219a-b, 220a-c, 222a-b, 223-225.

N-[3-(2-Oxopyrrolidin-1-yl)propyl]-1H-pyrazole-4-carboxamide (148a)

 carboxylic acid (200 mg , 1 equiv.) was added in one portion at $25^{\circ} \mathrm{C}$. At the same temperature were added TEA ($497 \mu \mathrm{~L}, 2$ equiv.) and HOBt ($300 \mathrm{mg}, 1.1$ equiv.), followed by EDCI ($513 \mathrm{mg}, 1.5$ equiv.). Resulting mixture was stirred for 16 h . After indicated time, product precipitated from MeCN. Precipitate was filtered, washed with two portions of $\mathrm{MeCN}(2 \times 2 \mathrm{~mL})$ and dried on air to give 148a ($393 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 13.14$ (br. s, 1H), $8.10(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.18(\mathrm{dt}, J=12.7,6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.72-$ $1.56(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 174.6,162.5,138.7,130.0,118.1,46.7$, 36.4, 30.8, 27.2, 17.7 (one carbon is missing due to overlap with DMSO signal). HR-MS (ESI/TOF) calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$237.1352, found 237.1353.

N-[3-(1H-Indol-1-yl)propyl]-1H-pyrazole-4-carboxamide (148b)

To a stirred solution of 3-(1 H -indol-1-yl)propan-1-amine (200 mg , 1.1 equiv.) in dry MeCN (6 mL), $1 H$-pyrazole- 4 -carboxylic acid ($141 \mathrm{mg}, 1$ equiv.) was added in one portion at $25^{\circ} \mathrm{C}$. At the same temperature were added TEA ($320 \mu \mathrm{~L}$, 2 equiv) and HOBt ($211 \mathrm{mg}, 1.1$ equiv.), followed by EDCI ($440 \mathrm{mg}, 1.5$ equiv.). Resulting mixture was stirred for 16 h . After indicated time, reaction mixture evaporated, partitioned between EtOAc (15 mL) and water $(10 \mathrm{~mL})$, organic layer washed with brine $(10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by evaporation in vacuo. Compound was purified by silica gel column chromatography using $5 \% \mathrm{MeOH}$ in DCM to obtain product $\mathbf{1 5 5 b}$ as a yellowish oil (50 $\mathrm{mg}, 16 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.60(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{q}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.93(\mathrm{p}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.6, 135.7, 134.2, 128.7, 127.9, 121.7, 121.1, 119.6, 117.7, 109.4, 101.5, 50.4, 44.2, 37.4, 29.7. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$269.1402, found 269.1400.

N-[2-(2-Oxopiperidin-1-yl)ethyl]-1H-pyrazole-4-carboxamide (148c)

Compound was prepared in analogues way as 148a starting from 1-(2-aminoethyl)piperidin-2-one ($250 \mathrm{mg}, 1$ equiv.) and 1 H -pyrazole-4-carboxylic acid ($138 \mathrm{mg}, 1.1$ equiv.). Coupling reaction performed using TEA ($624 \mu \mathrm{~L}, 4$ equiv.), HOBt ($206 \mathrm{mg}, 1.2$ equiv.) and EDCI ($429 \mathrm{mg}, 2$ equiv.). Yield $103 \mathrm{mg}(39 \%)$, white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 7.99$ (d, J=39.0 Hz, $2 \mathrm{H}), 3.54(\mathrm{~s}, 4 \mathrm{H}), 3.41(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOH- d_{4}) $\delta 173.1,165.6,139.7,131.1,118.9,38.0,32.9,24.0,22.0$ (two aliphatic carbons missing due to interference with $\mathrm{CD}_{3} \mathrm{OD}$ signal). HR-MS (ESI/TOF) calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$237.1352, found 237.1353.
N-[2-(2-Oxooxazolidin-3-yl)ethyl]-1H-pyrazole-4-carboxamide (148d)

Compound was prepared in analogues way as 148a starting from 3-(2-aminoethyl)oxazolidin-2-one ($250 \mathrm{mg}, 1$ equiv.) and 1 H -pyrazole-4-carboxylic acid ($185 \mathrm{mg}, 1.1$ equiv.). Coupling reaction performed using TEA ($837 \mu \mathrm{~L}, 4$ equiv.), HOBt (275.74 mg , 1.2 equiv.) and EDCI (575 mg , 2 equiv.). Yield 121 mg (36%), white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.01$ (d, $J=66.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.56-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.53$ (t, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$,
$3.44(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 165.7$, 161.3, 139.75, 131.2, 118.8, 63.8, 45.9, 45.0, 37.9. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$225.0988, found 225.0979 .

N -(2-(1H-Imidazol-2-yl)ethyl)-1H-pyrazole-4-carboxamide (148e)

 Compound was prepared in analogues way as 148a starting from 2(1 H -imidazol-2-yl)ethan-1-amine dihydrochloride ($255 \mathrm{mg}, 1$ equiv.) and 1 H -pyrazole-4-carboxylic acid ($155 \mathrm{mg}, 1$ equiv.). Coupling reaction performed using TEA ($965 \mu \mathrm{~L}, 5$ equiv.), $\mathrm{HOBt}(254 \mathrm{mg}, 1.2$ equiv.) and EDCI ($398 \mathrm{mg}, 1.5$ equiv.). Yield $72 \mathrm{mg}(25 \%)$, white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.03(\mathrm{~s}, 2 \mathrm{H}), 6.96$ (s , $2 \mathrm{H}), 3.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) \delta$ 165.5, 147.2, 122.4, 118.9, 39.5, 29.3. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 206.1042, found 206.1044.

N-[2-(2-Oxo-1,3-oxazinan-3-yl)ethyl]-1H-pyrazole-4-carboxamide (148f)

Compound was prepared in analogues way as 148a starting from 3-(2-aminoethyl)-1,3-oxazinan-2-one hydrochloride (203 mg, 0.9 equiv.) and $1 H$-pyrazole- 4 -carboxylic acid ($140 \mathrm{mg}, 1$ equiv.). Coupling reaction performed using TEA ($696 \mu \mathrm{~L}, 4$ equiv.), HOBt ($229 \mathrm{mg}, 1.2$ equiv.) and EDCI (479 mg , 2 equiv.). Yield 139 mg (47%), white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.02$ (s , 2H), 4.24 ($\mathrm{s}, 2 \mathrm{H}$), $3.75-3.28$ (m, 6H), 2.03 ($\mathrm{s}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) δ 165.7, 156.7, 139.7, 131.1, 118.9, 68.2, 50.0, 46.9, 37.9, 23.1. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$239.1144, found 239.1146.

N-[2-(5-Methyl-1,3,4-thiadiazol-2-yl)ethyl]-1H-pyrazole-4-carboxamide (148g)

 ($212 \mathrm{mg}, 1$ equiv.) and 1 H -pyrazole-4-carboxylic acid ($110 \mathrm{mg}, 1$ equiv.). Coupling reaction performed using TEA ($684 \mu \mathrm{~L}, 5$ equiv.), HOBt ($159 \mathrm{mg}, 1.2$ equiv.) and EDCI (376 mg , 2 equiv.). Yield 67 mg (29%), white yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-$ $\left.d_{4}\right) \delta 8.01(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.44-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 170.0,168.3,165.6,139.8,131.4,118.8,39.8,30.8,15.2$. HRMS (ESI/TOF) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$238.0763, found 238.0767.

N-(4-Acetylphenethyl)-1H-pyrazole-4-carboxamide (148h)

Compound was prepared in analogues way as 148a starting from 1-(3-aminopropyl)pyridin-2(1H)-one ($250 \mathrm{mg}, 1$ equiv.) and 1 H -pyrazole-4-carboxylic acid ($140 \mathrm{mg}, 1$ equiv). Coupling reaction performed using TEA ($698 \mu \mathrm{~L}, 4$ equiv.), HOBt ($230 \mathrm{mg}, 1.2$ equiv.) and EDCI (480 mg , 2 equiv.). Yield 177 mg (55%), white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~s}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.24-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ 197.6, 166.0, 144.9, 135.5 (2C), 135.1, 129.0, 128.4, 118.7, 41.3, 36.4, 26.7. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$258.1243, found 258.1243.

N-[3-(2-Oxopyridin-1(2H)-yl)propyl]-1H-pyrazole-4-carboxamide (148i)

Compound was prepared in analogues way as 148a starting from 1-(3-aminopropyl)pyridin-2(1H)-one hydrochloride (250 mg , 0.95 equiv.) and $1 H$-pyrazole- 4 -carboxylic acid ($157 \mathrm{mg}, 1$ equiv.). Coupling reaction performed using TEA ($780 \mu \mathrm{~L}, 4$ equiv.), HOBt ($257 \mathrm{mg}, 1.2$ equiv.) and EDCI ($536 \mathrm{mg}, 2$ equiv.). Yield 130 mg (38%), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 13.10(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=6.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.51-6.32(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{td}, J=6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 162.2,161.5,139.9,139.3,134.3,119.6,117.9,105.3,46.6$, 35.8, 29.1. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$247.1195, found 247.1198.

N -(2-(5-Methyl-1H-1,2,4-triazol-3-yl)ethyl)-1H-pyrazole-4-carboxamide (148j)

Compound was prepared in analogues way as 148a starting from 2-

 ($255 \mathrm{mg}, 1$ equiv.) and 1 H -pyrazole-4-carboxylic acid ($176 \mathrm{mg}, 1$ equiv.). Coupling reaction performed using TEA ($874 \mu \mathrm{~L}, 4$ equiv.), HOBt ($288 \mathrm{mg}, 1.2$ equiv.) and EDCI ($451 \mathrm{mg}, 1.5$ equiv). Yield 72 mg (32%), white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.94$ (s, $2 \mathrm{H}), 3.60(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 165.2,158.1,155.8,134.5,116.5,37.7,26.6,10.8$. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$221.1151, found 221.1153.
\boldsymbol{N}-(3-Sulfamoylphenyl)-1H-pyrazole-4-carboxamide (150a)

To a stirred solution of 3-aminobenzenesulfonamide (203 mg , 1.1 equiv.) in dry pyridine (5 mL), $1 H$-pyrazole- 4 -carboxylic acid ($120 \mathrm{mg}, 1$ equiv.) was added in one portion at $25^{\circ} \mathrm{C}$. At the same temperature was added EDCI ($328 \mathrm{mg}, 1.6$ equiv.). Resulting mixture was stirred for 16 h . After indicated time, reaction mixture diluted with EtOAc (25 mL) and water (10 mL), organic layer separated, washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. Compound purified by trituration with hot EtOH (2 mL) to obtain product 150a as a white powder ($93 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.31$ (br. s, 1H), 10.09 (s, 1H), 8.39 (br. s, 1H), 8.24 (s, 1H), 8.11 (br. s, 1H), $8.00-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.1,144.5,139.6,139.1,130.8,129.4,122.7,120.2,117.6$, 116.9. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$267.36.

N -(3-Acetamidophenyl)-1H-pyrazole-4-carboxamide (150b)

Compound was prepared in analogues way as 150a starting from N -(3-aminophenyl)acetamide ($221 \mathrm{mg}, 1.1$ equiv.) and 1 H -pyrazole-4carboxylic acid ($150 \mathrm{mg}, 1$ equiv.). Coupling reaction performed using EDCI ($359 \mathrm{mg}, 1.4$ equiv). Yield 120 mg (37%), yellow solid. ${ }^{1}{ }^{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.24$ (br. s, 1H), 9.93 (s, 1H), 9.79 ($\mathrm{s}, 1 \mathrm{H}$), 8.38 (s, $1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=15.8,8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 168.3,160.9,139.5,139.0,130.3$ (2C), 128.6, 118.0, 115.0, 114.1, 111.0, 24.0. LC-MS (ESI/APCI) [M+H] 245.37.

Methyl 3-(1H-pyrazole-4-carboxamido)benzoate (150c)

Compound was prepared in analogues way as 150a starting from methyl 3 -aminobenzoate ($150 \mathrm{mg}, 1.1$ equiv.) and $1 H$-pyrazole-4carboxylic acid ($144 \mathrm{mg}, 1.3$ equiv.). Coupling reaction performed using EDCI ($304 \mathrm{mg}, 1.6$ equiv.). Yield 99 mg (41%), beige solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.91$ (br.s., 1 H), 10.03 (s, 1H), 8.35 (t, $J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.23(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{dd}, J=8.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 166.3$, 161.2, 139.7, 134.9 , 130.1 (2C), 129.2, 124.4, 123.9, 120.4, 117.8, 52.3. LC-MS (ESI/APCI) [M+H] ${ }^{+} 246.39$.

Methyl 4-methyl-3-(1H-pyrazole-4-carboxamido)benzoate (150d)

Compound was prepared in analogues way as 150a starting from
 methyl 3 -amino- 4 -methylbenzoate ($230 \mathrm{mg}, 1.1$ equiv.) and 1 H -pyrazole-4-carboxylic acid ($120 \mathrm{mg}, 1.3$ equiv). Coupling reaction performed using EDCI ($308 \mathrm{mg}, 1.5$ equiv). Yield 188 mg (68%), beige solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 13.28$ (br. s, 1H), $9.60(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 2 \mathrm{H})$, $7.95(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, 3H), $2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 166.0,161.0,139.2,136.6,130.9$ (2C), 127.6, 126.9, 126.2, 117.4, 52.1, 18.2. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 260.37$.

Ethyl 2-[3-(1H-pyrazole-4-carboxamido)-1H-pyrazol-1-yl]acetate (150e)

Compound was prepared in analogues way as 150a starting from ethyl
 2-(3-amino-1 H -pyrazol-1-yl)acetate ($199 \mathrm{mg}, 1.1$ equiv.) and $1 H$ -pyrazole-4-carboxylic acid ($120 \mathrm{mg}, 1$ equiv.). Coupling reaction performed using EDCI ($308 \mathrm{mg}, 1.5$ equiv.). Yield 202 mg (72%), white beige solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 13.21$ ($\mathrm{s}, 1 \mathrm{H}$), $10.52(\mathrm{~s}, 1 \mathrm{H}), 8.23$ (br. s, 2H), $7.65(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 168.3,160.0$, 147.8, 139.4, 131.9, 130.2, 117.5, 97.8, 61.0, 52.4, 14.1. LC-MS (ESI/APCI) [M+H] 264.36.

N -(3-Carbamoylphenyl)-1 H -pyrazole-4-carboxamide (150f)

Compound was prepared in analogues way as 150a starting from 3-
 aminobenzamide ($160 \mathrm{mg}, 1.1$ equiv.) and 1 H -pyrazole- 4 -carboxylic acid ($120 \mathrm{mg}, 1$ equiv.). Coupling reaction performed using EDCI ($328 \mathrm{mg}, 1.6$ equiv). Yield $238 \mathrm{mg}(97 \%)$, orange solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 13.30$ (br. s, 1H), 9.99 (br. s, 1H), 8.40 (s, 1H), 8.15 (s, 1H), 8.09 (s, 1H), $8.02-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (s, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 168.0, 161.0, 139.3, 139.0, 134.9, 130.4, 128.5, 122.8, 122.0, 119.7, 117.8. LC-MS (ESI/APCI) [M+H] ${ }^{+} 231.34$.

N-[3-(Methylsulfonyl)phenyl]-1H-pyrazole-4-carboxamide (150g)

Compound was prepared in analogues way as 150a starting from 3(methylsulfonyl)aniline ($336 \mathrm{mg}, 1.1$ equiv.) and 1 H -pyrazole-4carboxylic acid ($200 \mathrm{mg}, 1$ equiv.). Coupling reaction performed using EDCI ($513 \mathrm{mg}, 1.5$ equiv.). Yield 216 mg (46\%), beige solid. ${ }^{1} \mathrm{H}$ NMR
(400 MHz, DMSO- d_{6}) $\delta 13.76$ (br. s, 1H), 10.54 (s, 1H), 9.29 (s, 1H), 8.68 (br. s, 1H), $8.35-8.25(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.46(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 159.8,143.9,141.3,139.6,130.1,124.2,121.9,120.8,117.7$, 112.7, 43.6. LC-MS (ESI/APCI) [M+H] ${ }^{+} 266.30$.

N-[3-(Methylsulfonamido)phenyl]-1H-pyrazole-4-carboxamide (150h)

Compound was prepared in analogues way as 150a starting from N-
 (3-aminophenyl)methanesulfonamide ($150 \mathrm{mg}, 1$ equiv.) and 1 H -pyrazole-4-carboxylic acid ($117 \mathrm{mg}, 1.3$ equiv.). Coupling reaction performed using EDCI ($247 \mathrm{mg}, 1.4$ equiv.). Yield 175 mg (78%), white beige solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 13.26$ (br. s, 1 H), $9.86(\mathrm{~s}, 1 \mathrm{H}), 9.76$ (s, 1H), $8.38(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 160.9, 140.1, 139.1, 138.7, 130.4, 129.4, 117.9, 115.6, 114.7, 111.3, 39.2. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 281.35$.

Methyl 2-[3-(1H-pyrazole-4-carboxamido)phenyl]acetate (150i)

Compound was prepared in analogues way as 150a starting from methyl 2-(3-aminophenyl)acetate ($194 \mathrm{mg}, 1.1$ equiv.) and 1 H -pyrazole-4-carboxylic acid (120 mg , 1 equiv.). Coupling reaction performed using EDCI (246 mg , 1.2 equiv). Yield 94 mg (34%), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.25$ (br. s, 1H), 9.79 ($\mathrm{s}, 1 \mathrm{H}$), 8.36 ($\mathrm{s}, 1 \mathrm{H}$), 8.05 ($\mathrm{s}, 1 \mathrm{H}$), 7.65 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dt}, J=7.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 171.6,160.9$, 139.3, 139.0, 134.7, 130.3, 128.6, 124.2, 120.7, 118.6, 117.9, 51.7, 40.4. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 260.35$.

2-[3-(1H-Pyrazole-4-carboxamido)-1H-pyrazol-1-yl]acetic acid (151a)

To a stirred solution of ethyl 2-(3-(1H-pyrazole-4-carboxamido)- 1 H -
 pyrazol-1-yl)acetate 150e ($110 \mathrm{mg}, 1$ equiv.) dissolved in EtOH (7 mL), sodium hydroxide ($50 \mathrm{mg}, 3$ equiv.) dissolved in $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{~mL})$ was added in one portion. Resulting solution was stirred at $70{ }^{\circ} \mathrm{C}$ for 16 h , before evaporated to dryness. The residue was dissolved in water and acidified with 1 M HCl to obtain white precipitate. Precipitate filtered and washed with
distilled water $(2 \times 3 \mathrm{~mL})$ to obtain product as a white powder. Yield $94 \mathrm{mg}(96 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.11$ (br. s, 2H), 10.51 ($\mathrm{s}, 1 \mathrm{H}$), 8.23 ($\mathrm{s}, 2 \mathrm{H}$), 7.62 (s , $1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}) $\delta 169.8,160.0,147.6$, 134.7 (2C), 131.7, 117.5, 97.7, 52.5. LC-MS (ESI/APCI) [M+H] ${ }^{+}$236.30.

Sodium 4-methyl-3-(1H-pyrazole-4-carboxamido)benzoate (151b)

To a stirred solution of methyl 4-methyl-3-(1 H -pyrazole-4carboxamido)benzoate $\mathbf{1 5 0 d}$ (135 mg , 1 equiv.) dissolved in MeOH (7 mL), sodium hydroxide ($41 \mathrm{mg}, 2$ equiv.) dissolved in $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{~mL})$ was added in one portion. Resulting solution was stirred at $70^{\circ} \mathrm{C}$ for 16 h , before evaporated to dryness. The residue triturated with small amount of cold $\mathrm{MeOH}(1 \mathrm{~mL})$ to obtain white crystalline solid. Precipitate filtered and washed with $\mathrm{MeOH}(2 \times 0.5 \mathrm{~mL})$ to obtain product as a white powder. Yield $88 \mathrm{mg}(63 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.18(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40 (dt, $J=7.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 174.9,165.9$, 139.0, 137.9 (2C), 134.8, 134.5, 130.6, 127.9, 127.7, 115.3, 17.0. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 246.34$.

Sodium 2-(3-(1H-pyrazole-4-carboxamido)phenyl)acetate (151c)
Compound was prepared in analogues way as $\mathbf{1 5 1 b}$ starting from

methyl 2-(3-(1H-pyrazole-4-carboxamido)phenyl)acetate $\mathbf{1 5 0 i}$ ($74 \mathrm{mg}, 1$ equiv.) and NaOH ($91 \mathrm{mg}, 8$ equiv.). Yield 67 mg (88%), white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.13$ (s, 2H), 7.41 $-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 180.7,164.2,138.2,136.7,135.7$ (2C), 129.2, 126.3, 123.1, 120.6, 116.7, 44.3. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 246.31$.

8-(Phenylthio)-3,4-dihydroisoquinolin-1(2H)-one (155)

8-Fluoro-3,4-dihydroisoquinolin-1(2 H)-one $\mathbf{1 7 0}$ ($170 \mathrm{mg}, 1$ equiv.) was dissolved in anhydrous DMF (5 mL) and thiophenol ($100 \mu \mathrm{~L}, 1$ equiv.) together with $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($213 \mathrm{mg}, 1.5$ equiv.) was added thereto. Resulting solution heated at $115{ }^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction was diluted with EtOAc (30 mL) and extracted consequently with 1 M NaOH solution $(15 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$. Organic extract dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product, which was purified by trituration with the

2:1 mixture of petroleum ether and $\mathrm{EtOAc}(10 \mathrm{~mL})$ to obtain product as a solid. Yield 163 mg (62%), light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.52-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{td}, J=6.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,144.2,140.5,136.3,133.4,131.3,129.8,129.2,125.6,124.5$, 123.4, 39.9, 29.7. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+} 256.0796$, found 256.0799.

Diethyl 2-(2-cyanopyridin-3-yl)malonate (158)

To a stirred solution of 3-chloropicolinonitrile ($10 \mathrm{~g}, 1$ equiv.), dissolved in DMF (40 mL), diethyl malonate (21.94 mL , 2 equiv.) was added, followed by careful portionwise addition of $60 \% \mathrm{NaH}(5.77 \mathrm{~g}$, 2 equiv.). Resulting solution slowly warmed up to $130^{\circ} \mathrm{C}$ and stirred at this temperature for 16 h . Reaction mixture cooled down to room temperature and brine (100 mL) added thereto. Reaction mixture extracted with EtOAc (200 mL), and EtOAc layer washed with brine ($2 \times 100 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. Crude residue was purified by silica gel chromatography using $20 \% \mathrm{EtOAc}$ in petroleum ether to obtain product as a yellowish oil. Yield 13 g (69%). Spectral data consistent with previously reported. ${ }^{72}$

Ethyl 2-(2-cyanopyridin-3-yl)acetate (159)

To a stirred solution of diethyl 2-(2-cyanopyridin-3-yl)malonate $\mathbf{1 5 8}$ ($12.6 \mathrm{~g}, 1$ equiv.), dissolved in DMSO (50 mL), $\mathrm{H}_{2} \mathrm{O}$ ($1.73 \mathrm{~mL}, 2$ equiv.) and $\mathrm{LiCl}(4.07 \mathrm{~g}, 2$ equiv.) were added. Resulting solution warmed up to $140{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 3 h . Reaction mixture cooled down to room temperature and brine (100 mL) added thereto Reaction mixture extracted with EtOAc $(200 \mathrm{~mL})$, and EtOAc layer washed with brine ($4 \times 70 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. Crude residue used in the next step without further purification. Yield $7.85 \mathrm{~g}(86 \%)$, brown oil. Spectral data consistent with previously reported. ${ }^{72}$

Ethyl 2-(2-cyanopyridin-3-yl)-3-(dimethylamino)acrylate (160)

Ethyl 2-(2-cyanopyridin-3-yl)acetate 159 ($8.2 \mathrm{~g}, 1$ equiv.) was dissolved in DMF-DMA ($17.2 \mathrm{~mL}, 3$ equiv.) Resulting solution warmed up to $100^{\circ} \mathrm{C}$ and stirred at this temperature for 6 h . Reaction mixture cooled
down to room temperature and evaporated in vacuo. Crude residue used in the next step without further purification. Yield $10.4 \mathrm{~g}(98 \%)$, black oil. ${ }^{72}$

Ethyl 8-amino-1,7-naphthyridine-5-carboxylate (161)

Ethyl 2-(2-cyanopyridin-3-yl)-3-(dimethylamino)acrylate $\mathbf{1 6 0}$ (10.4 g, 1 equiv.) was dissolved in glacial $\mathrm{AcOH}(130 \mathrm{~mL})$ and ammonium acetate was added thereto ($58.83 \mathrm{~g}, 18$ equiv). Resulting solution warmed up to $100{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 16 h . Reaction mixture cooled down to room temperature and evaporated in vacuo. Crude residue triturated with water to obtain solid, which was separated and washed with water ($2 \times 100 \mathrm{~mL}$). Yield 3.58 g (39%), brown solid. Spectral data consistent with previously reported. ${ }^{72}$

8-Amino-1,7-naphthyridine-5-carboxylic acid (162)

Ethyl 8-amino-1,7-naphthyridine-5-carboxylate 161 ($3 \mathrm{~g}, 1$ equiv.) was suspended in aqueous solution (50 mL) of NaOH ($1.1 \mathrm{~g}, 2$ eqiuv.). Resulting suspension warmed up to $100{ }^{\circ} \mathrm{C}$ and stirred until clear solution was obtained. Reaction mixture cooled down to room temperature, acidified with 1 M HCl and evaporated in vacuo. Crude residue triturated with MeOH to obtain solid, which was separated and washed with $\mathrm{MeOH}(2 \times 4 \mathrm{~mL})$. Yield $1.03 \mathrm{~g}(39 \%)$, light brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.84$ (br.s, 2H), 9.32 (dd, $J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 9.02 (dd, J $=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, DMSO- d_{6}) $\delta 165.4,155.7,150.6,136.4,134.2,134.1,130.9,129.4,110.0$. LC-MS (ESI/APCI) [M+H] ${ }^{+}$190.26.

8-Amino- N -cyclopentyl-1,7-naphthyridine-5-carboxamide (153)

8-Amino-1,7-naphthyridine-5-carboxylic acid 169 ($165 \mathrm{mg}, 1$ equiv.) was dissolved in dry DMF (5 mL) and cyclopentylamine ($129 \mu \mathrm{~L}, 1.2$ equiv.) was added thereto, followed by TEA ($486 \mu \mathrm{~L}, 4$ equiv.), EDCI (251 mg , 1.5 equiv.) and HOBt ($160 \mathrm{mg}, 1.2$ equiv.). Resulting solution stirred at room temperature for 16 h . Reaction mixture diluted with water to obtain solid, which was separated and washed with water $(2 \times 10 \mathrm{~mL})$. Yield $188 \mathrm{mg}(84 \%)$, beige solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 9.33(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.46$ (s, $1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{p}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.92-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOH- $\left.d_{4}\right) \delta 174.3,160.4,149.5$,
146.0, 136.0, 134.2, 132.4, 126.9, 118.6, 53.3, 32.1, 24.9. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 257.1402$, found 257.1405 .

2-Propionamidopyrimidine-5-carboxylic acid (164)

2-Aminopyrimidine-5-carboxylic acid $\mathbf{1 6 3}$ ($1 \mathrm{~g}, 1$ equiv.) was suspended in propionic anhydride ($3.7 \mathrm{~mL}, 4$ equiv.) and the resulting solution heated at $130{ }^{\circ} \mathrm{C}$ for 1 h . Reaction mixture cooled down to room temperature and diluted with water $(60 \mathrm{~mL})$ to obtain solid, which was filtered and discarded (bis-acylated impurity). Filtrate was evaporated to dryness in vacuo to obtain target product $\mathbf{1 6 0}$. Yield 347 mg (25%), yellowish solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 172.6,164.8,159.6,159.5,119.4,30.0,9.0$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$196.30.

2-Propionamidopyrimidine-5-carboxylic acid (154)

2-Propionamidopyrimidine-5-carboxylic acid 164 ($150 \mathrm{mg}, 1$ equiv.) was dissolved in dry DMF (4 mL) and cyclopentylamine ($114 \mu \mathrm{~L}$, 1.5 equiv.) was added thereto, followed by TEA ($214 \mu \mathrm{~L}, 2$ equiv.), EDCI ($221 \mathrm{mg}, 1.5$ equiv.) and HOBt ($141 \mathrm{mg}, 1.2$ equiv.). Resulting solution stirred at room temperature for 16 h . Reaction mixture diluted with water to obtain solid, which was separated and washed with water ($2 \times 5 \mathrm{~mL}$). Yield $112 \mathrm{mg}(55 \%)$, light beige solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 9.04(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{dt}, J=8.0,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.48(\mathrm{~m}, 6 \mathrm{H}), 1.20(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 175.5,170.3,160.6,159.6,126.9,53.3,32.1$, 31.3, 24.9, 9.5. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$263.1508, found 263.1504.

2-Aminopyrimidine-5-sulfonyl chloride (166)

2-Aminopyrimidine 165 ($2.64 \mathrm{~g}, 1$ equiv.) was carefully dissolved portionwise in $\mathrm{HSO}_{3} \mathrm{Cl}$ ($15.7 \mathrm{~mL}, 8.5$ equiv.) and thionyl chloride ($8.55 \mathrm{~mL}, 4.25$ equiv.) was added dropwise to the reaction mixture at room temperature. Resulting solution heated at $150{ }^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction was carefully added to crushed ice (400 g) and formed solution was saturated with NaCl and extracted with EtOAc (150 mL). Organic layer washed with brine $(2 \times 30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain product
as a solid. Yield 1.614 g (30\%), light beige solid. Spectral data consistent with previously reported. ${ }^{91}$

2-Amino- N -cyclopentylpyrimidine-5-sulfonamide (167)

2-Aminopyrimidine-5-sulfonyl chloride 166 ($250 \mathrm{mg}, 1$ equiv.) was added portionwise to a stirred solution of cyclopentylamine (191 $\mu \mathrm{L}$, 1.5 equiv.) and triethyl amine ($360 \mu \mathrm{~L}$, 2 equiv.) in dry MeCN (5 mL) under ice cooling. Resulting solution stirred at room temperature for 1 h . Reaction mixture evaporated in vacuo and triturated with water $(5 \mathrm{~mL})$ to obtain product as a solid. Yield 238 mg (76%), light beige solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.58(\mathrm{~s}, 2 \mathrm{H})$, $4.59(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.57-$ $1.47(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) \delta 165.7,158.8,125.9$, 56.1, 34.1, 24.3. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$243.0916, found 243.0914.
N-(5-(N-cyclopentylsulfamoyl)pyrimidin-2-yl)propionamide (168)

2-Amino-N-cyclopentylpyrimidine-5-sulfonamide 167 (150 mg , 1 equiv.) was suspended in propionic anhydride ($955 \mu \mathrm{~L}, 12$ equiv.) and the resulting solution heated at $150^{\circ} \mathrm{C}$ for 2 h . Reaction cooled down to room temperature and neutralized with saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$. Formed precipitate was filtered and washed with water ($2 \times 3 \mathrm{~mL}$) to obtain product as a solid. Yield $88 \mathrm{mg}(48 \%)$, light beige solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeCN}-d_{3}$) δ $9.00(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{q}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{dq}, J=12.5,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{tt}, J=11.7,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{qd}, J=$ $8.9,7.4,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{dq}, J=13.8,7.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeCN}-d_{3}$) $\delta 173.8,164.0,158.2,131.4,56.1,33.8,31.3,23.9,9.2$. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$299.1178, found 299.1176.

8-Fluoro-3,4-dihydroisoquinolin-1(2H)-one (170)

5-Fluoro-indan-1-one 169 ($1 \mathrm{~g}, 1$ equiv.) was dissolved in dichloromethane $(10 \mathrm{ml})$ and methanesulfonic acid $(10 \mathrm{ml})$. This solution was cooled to $0^{\circ} \mathrm{C}$ and sodium azide ($866 \mathrm{mg}, 2$ equiv.) was added. After 2 hours, the solution was made basic by slow addition of 20% aqueous sodium hydroxide. The resulting mixture was partitioned between dichloromethane and water. The dichloromethane layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and purified by trituration with the $1: 1$
mixture of petroleum ether and EtOAc (10 mL) to obtain product as a solid. Yield 347 mg (31%), white yellow solid. Spectral data consistent with previously reported. ${ }^{92}$

4-(Pyridin-3-yl)-1H-indazol-6-ol (174)

Compound was prepared in analogues way as 178a starting from 6-
 methoxy-4-(pyridin-3-yl)- $1 H$-indazole $\mathbf{1 7 7 a}$ ($150 \mathrm{mg}, 1$ equiv.) and 1 M BBr_{3} (2.67 mL , 4 equiv.). Purified by reversed phase chromatography using gradient of MeCN in water to obtain product as a white solid. Yield $33 \mathrm{mg}(23 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.88$ (br. s, 1 H), 8.62 (br. s, 1 H), 8.25 (dt, $J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=7.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=1.8,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) δ 158.7, 148.3, 143.9, 138.8, 133.4, 132.3, 126.0, 116.9, 113.8, 94.8. LC-MS (ESI/APCI) [M+H] ${ }^{+} 212.40$.

4-Bromo-6-methoxy-1H-indazole (176)

2-Bromo-6-fluoro-4-methoxybenzaldehyde 175 (1.2 \quad g, 1 equiv.), synthesized according to literature described procedure, ${ }^{93}$ was dissolved in ethylene glycol (15 mL) and hydrazine hydrate ($5.52 \mathrm{~mL}, 22$ equiv.) was added thereto. Resulting solution heated at $110{ }^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction mixture evaporated in vacuo to dryness and water (20 mL) added thereto. Formed precipitate was filtered and washed with water $(2 \times 10 \mathrm{~mL})$ to obtain product as a solid. Yield $952 \mathrm{mg}(81 \%)$, white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.44$ (s, 1H), $7.98(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.2,141.5,135.1,119.7,116.2,114.9,90.3,56.0$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$227.27/229.30.

6-Methoxy-4-(pyridin-3-yl)-1H-indazole (177a)

4-Bromo-6-methoxy-1 H-indazole 176 ($300 \mathrm{mg}, 1$ equiv.) was dissolved in dioxane:water $3: 1$ mixture (10 mL) and pyridin-3-yl boronic acid (487 mg , 3 equiv.) was added thereto, followed by $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($213 \mathrm{mg}, 1.5$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(75.5 \mathrm{mg}, 7 \mathrm{~mol} \%)$. Resulting solution heated at $100{ }^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction mixture evaporated in vacuo to dryness and water (10 mL) added thereto. Then reaction extracted with EtOAc (30 mL). Organic extract washed with brine $(2 \times 30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by silica gel column chromatography using gradient from 0 to $2 \% \mathrm{MeOH}$ in EtOAc to obtain product as a
yellowish sticky oil. Yield $150 \mathrm{mg}(50 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.40(\mathrm{~s}, 1 \mathrm{H})$, $9.09-8.89(\mathrm{~m}, 1 \mathrm{H}), 8.68(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{ddd}, J=7.9,2.3$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, J=7.9,4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,149.3,149.2,142.1,135.8,135.2,134.1,132.5,123.9$, 116.8, 113.0, 90.6, 55.8. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 226.41$.

6-Methoxy-4-phenyl-1H-indazole (177b)

Compound was prepared in analogues way as $\mathbf{1 7 7 a}$ starting from 4-bromo-6-methoxy- 1 H -indazole 176 ($300 \mathrm{mg}, 1$ equiv.) and phenylboronic acid ($225 \mathrm{mg}, 1.4$ equiv.). Coupling reaction performed using $\mathrm{K}_{2} \mathrm{CO}_{3}$ (730 mg , 4 equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(75.5 \mathrm{mg}, 7 \mathrm{~mol} \%)$. Purified by silica gel column chromatography using gradient from 10 to $50 \% \mathrm{EtOAc}$ in petroleum ether to obtain product as a colourless oil. Yield $212 \mathrm{mg}(72 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 10.06 (br. s, 1H), 8.12 ($\mathrm{s}, 1 \mathrm{H}$), $7.77-7.65$ (m, 2H), 7.51 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26 (d, $J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=29.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.1, 142.1, 139.4, 136.3, 134.7, 129.0, 128.5, 128.2, 117.0, 112.5, 89.9, 55.8. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 225.31$.

6-Methoxy-4-(pyridin-4-yl)-1H-indazole (177c)

Compound was prepared in analogues way as $\mathbf{1 7 7 a}$ starting from 4-bromo-6-methoxy- 1 H -indazole 176 (300 mg , 1 equiv.) and 4-pyridineboronic acid hydrochloride ($1.053 \mathrm{~g}, 5$ equiv.). Coupling reaction performed using $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($1.46 \mathrm{~g}, 8$ equiv.) and PdCl_{2} (dppf) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(75.5 \mathrm{mg}, 7 \mathrm{~mol} \%$). Purified by trituration with methanol $(2 \mathrm{~mL})$ to obtain product as a beige solid. Yield $180 \mathrm{mg}(60 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.11$ (br. s, 1 H), 8.70 (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $8.13(\mathrm{~s}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-6.84(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.d_{6}\right) \delta 158.7,150.2,146.0,141.8,132.3,131.7,122.8,115.5,111.8,91.8,55.5$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 226.38$.

4-(Pyridin-4-yl)-1H-indazol-6-ol (178a)

6-Methoxy-4-(pyridin-4-yl)-1H-indazole 177c (70 mg, 1 equiv.), was dissolved in dry DCM (5 mL) and 1 M BBr 3 solution in $\mathrm{DCM}(1.68 \mathrm{~mL}$, 5.4 equiv.) was added thereto under ice cooling, Resulting solution stuirred at room temperature for 3 h . Then reaction neutralized with saturated aqueous NaHCO_{3} and extracted with DCM (20 mL). Organic extract dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain product as a brown solid. Yield $16 \mathrm{mg}(24 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.66(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=1.9,1.0 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 158.6,151.4,149.1,144.0,133.4,132.8,125.1$, 116.5, 114.1, 95.9. LC-MS (ESI/APCI) [M+H] 212.38 .

4-Phenyl-1H-indazol-6-ol (178b)

Compound was prepared in analogues way as 178a starting from 6-methoxy-4-phenyl- $1 H$-indazole 177b (320 mg , 1 equiv.) and $1 \mathrm{M} \mathrm{BBr}_{3}$ ($7.13 \mathrm{~mL}, 5$ equiv.). Purified by silica gel column chromatography using gradient from 20 to 50% EtOAc in petroleum ether to obtain product as a white solid. Yield $120 \mathrm{mg}(40 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.17(\mathrm{~d}, J=0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) \delta 159.9,143.8$, $140.4,137.9,133.4,130.0,129.3,129.2,116.8,114.3,93.3$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$ 211.34.

tert-Butyl 4-bromo-6-methoxy-1H-indazole-1-carboxylate (179a)

4-Bromo-6-methoxy-1H-indazole 176 ($950 \mathrm{mg}, 1$ equiv.) was dissolved in dry $\mathrm{MeCN}(20 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(1.15 \mathrm{~mL}, 1.2$ equiv.) was added thereto, followed by DMAP ($51 \mathrm{mg}, 0.1$ equiv.). Resulting solution stirred at room temperature for 16 h . Reaction mixture evaporated in vacuo and purified by silica gel column chromatography using gradient from 3 to $10 \% \mathrm{EtOAc}$ in petroleum ether to obtain product as a white solid. Yield $552 \mathrm{mg}(40 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}$, $1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 161.6,149.4,141.8,139.1,121.4,118.0,114.8,96.2,85.4$, 56.1, 28.3. LC-MS (ESI/APCI) [M+H] ${ }^{+}$271.20/273.20.
tert-Butyl 4-bromo-1H-indazole-1-carboxylate (179b)

Compound was prepared in analogues way as 179a starting from 4-bromo$1 H$-indazole ($1.2 \mathrm{~g}, 1$ equiv.), $\mathrm{Boc}_{2} \mathrm{O}(1.15 \mathrm{~mL}, 1.2$ equiv.) and DMAP ($74.4 \mathrm{mg}, 0.1$ equiv.). Purified by silica gel column chromatography using gradient from 3 to $10 \% \mathrm{EtOAc}$ in petroleum ether to obtain product as a yellowish oil. Yield $1184 \mathrm{mg}(65 \%)$. Spectral data consistent with previously reported. ${ }^{94}$

tert-Butyl 6-methoxy-4-((5-(methoxycarbonyl)-2-methylphenyl)amino)-1H-indazole-1-carboxylate (180a)

tert-Butyl 4-bromo-6-methoxy-1H-indazole-1-carboxylate 179a ($150 \mathrm{mg}, 1$ equiv.) was dissolved in toluene (8 mL) and methyl 3-amino-4-methylbenzoate $\mathbf{1 5 0 d}$ ($152 \mathrm{mg}, 2$ equiv.) was added thereto, followed by $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($146 \mathrm{mg}, 1.5$ equiv.), Xanthphos ($16 \mathrm{mg}, 6 \mathrm{~mol} \%$) and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(12 \mathrm{mg}, 3 \mathrm{~mol} \%)$. Resulting solution heated at $100{ }^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction evaporated in vacuo to dryness and water (10 mL) added thereto. Then reaction extracted with EtOAc (20 mL). Organic extract washed with brine ($2 \times 10 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by silica gel column chromatography using gradient from 10 to 50% EtOAc in petroleum ether to obtain product as a yellow oil. Yield $165 \mathrm{mg}(87 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.79 (br. s, 1H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,162.8,149.7,142.9,139.9,138.7,137.0,136.6,131.4$, 129.4, 125.6, 123.9, 111.9, 99.4, 89.5, 84.8, 55.7, 52.2, 28.3, 18.3. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 412.54$.
tert-Butyl 4-((5-(methoxycarbonyl)-2-methylphenyl)amino)-1H-indazole-1carboxylate (180b)

Compound was prepared in analogues way as 180a starting from tert-butyl 4-bromo-1H-indazole-1-carboxylate 179b (200 mg, 1 equiv.), methyl 3-amino-4-methylbenzoate $\mathbf{1 5 0 d}$ (222 mg , 2 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($146 \mathrm{mg}, 1.5$ equiv.), Xanthphos ($58 \mathrm{mg}, 15 \mathrm{~mol} \%$) and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($43 \mathrm{mg}, 7 \mathrm{~mol} \%$). After aqueous workup used in the next step without further purification. Yield 142 mg (55\%). LC-MS (ESI/APCI) [M+H] 382.49 .

3-[(6-Hydroxy-1H-indazol-4-yl)amino]-4-methylbenzoic acid (181)

 1 equiv.) was dissolved in 3 mL of 48% aqueous HBr . Resulting solution stirred at $100{ }^{\circ} \mathrm{C}$ for 3 h . After cooling down to room temperature reaction mixture evaporated in vacuo to dryness and water (3 mL) added thereto and evaporated to remove residual HBr . Purified by reversed phase column
chromatography using gradient of MeCN in water to obtain product as a beige solid. Yield $20 \mathrm{mg}(20 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 7.95-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{dd}, J=$ $7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{MeOH}-d_{4}\right) \delta 170.0,159.6,144.5,142.2,141.1,141.0,139.6,139.5,133.0,132.1,130.6$, 126.3, 110.9, 96.3, 18.4. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 284.38$.

Methyl 3-[(1H-indazol-4-yl)amino]-4-methylbenzoate (182)

tert-Butyl 4-((5-(methoxycarbonyl)-2-methylphenyl)amino)-1 H -indazole-1-carboxylate 180b ($141 \mathrm{mg}, 1$ equiv.) was dissolved in DCM (3 mL) and TFA ($852 \mu \mathrm{~L}, 30$ equiv.) was added thereto. Resulting solution stirred at room temperature for 6 h . Then reaction mixture diluted with saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and brine (10 mL). Organic extract dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by silica gel column chromatography using gradient from 10 to $50 \% \mathrm{EtOAc}$ in petroleum ether to obtain product as a white yellow solid. Yield $83 \mathrm{mg}(80 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) δ 7.92 (s, 1H), 7.81 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.66 (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 168.6$, 143.3, 142.9, 140.0, 138.7, 133.1, 132.1, 129.8, 129.1, 125.3, 124.5, 116.3, 105.7, 102.3, 52.5, 18.4. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 282.38$.

3-[(1H-Indazol-4-yl)amino]-4-methylbenzoic acid (183)

Methyl 3-((1H-indazol-4-yl)amino)-4-methylbenzoate 182 (66 mg , 1 equiv.) was dissolved in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ mixture $4: 1(5 \mathrm{~mL})$ and NaOH ($28 \mathrm{mg}, 3$ equiv.) was added thereto. Resulting solution stirred at $70^{\circ} \mathrm{C}$ for 16 h . Then reaction mixture evaporated in vacuo and the residue triturated with 1 M $\mathrm{HCl}(2 \mathrm{~mL})$. Obtained precipitate was filtered and washed with water $(2 \times 1 \mathrm{~mL})$ to obtain product as a beige-purple solid. Yield $53 \mathrm{mg}(84 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 12.84 (br. s, 2H), 7.97 (s, 1H), 7.91 (s, 1H), 7.71 (s, 1H), 7.58 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 167.2,141.6,141.2,138.2,136.4$, $131.9,131.0,129.2,127.1,123.8,122.9,114.8,103.5,100.9,18.1$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 268.34$.

Ethyl 2-(3-nitro-1H-pyrazol-1-yl)acetate (185)

3-Nitro-1 H-pyrazole 184 ($1 \mathrm{~g}, 1$ equiv.) was dissolved in DMF $(25 \mathrm{~mL})$ and ethyl bromoacetate ($1.17 \mathrm{~mL}, 1.2$ equiv.) was added thereto, followed by $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.44 g , 2 equiv.). Resulting mixtire heated at $80^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction diluted with brine (50 mL) and extracted with EtOAc (80 mL). Organic extract washed with brine ($2 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by trituration with hot 10% EtOAc in petroleum ether to obtain product as a white beige solid. Yield $1.4 \mathrm{~g}(80 \%)$. Spectral data consistent with previously reported. ${ }^{95}$

Ethyl 2-(3-amino-1H-pyrazol-1-yl)acetate (150e)

Ethyl 2-(3-nitro-1H-pyrazol-1-yl)acetate 185 ($1.3 \mathrm{~g}, 1$ equiv.) was dissolved in EtOH (30 mL) and $10 \% \mathrm{Pd}$ on carbon (300 mg , $4 \mathrm{~mol} \%$) was added thereto, Resulting mixtire hydrogenated at 1 atm of H_{2} for 6 h at room temperature. After consumption of starting material, reaction ventilated from hydrogen, catalyst filtered off and ethanolic solution evaporated in vacuo to obtain pure product as a yellow viscous oil. Yield 1.1 g (99\%). Spectral data consistent with previously reported. ${ }^{96}$

tert-Butyl 4-((1-(2-ethoxy-2-oxoethyl)-1H-pyrazol-3-yl)amino)-6-methoxy-1H-indazole-1-carboxylate (187a)

Compound was prepared in analogues way as 180a starting from tert-butyl 4-bromo-6-methoxy- 1 H -indazole-1carboxylate 179a (250 mg , 1 equiv.), ethyl 2-(3-amino-1 H -pyrazol-1-yl)acetate $\mathbf{1 5 0 e}$ ($194 \mathrm{mg}, 1.5$ equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($243 \mathrm{mg}, 1.5$ equiv.), Xanthphos ($35 \mathrm{mg}, 8 \mathrm{~mol} \%$) and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(28 \mathrm{mg}, 4 \mathrm{~mol} \%)$. Purified by silica gel column chromatography using gradient from 10 to 100% EtOAc in petroleum ether to obtain product as a yellow solid. Yield $206 \mathrm{mg}(65 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (d, J $=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{br} . \mathrm{s}$, $1 \mathrm{H}), 6.14(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}$, $9 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,163.0,150.5,149.7$, $142.6,137.2,136.3,132.1,111.2,98.3,97.3,89.0,84.7,62.1,55.7,53.2,28.3,14.3$. LCMS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 416.51$.

tert-Butyl 4-\{[1-(2-ethoxy-2-oxoethyl)-1H-pyrazol-3-yl)]amino\}-1H-indazole-1carboxylate (187b)

Compound was prepared in analogues way as 180a starting from tert-butyl 4-bromo-1H-indazole-1-carboxylate 179b (200 mg, 1 equiv.), ethyl 2-(3-amino-1H-pyrazol-1yl)acetate 150e ($137 \mathrm{mg}, 1.2$ equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($285 \mathrm{mg}, 2$ equiv.), Xanthphos (58 mg , $15 \mathrm{~mol} \%$) and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(43 \mathrm{mg}, 7 \mathrm{~mol} \%)$. Purified by silica gel column chromatography using gradient from 10 to 100% EtOAc in petroleum ether to obtain product as a yellow oil. Yield $99 \mathrm{mg}(38 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (dd, $J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=7.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48$ (br. s, 1H), $6.14(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,150.9,149.5,141.2,136.9,136.5$, 132.1, 130.6, 116.3, 107.7, 106.2, 97.2, 84.9, 62.1, 53.2, 28.3, 14.3. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 386.54$.

2-\{3-[(6-Hydroxy-1H-indazol-4-yl)amino]-1H-pyrazol-1-yl\}acetic acid (188)

 Compound was prepared in analogues way as $\mathbf{1 8 1}$ starting from tert-butyl 4-((1-(2-ethoxy-2-oxoethyl)-1H-pyrazol-3-yl)amino)-6-methoxy-1H-indazole-1-carboxylate 187a (195 mg , 1 equiv.). Purified by reversed phase column chromatography using gradient of MeCN in water to obtain product as a beige solid. Yield $71 \mathrm{mg}(49 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 12.34 (br. s, 2H), 9.18 (br. s, 1H), 8.62 (s, 1H), 8.12 (s, 1H), 7.60 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right) \delta 171.77,162.06,152.49,152.43,144.17,139.47,133.71,133.64$, 131.50, 109.96, 97.81, 53.34. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 274.34$.

Ethyl 2-\{3-[(1H-indazol-4-yl)amino]-1H-pyrazol-1-yl\}acetate (189)

Compound was prepared in analogues way as $\mathbf{1 8 2}$ starting from tert-butyl 4-((1-(2-ethoxy-2-oxoethyl)-1H-pyrazol-3-yl)amino)-1H-indazole-1-carboxylate 187b (97 mg , 1 equiv.) and TFA ($386 \mu \mathrm{~L}, 20$ equiv.). Purified by trituration with hot EtOAc:petroleum ether 1:2 to obtain product as a beige solid. Yield $51 \mathrm{mg}(71 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 12.10 (br. s, 1H), 9.27 (s, 1H), $9.03-8.67$ (m, 1H), 7.37 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20$ (m, 1H), 7.05 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ $(\mathrm{s}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
168.2, 152.3, 141.5, 137.1, 132.1, 128.2, 115.3, 101.9, 101.1, 96.1, 62.1, 53.0, 14.1. LCMS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 286.43$.

2-\{3-[(1H-Indazol-4-yl)amino]-1H-pyrazol-1-yl\}acetic acid (190)

Compound was prepared in analogues way as $\mathbf{1 8 3}$ starting from

ethyl 2-(3-((1 H -indazol-4-yl)amino)-1 H -pyrazol-1-yl)acetate
189 ($50 \mathrm{mg}, 1$ equiv.) and NaOH ($28 \mathrm{mg}, 4$ equiv.). White beige solid. Yield $51 \mathrm{mg}(71 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.18(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 171.8,153.2,143.1,138.5$, 133.6, 132.8, 129.3, 115.5, 104.6, 101.6, 97.7, 53.3. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 258.29$.

4-Bromo-1-ethoxy-2-fluorobenzene (192)

 4-Bromo-2-fluorophenol 191 ($2.62 \mathrm{~g}, 1$ equiv.) was dissolved in DMF (25 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3.78 \mathrm{~g}, 2$ equiv.) was added thereto, followed by bromoethane ($2.98 \mathrm{~g}, 2$ equiv.). Resulting mixtire stirred at room temperature for 16 h . Then reaction mixture diluted with brine (50 mL) and extracted with pertroleum ether $(100 \mathrm{~mL})$. Organic extract washed with brine $(2 \times 25 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain product as a white yellow oil. Yield 2.737 g (91%). Spectral data consistent with previously reported. ${ }^{97}$

6-Bromo-3-ethoxy-2-fluorobenzaldehyde (193)

2.4 M solution of $\mathrm{n}-\mathrm{BuLi}$ in hexane ($7.34 \mathrm{~mL}, 1.3$ equiv.) was added dropwise to a stirred solition of diisopropylamine ($2.485 \mathrm{~mL}, 1.3$ equiv.) in THF under Ar atmosphere at $0^{\circ} \mathrm{C}$. After stirring for 20 min , freshly prepared LDA solution was cooled to $-78{ }^{\circ}$ and 4-bromo-1-ethoxy-2-fluorobenzene 192 (2.62 g , 1 equiv.), dissolved in dry THF (8 mL) was slowly added dropwise. Resulting mixtire stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . After indicated time, DMF ($2.1 \mathrm{~mL}, 2$ equiv.) was added dropwise to the reaction mixture. Then reaction allowed to warm to room temperature, diluted with brine (70 mL) and extracted with EtOAc (150 mL). Organic extract washed with brine $(3 \times 40 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain product as a white yellow solid. Yield $3.1 \mathrm{~g}(93 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.32$ $(\mathrm{s}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.8,153.7(\mathrm{~d}, J=266.9 \mathrm{~Hz})$, $147.4(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 123.2(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 120.1(\mathrm{~d}, J=3.8 \mathrm{~Hz})$,
$114.1(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 65.8,14.8 .^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-135.45(\mathrm{~d}, J=8.0 \mathrm{~Hz})$. LC-MS (ESI/APCI) [M+H] ${ }^{+}$247.16/249.25.

4-Bromo-7-ethoxy-1H-indazole (194)

6-Bromo-3-ethoxy-2-fluorobenzaldehyde 193 ($3.1 \mathrm{~g}, 1$ equiv.), was dissolved in DMSO (15 mL) and hydrazine hydrate (12.23 mL , 20 equiv.) was added thereto. Resulting solution heated at $110{ }^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction mixture diluted with water (70 mL). Formed precipitate was filtered and washed with water $(2 \times 15 \mathrm{~mL})$ to precipitate the product. Yield $2.75 \mathrm{~g}(81 \%)$, yellowish solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.40(\mathrm{br}$ s, 1 H$), 8.09$ $(\mathrm{s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.54$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.4,135.1,133.1,125.5,124.1$, 106.9, 104.3, 64.4, 14.9. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$241.21/243.19.

4-Bromo-7-ethoxy-1-[(2-(trimethylsilyl)ethoxy)methyl]-1H-indazole (195)

4-Bromo-7-ethoxy-1H-indazole 194 ($946 \mathrm{mg}, 1$ equiv.) was dissolved in THF (20 mL) and $60 \% \mathrm{NaH}$ in mineral oil ($188 \mathrm{mg}, 1.2$ equiv.) was added portionwise under ice cooling. After stirring for 30 min at $0^{\circ} \mathrm{C}$, SEM chloride ($900 \mu \mathrm{~L}, 1.3$ equiv.) was added dropwise. Resulting mixtire gradually warmed up to room temperature for 1 h . Then reaction mixture neutralized with brine (30 mL) and extracted with EtOAc (70 mL). Organic extract washed with brine $(2 \times 20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Compound purified by silica gel column chromatography using EtOAc gradient in petroleum ehter from 5 to 25% to obtain product as a slightly yellow oil. Yield 1.308 g (90%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-3.49(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.80(\mathrm{~m}, 2 \mathrm{H}),-0.07(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.3$, 134.7, 131.9, 127.3, 124.5, 108.0, 104.5, 79.7, 66.4, 64.5, 17.9, 14.8, -1.3. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$371.42/373.40.

7-Ethoxy-4-(3-(methylsulfonyl)styryl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1Hindazole (197)

4-Bromo-7-ethoxy-1-((2-(trimethylsilyl)ethoxy)methyl)-1Hindazole 195 ($150 \mathrm{mg}, 1$ equiv.) was dissolved in DMF (7 mL) and 1-(methylsulfonyl)-3-vinylbenzene ($88 \mathrm{mg}, 1.2$ equiv.) was
added thereto, followed by TEA ($563 \mu \mathrm{~L}, 10$ equiv.), tri-o-tolylphosphine (25 mg , $20 \mathrm{~mol} \%)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 10 \mathrm{~mol} \%)$. Resulting solution heated at $100^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction nixture evaporated in vacuo to dryness and water (15 mL) added thereto. Then reaction extracted with EtOAc (30 mL). Organic extract washed with brine $(2 \times 10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by silica gel column chromatography using gradient from 5 to $50 \% \mathrm{EtOAc}$ in petroleum ether to obtain product as a yellowish oil. Yield $187 \mathrm{mg}(98 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-0.92(\mathrm{~m}, 2 \mathrm{H}),-0.01$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.7,142.6,141.3,139.7,131.3,131.2,130.6$, $130.3,129.9,125.6,125.5,124.7,122.2,121.6,104.0,82.2,67.8,64.2,44.7,18.1,14.8$, 1.2. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 473.58$.

7-Ethoxy-4-[3-(methylsulfonyl)phenethyl]-1-\{[2-(trimethylsilyl)ethoxy]methyl\}-1Hindazole (198)

7-Ethoxy-4-(3-(methylsulfonyl)styryl)-1-((2-
(trimethylsilyl)ethoxy)methyl)-1H-indazole 197 (174 mg, 1 equiv.) was dissolved in MeOH (8 mL) and $10 \% \mathrm{Pd}$ on carbon ($20 \mathrm{mg}, 5 \mathrm{~mol} \%$) was added thereto, followed by triethylsilane ($353 \mu \mathrm{~L}, 6$ equiv.). Resulting mixtire stirred for 16 h at room temperature. Then catalyst filtered off and methanolic solution evaporated in vacuo to obtain crude product. Purified by silica gel column chromatography using gradient from 5 to 50% EtOAc in petroleum ether to obtain product as an oil. Yield 101 mg (58%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dt}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H}), 4.28$ (q, J=7.0 Hz, 2H), $3.77-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 2 \mathrm{H}), 1.58(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.3$, $143.5,142.2,140.4,133.8,131.1,130.1,129.2,127.1,124.8,124.4,124.2,103.4,81.8$, 67.4, 63.6, 44.3, 36.2, 34.8, 17.8, 14.7, -1.41. LC-MS (ESI/APCI) [M+H] ${ }^{+} 475.57$.

7-Ethoxy-4-(3-(methylsulfonyl)phenethyl)-1H-indazole (199)

7-Ethoxy-4-(3-(methylsulfonyl)phenethyl)-1-((2-
(trimethylsilyl)ethoxy)methyl)-1H-indazole 198 (101 mg,
1 equiv.) was dissolved in $\mathrm{MeOH}(8 \mathrm{~mL})$ and 37% aqueous $\mathrm{HCl}(1.5 \mathrm{~mL}$, excess) was added thereto. Resulting mixtire stirred for 16 h at room temperature. Then reaction mixture evaporated in vacuo, neutralized with NaHCO_{3} (10 $\mathrm{mL})$ and extracted with EtOAc (20 mL). Organic extract washed with brine ($2 \times 5 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Compound purified by silica gel column chromatography using EtOAc gradient in petroleum ehter from 20 to 70% to obtain product as a colorless oil. Yield 36 mg (49%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.11$ (br. s, 1H), 7.93 (s, 1H), 7.73 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.62 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19$ (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-3.04(\mathrm{~m}, 4 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5,143.3,140.4,134.0,133.2,132.4,129.4$, 127.3, 125.3, 125.0, 124.5, 120.8, 105.8, 64.0, 44.4, 37.0, 34.5, 14.9. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 345.42$.

4-(Benzyloxy)-2-fluorobenzaldehyde (201a)

2-Fluoro-4-hydroxybenzaldehyde $\mathbf{2 0 0}$ ($2 \mathrm{~g}, 1$ equiv.) was dissolved in DMF (30 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.96 g , 1.5 equiv.) was added thereto, followed by benzyl bromide ($2.03 \mathrm{~mL}, 1.5$ equiv.). Resulting mixture stirred at room temperature for 16 h . Then reaction mixture diluted with brine (80 mL) and extracted EtOAc (100 mL). Organic extract washed with brine $(2 \times 40 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by crystallization from EtOAc:petroleum ether 1:10 to obtain product as a slightly pink solid Yield 2.22 g (67%). Spectral data consistent with previously reported. ${ }^{98}$

2-Fluoro-4-(pyridin-4-ylmethoxy)benzaldehyde (201b)

Compound was prepared in analogues way as 201a, starting from 2-fluoro-4-hydroxybenzaldehyde 200 ($500 \mathrm{mg}, 1$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.23 \mathrm{~g}, 2.5$ equiv.) and 4 -(chloromethyl)pyridine hydrochloride ($819 \mathrm{mg}, 1.4$ equiv.). Purified by trituration with $\mathrm{Et}_{2} \mathrm{O}$ to obtain product as a slightly yellow solid. Yield $176 \mathrm{mg}(21 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.21$ (s, 1H), 8.65 (d, J $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, J=8.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=8.8$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=12.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$185.9,166.2(\mathrm{~d}, J=259.2 \mathrm{~Hz}), 164.5(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 150.4,144.6,130.5(\mathrm{~d}, J=3.8 \mathrm{~Hz})$, $121.5,118.6(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 111.8(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 102.6(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 68.8 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-118.64(\mathrm{dd}, J=12.0,8.1 \mathrm{~Hz})$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 232.37$.

2-Fluoro-4-phenethoxybenzaldehyde (201c)

Compound was prepared in analogues way as 201a, starting from 2-fluoro-4-hydroxybenzaldehyde 200 ($400 \mathrm{mg}, 1$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($789 \mathrm{mg}, 2$ equiv.) and 2-phenylethylbromide ($507 \mu \mathrm{~L}, 1.3$ equiv.). Purified by trituration with petrolleum ether to obtain product as a yellow solid. Yield $445 \mathrm{mg}(64 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.12(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=8.8,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J$ $=12.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.0(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 166.4(\mathrm{~d}, J=258.5 \mathrm{~Hz}), 165.5(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz})$, $137.5,130.2(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 129.1,128.8,126.9,118.0(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 111.7(\mathrm{~d}, J=2.7$ $\mathrm{Hz}), 102.0(\mathrm{~d}, J=24.0 \mathrm{~Hz}), 69.6,35.6 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-119.17(\mathrm{dd}, J=$ $12.4,8.2 \mathrm{~Hz}$). LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 245.39$.

2-Fluoro-4-(isopentyloxy)benzaldehyde (201d)

Compound was prepared in analogues way as 201a, starting from 2-fluoro-4-hydroxybenzaldehyde 200 ($400 \mathrm{mg}, 1$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($789 \mathrm{mg}, 2$ equiv.) and 1 -bromo-3-methylbutane (536 $\mu \mathrm{L}$, 1.5 equiv.). Yellowish oil, yield 527 mg (88%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.19$ (s, $1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=12.5,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{sept}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.0(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 166.4(\mathrm{~d}, J$ $=258.3 \mathrm{~Hz}), 165.9(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 117.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 111.8(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}), 101.9(\mathrm{~d}, J=23.9 \mathrm{~Hz}), 67.5,37.7,25.1,22.6 . \operatorname{LC}-\mathrm{MS}(\mathrm{ESI} / \mathrm{APCI})[\mathrm{M}+\mathrm{H}]^{+}$ 211.36.

2-Fluoro-4-methoxybenzaldehyde (201e)

Compound was prepared in analogues way as 201a, starting from 2-fluoro-4-hydroxybenzaldehyde 200 ($2 \mathrm{~g}, 1$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($2.96 \mathrm{~g}, 1.5$ equiv.) and methyl iodide ($1.78 \mathrm{~mL}, 2$ equiv.). Slightly orange solid, yield 2.02 g (92%). Spectral data consistent with previously reported. ${ }^{99}$

7-(Benzyloxy)quinazolin-2-amine (202a)

4-(Benzyloxy)-2-fluorobenzaldehyde 201a ($2.22 \mathrm{~g}, 1$ equiv.) was dissolved in DMA (45 mL) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($1.43 \mathrm{~g}, 1.4$ equiv.) was added thereto, followed by guanidine carbonate ($1.63 \mathrm{~g}, 1.4$ equiv.). Resulting mixture heated at $140{ }^{\circ} \mathrm{C}$ for 16 h . Then reaction mixture cooled down to room temperature, diluted with water (100 mL) and extracted EtOAc (100 mL). Organic extract washed with brine $(2 \times 30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by trituration with EtOAc to obtain product as an off-white solid. Yield $771 \mathrm{mg}(32 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.71$ (br. s, 2H), $5.22(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) $\delta 162.8,161.2,160.9,154.0,136.6,129.3,128.5,128.0$, 127.8, 115.0, 114.5, 104.7, 69.5. LC-MS (ESI/APCI) [M+H] 252.43 .

7-(Pyridin-4-ylmethoxy)quinazolin-2-amine (202b)

Compound was prepared in analogues way as 202a, starting from 2-fluoro-4-(pyridin-4-ylmethoxy)benzaldehyde 201b ($166 \mathrm{mg}, 1$ equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($122 \mathrm{mg}, 1.6$ equiv.) and guanidine carbonate (139 mg , 1.6 equiv.). Purified by trituration with EtOAc to obtain product as a slightly yellow solid. Yield $59 \mathrm{mg}(33 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.92(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}$, 2H), $6.82(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (br. s, 2H), 5.31 ($\mathrm{s}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.d_{6}\right) \delta 162.3,161.2,161.0,153.9,149.8,145.7,129.5,121.9,115.1,114.3,104.9,67.7$. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$253.1089, found 253.1098.

7-Phenethoxyquinazolin-2-amine (202c)

 Compound was prepared in analogues way as 202a, starting from 2-fluoro-4-phenethoxybenzaldehyde 201c (430 mg , 1 equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (298 mg , 1.6 equiv.) and guanidine carbonate ($341 \mathrm{mg}, 1.6$ equiv.). Purified by trituration with MeCN to obtain product as a slightly yellow solid. Yield $55 \mathrm{mg}(12 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.14(\mathrm{~m}, 5 \mathrm{H})$, 6.91 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (s, 1H), 5.24 (br. s, 2H), $4.30(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,161.0,160.7,154.5,138.0,129.1$, 129.0, 128.7, 126.8, 116.7, 115.9, 104.6, 68.9, 35.5. LC-MS (ESI/APCI) [M+H] 266.46.

7-(Isopentyloxy)quinazolin-2-amine (202d)

Compound was prepared in analogues way as 202a, starting from 2-fluoro-4-(isopentyloxy)benzaldehyde 201d (512 mg , 1 equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($413 \mathrm{mg}, 1.6$ equiv.) and guanidine carbonate ($472 \mathrm{mg}, 1.6$ equiv.). Purified by trituration with $\mathrm{Et}_{2} \mathrm{O}$ to obtain product as an off-white solid. Yield 48 mg $(9 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.87 (s, 1H), 5.25 (br. s, 2H), 4.09 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.85 (sept, $J=6.7 \mathrm{~Hz}$, 1 H), 1.73 (q, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 0.97 (d, $J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.4, 161.0, 160.7, 154.5, 128.9, 116.8, 115.8, 104.3, 66.93, 37.7, 25.2, 22.7. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 232.43$.

7-Methoxyquinazolin-2-amine (202e)

Compound was prepared in analogues way as 202a, starting from 2-fluoro-4-methoxybenzaldehyde 201e ($1.58 \mathrm{~g}, 1$ equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(1.74 \mathrm{~g}, 1.6$ equiv.) and guanidine carbonate ($1.98 \mathrm{~g}, 1.6$ equiv.). Mustard-colored powder, yield $1.37 \mathrm{~g}(76 \%)$. Spectral data consistent with previously reported. ${ }^{100}$

7-Bromoquinazolin-2-amine (204)

Compound was prepared in analogues way as 211a, starting from 4-bromo-2-fluorobenzaldehyde 212 ($10 \mathrm{~g}, 1$ equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (8.35 g , 1.6 equiv.) and guanidine carbonate ($9.54 \mathrm{~g}, 1.6$ equiv.). Purified by trituration with hot EtOH to obtain product as a white beige solid. Yield $1.37 \mathrm{~g}(76 \%)$. Spectral data consistent with previously reported. ${ }^{101}$

7-[2-(Phenylsulfonyl)vinyl]quinazolin-2-amine (206a)

7-Bromoquinazolin-2-amine 204 ($536 \mathrm{mg}, 1$ equiv.) was dissolved in DMF (15 mL) and (vinylsulfonyl)benzene ($805 \mathrm{mg}, 2$ equiv.) was added thereto, followed by TEA ($1 \mathrm{~mL}, 3$ equiv.), tri-otolylphosphine ($73 \mathrm{mg}, 10 \mathrm{~mol} \%$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(27 \mathrm{mg}, 10 \mathrm{~mol} \%)$. Resulting solution heated at $100{ }^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction mixture evaporated in vacuo to dryness and water $(40 \mathrm{~mL})$ added thereto. Then reaction extracted with EtOAc (100 mL). Organic extract washed with brine $(2 \times 30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by trituration with EtOAc to obtain product as a brown solid. Yield $520 \mathrm{mg}(70 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.01-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.71(\mathrm{~m}, 5 \mathrm{H}), 7.71-$ $7.64(\mathrm{~m}, 2 \mathrm{H}), 7.58$ (dd, $J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.98 (br. s, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz ,

DMSO- d_{6}) $\delta 162.2,161.3,152.0,141.4,140.4,137.5,133.8,130.6,129.7,128.5,127.3$, 127.0, 120.3, 120.2. LC-MS (ESI/APCI) [M+H] ${ }^{+} 312.41$.

Ethyl 2-\{4-[3-(2-aminoquinazolin-7-yl)allyl]-2-methoxyphenoxy\}acetate (206b)

Compound was prepared in analogues way as 206a, starting from 7-bromoquinazolin-2-amine 204 ($358 \mathrm{mg}, \quad 1$ equiv.) and ethyl 2-(4-allyl-2methoxyphenoxy)acetate ($400 \mathrm{mg}, 1$ equiv.). Coupling stage performed using TEA ($668 \mu \mathrm{~L}, 3$ equiv.), tri-o-tolylphosphine ($58 \mathrm{mg}, 12 \mathrm{~mol} \%$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(21 \mathrm{mg}$, $6 \mathrm{~mol} \%)$. Purified by trituration with $\mathrm{Et}_{2} \mathrm{O}$ to obtain product as a light brown solid. Yield $470 \mathrm{mg}(75 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97(\mathrm{~s}, 0.4 \mathrm{H}$, minor isomer), $8.93(\mathrm{~s}, 0.6 \mathrm{H}$, major isomer), $7.62(\mathrm{dd}, J=12.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}$, 0.6 H , major isomer), 7.18 (dd, $J=8.2,1.5 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor isomer), 6.92 (d, $J=2.0 \mathrm{~Hz}$, 0.4 H , minor isomer), 6.85 (dd, $J=8.4,2.0 \mathrm{~Hz}, 0.6 \mathrm{H}$, major isomer). $6.82-6.70(\mathrm{~m}, 2 \mathrm{H})$, $6.58-6.52(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 0.6 \mathrm{H}$, major isomer), $6.31-6.19(\mathrm{~m}, 0.4 \mathrm{H}$, minor isomer) 5.32 (br. s, 2H), $4.66(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.65$ (d, $J=6.8 \mathrm{~Hz}, 0.8 \mathrm{H}$, minor isomer), 3.54 (d, $J=4.0 \mathrm{~Hz}, 1.2 \mathrm{H}$, major isomer), 1.28 (t, $J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H})$. Complicated ${ }^{13} \mathrm{C}$ NMR due to presence of both E and Z isomers. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 394.52$.

Ethyl 1-[3-(2-aminoquinazolin-7-yl)allyl]-1H-imidazole-2-carboxylate (206c)

Compound was prepared in analogues way as 206a, starting from 7-bromoquinazolin-2-amine 204 ($447 \mathrm{mg}, 1$ equiv.) and ethyl 1-allyl-1 H-imidazole-2-carboxylate ($396 \mathrm{mg}, 1.1$ equiv.). Coupling stage performed using TEA ($835 \mu \mathrm{~L}, 3$ equiv.), tri-o-tolylphosphine (91 mg , $15 \mathrm{~mol} \%$) and $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($31 \mathrm{mg}, 7 \mathrm{~mol} \%$). Purified by trituration with EtOH to obtain product as a brown solid. Yield $297 \mathrm{mg}(46 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.03$ (s, $1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (br. s, 2H), $6.68(\mathrm{dt}, J=15.9,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.55(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=5.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.73,161.15,158.63,152.28$, 141.26, 135.56, 131.57, 129.12, 128.63, 128.11, 126.16, 122.75, 119.52, 118.94, 60.71, 49.41, 14.09. LC-MS (ESI/APCI) [M+H] 324.49 .

N-[3-(2-aminoquinazolin-7-yl)allyl]- N-methylmethanesulfonamide (206d)

Compound was prepared in analogues way as 206a, starting from 7-bromoquinazolin-2-amine 204 ($600 \mathrm{mg}, 1$ equiv.) and N-allyl-N-methylmethanesulfonamide ($479 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using TEA ($1.12 \mathrm{~mL}, 3$ equiv.), tri-o-tolylphosphine ($122 \mathrm{mg}, 15 \mathrm{~mol} \%$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(42 \mathrm{mg}, 7 \mathrm{~mol} \%)$. Purified by trituration with EtOAc:petroleum ether $1: 1$ to obtain product as a brown solid. Yield $655 \mathrm{mg}(84 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97$ $(\mathrm{s}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.63(\mathrm{~m}, 1 \mathrm{H})$, 6.38 (dt, $J=15.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.36 (br. s, 2H), 3.99 (dd, $J=6.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.89 (s , 3 H), $2.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.0,160.6,152.5,142.0,133.7$, 128.0, 127.3, 123.6, 121.2, 120.0, 52.3, 36.5, 34.6. LC-MS (ESI/APCI) [M+H] ${ }^{+} 293.43$.

tert-Butyl 3-(2-aminoquinazolin-7-yl)acrylate (206e)

Compound was prepared in analogues way as 206a, starting from
 7-bromoquinazolin-2-amine 204 (600 mg , 1 equiv.) and tert-butyl acrylate ($510 \mu \mathrm{~L}, 1.3$ equiv.). Coupling stage performed using TEA ($1.12 \mathrm{~mL}, 3$ equiv.), tri-o-tolylphosphine ($163 \mathrm{mg}, 20 \mathrm{~mol} \%$) and $\operatorname{Pd}(\mathrm{OAc})_{2}(60 \mathrm{mg}$, $10 \mathrm{~mol} \%$). Purified by trituration with EtOAc:petroleum ether 1:1 to obtain product as a yellow-green solid. Yield $581 \mathrm{mg}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.00(\mathrm{~s}, 1 \mathrm{H})$, 7.77 - 7.55 (m, 3H), 7.43 (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.40 (br. s, 2 H), $1.54(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,162.2,160.7,152.4,142.6$, 140.5, 128.1, 126.1, 123.4, 121.5, 120.8, 81.1, 28.3. LC-MS (ESI/APCI) [M+H] 272.49.
tert-Butyl [3-(2-aminoquinazolin-7-yl)allyl](1,1-dioxidotetrahydrothiophen-3yl)carbamate (206f)

Compound was prepared in analogues way as 206a, starting from 7-bromoquinazolin-2-amine 204 ($400 \mathrm{mg}, 1$ equiv.) and tert-butyl allyl(1,1-dioxidotetrahydrothiophen-3-yl)carbamate ($589 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using TEA ($746 \mu \mathrm{~L}, 3$ equiv.), tri-o-tolylphosphine ($81 \mathrm{mg}, 15 \mathrm{~mol} \%$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(28 \mathrm{mg}, 7 \mathrm{~mol} \%)$. Purified by crystallization from EtOH to obtain product as a yellow-brown solid. Yield 413 mg (55%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=15.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dt}, J=$ $15.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.27 (br. s, 2H), 4.64 (s, 1H), 4.05 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.43-3.19$ (m, $3 \mathrm{H}), 3.01(\mathrm{dt}, J=13.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1,160.6,154.6,152.5,142.2,131.7,129.3,128.0,123.3,121.4$, 120.0, 81.7, 52.9, 51.9, 51.6, 47.8, 28.5, 27.5. LC-MS (ESI/APCI) [M+H] ${ }^{+} 419.54$.

2-[3-(2-Aminoquinazolin-7-yl)allyl]isoindoline-1,3-dione (206g)

Compound was prepared in analogues way as 206a, starting
 from 7-bromoquinazolin-2-amine 204 ($511 \mathrm{mg}, 1$ equiv.) and 2-allylisoindoline-1,3-dione ($470 \mathrm{mg}, 1.1$ equiv.). Coupling stage performed using TEA ($955 \mu \mathrm{~L}, 3$ equiv.), tri-o-tolylphosphine (69 mg , $10 \mathrm{~mol} \%$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(26 \mathrm{mg}, 5 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a light brown solid. Yield $120 \mathrm{mg}(16 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $9.01(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}) .6 .53(\mathrm{dt}, J=16.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ $(\mathrm{dd}, J=5.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 167.79, 161.87, 161.13, $152.35,141.72,134.60,131.85,130.92,128.18,127.57,123.28,122.65,119.76,118.97$ (one carbon is missing due to overlap with DMSO signal). LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$ 331.48 .

7-[2-(Phenylsulfonyl)ethyl]quinazolin-2-amine (207a)

7-(2-(Phenylsulfonyl)vinyl)quinazolin-2-amine 206a (300 mg , 1 equiv.) was dissolved in DMF (5 mL) and formic acid ($109 \mu \mathrm{~L}, 3$ equiv.) was added thereto, followed by TEA ($403 \mu \mathrm{~L}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($22 \mathrm{mg}, 10 \mathrm{~mol} \%$). Resulting solution heated at $60^{\circ} \mathrm{C}$ for 1 h . After cooling down to room temperature reaction mixture diluted with water (30 mL) and extracted with EtOAc (60 $\mathrm{mL})$. Organic extract washed with brine $(2 \times 10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by trituration with EtOAc to obtain product as a light brown solid. Yield $119 \mathrm{mg}(39 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $9.01(\mathrm{~s}, 1 \mathrm{H}), 8.00-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.3,1.5$ Hz, 1H), 6.79 (br. s, 2H), $3.82-3.64$ (m, 2H), 3.12 - 2.90 (m, 2H). ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) $\delta 161.8,161.0,152.0,144.2,138.9,133.8,129.4,127.8,127.7,123.6,122.9$, 118.2, 54.6, 28.7. LC-MS (ESI/APCI) [M+H] 314.44 .

Ethyl 2-\{4-[3-(2-Aminoquinazolin-7-yl)propyl]-2-methoxyphenoxy\}acetate (207b)

Compound was prepared in analogues way as 207a, starting from ethyl 2-(4-(3-(2-aminoquinazolin-7-yl)allyl)-2-methoxy-phenoxy)acetate 206b (250 mg ,

1 equiv.), formic acid ($59 \mu \mathrm{~L}, 2.5$ equiv.), TEA ($266 \mu \mathrm{~L}, 3$ equiv.) and $\operatorname{Pd}(\mathrm{OAc})_{2}(14 \mathrm{mg}$, $10 \mathrm{~mol} \%$). Purified by trituration with EtOAc:petroleum ether $1: 1$ to obtain product as a light brown solid. Yield $143 \mathrm{mg}(57 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 7.61$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.27$ (br. s, 2 H), $4.65(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{p}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,162.0,160.4,152.4,149.8,149.6$, $145.6,136.5,127.5,125.0,124.1,120.3,119.0,114.7,112.5,66.9,61.3,56.0,36.0,35.1$, 32.4, 14.3. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 396.53$.

Ethyl 1-[3-(2-Aminoquinazolin-7-yl)propyl]-1H-imidazole-2-carboxylate (207c)

Compound was prepared in analogues way as 207a, starting from ethyl 1-[3-(2-aminoquinazolin-7-yl)allyl]-1H-imidazole-2-carboxylate 206c ($250 \mathrm{mg}, 1$ equiv.), formic acid ($73 \mu \mathrm{~L}$, 2.5 equiv.), TEA ($323 \mu \mathrm{~L}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($17 \mathrm{mg}, 10 \mathrm{~mol} \%$). Purified by trituration with EtOAc:petroleum ether 1:1 to obtain product as a light brown solid. Yield $121 \mathrm{mg}(48 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.3,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{dt}, J=1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (br. s, 2H), $4.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1,160.5,159.2,152.4,147.9,136.3,129.7,127.8,125.3,124.4$, 124.1, 119.1, 61.6, 48.0, 33.3, 32.0, 14.4. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 326.1617$, found 326.1618.
N-[3-(2-Aminoquinazolin-7-yl)propyl]- N-methylmethanesulfonamide (207d)

Compound was prepared in analogues way as 207a, starting from N -(3-(2-aminoquinazolin-7-yl)allyl)- N -methylmethane-sulfonamide $\mathbf{2 0 6 d}$ ($300 \mathrm{mg}, 1$ equiv.), formic acid ($97 \mu \mathrm{~L}, 2.5$ equiv.), TEA ($429 \mu \mathrm{~L}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{OAc})_{2}(23 \mathrm{mg}, 10 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a grey-brown solid. Yield $129 \mathrm{mg}(43 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dd, $J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}$, $3 \mathrm{H}), 2.72-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ $161.8,161.0,152.1,148.2,127.8,123.4,123.2,118.1,49.1,34.6,34.5,32.7,28.5$ LCMS (ESI/APCI) [M+H] ${ }^{+} 295.42$.
tert-Butyl 3-(2-aminoquinazolin-7-yl)propanoate (207e)

Compound was prepared in analogues way as 207a, starting from tert-butyl 3-(2-aminoquinazolin-7-yl)acrylate 206e (400 mg, 1 equiv.), formic acid ($139 \mu \mathrm{~L}, 2.5$ equiv.), TEA ($616 \mu \mathrm{~L}$, 3 equiv.) and $\mathrm{Pd}(\mathrm{OAc})_{2}(33 \mathrm{mg}, 10 \mathrm{~mol} \%)$. Purified by trituration with EtOAc:petroleum ether $1: 1$ to obtain product as a yellow solid. Yield $140 \mathrm{mg}(35 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.96(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dt}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (br. s, 2H), $3.04(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.41 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,162.0,160.5,152.4,148.2$, 127.6, 124.7, 124.1, 119.1, 80.8, 36.4, 31.7, 28.2. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 274.52$.
tert-Butyl [3-(2-aminoquinazolin-7-yl)propyl](1,1-dioxidotetrahydrothiophen-3yl)carbamate (207f)

Compound was prepared in analogues way as 207a, starting from tert-butyl [3-(2-aminoquinazolin-7-yl)allyl](1,1-dioxidotetrahydrothiophen-3-yl)-carbamate 206f (300 mg , 1 equiv.), formic acid ($68 \mu \mathrm{~L}, 2.5$ equiv.), TEA ($300 \mu \mathrm{~L}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{OAc})_{2}(16 \mathrm{mg}$, $10 \mathrm{~mol} \%)$. Purified by trituration with EtOAc:petroleum ether $1: 1$ to obtain product as a grey solid. Yield $151 \mathrm{mg}(50 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (br. s, 2H), 4.40 (br. s, 1H), $3.43-3.14(\mathrm{~m}, 5 \mathrm{H}), 3.09-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.28(\mathrm{~m}, 2 \mathrm{H})$, $2.00-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1,160.5,154.6$, $152.4,148.4,127.9,124.4,124.0,119.1,81.2,60.5,53.5,51.6,46.4,33.9,31.0,28.5$, 27.5. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 421.59$.

2-[3-(2-Aminoquinazolin-7-yl)propyl]isoindoline-1,3-dione (207g)

Compound was prepared in analogues way as 207a, starting from 2-(3-(2-aminoquinazolin-7-yl)allyl)isoindoline-1,3dione $\mathbf{2 0 6 g}$ ($122 \mathrm{mg}, 1$ equiv.), formic acid ($35 \mu \mathrm{~L}$, 2.5 equiv.), TEA ($156 \mu \mathrm{~L}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{OAc})_{2}(8 \mathrm{mg}, 10 \mathrm{~mol} \%)$. Purified by trituration with EtOAc:petroleum ether 1:1 to obtain product as a light brown solid. Yield $34 \mathrm{mg}(27 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{qd}, J=4.4,2.1 \mathrm{~Hz}, 4 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (br. s, 2H), 3.62 $(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,161.7,160.9,152.0,147.9,134.3,131.6,127.7,123.2,123.1$, 122.9, 118.0, 37.2, 33.1, 28.7. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 333.49$.

Sodium 2-\{4-[3-(2-aminoquinazolin-7-yl)propyl]-2-methoxyphenoxy\}acetate (208a)
 To a stirred solution of ethyl 2-(4-(3-(2-aminoquinazolin-7-yl)propyl)-2-methoxyphenoxy)acetate 207b ($96 \mathrm{mg}, 1$ equiv.) dissolved in EtOH (5 mL), sodium hydroxide (10 mg , 1 equiv.) dissolved in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL}$) was added in one portion. Resulting solution was stirred at $70{ }^{\circ} \mathrm{C}$ for 16 h , before evaporated to dryness. The residue triturated with small amount of EtOH (1 mL) to obtain crystalline solid. Precipitate filtered and washed with $\mathrm{EtOH}(0.5 \mathrm{~mL})$ to obtain product as a white brown solid. Yield $49 \mathrm{mg}(52 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.53(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.44$ (br. s, 2H), 2.31 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.81-1.56(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 176.4,162.2,159.2,151.0,150.5,147.6,144.9,135.4$, 127.7, 124.8, 122.1, 120.6, 117.7, 112.2, 112.1, 67.1, 55.4, 35.2, 34.0, 31.2. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 368.49$.

Sodium 1-[3-(2-aminoquinazolin-7-yl)propyl]-1H-imidazole-2-carboxylate (208b)

Compound was prepared in analogues way as 208a, starting
 from ethyl 1-[3-(2-aminoquinazolin-7-yl)propyl]-1H-imidazole-2-carboxylate 207c ($70 \mathrm{mg}, 1$ equiv.) and NaOH ($15 \mathrm{mg}, 1.8$ equiv.). Purified by crystallization from EtOH to obtain product as a white beige solid. Yield $47 \mathrm{mg}(68 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.57$ - $2.40(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 165.7$, 162.4, $159.0,150.3,149.8,142.9,127.9,126.5,124.7,123.3,121.6,117.7,47.1,32.5,31.3$. LCMS (ESI/APCI) [M(decarbox)+H] ${ }^{+} 254.42$.

3-\{[3-(2-Aminoquinazolin-7-yl)propyl]amino\}tetrahydro-thiophene 1,1-dioxide hydrochloride (209a)

tert-Butyl (3-(2-aminoquinazolin-7-yl)propyl)(1,1-dioxido-tetrahydrothiophen-3-yl)carbamate 207 f ($117 \mathrm{mg}, 1$ equiv.) was dissolved in DCM (8 mL) and TFA ($427 \mu \mathrm{~L}, 20$ equiv.)
was added thereto. Resulting solution stirred at room temperature for 6 h . Then reaction evaporated in vacuo, dissolved in 5 mL of 1 M aqueous HCl and evaporated to dryness to obtain product as a yellowish oil, which solidifies on standing. Yield $61 \mathrm{mg}(56 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{p}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=14.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ (dddd, $J=13.4,8.0,3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{qt}, J=12.2,7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.90-2.69(\mathrm{~m}, 3 \mathrm{H}), 2.30$ (dddd, $J=13.7,10.7,9.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{p}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 163.2,159.0,149.8,149.4,128.5,124.9,121.5,117.9,52.9$, 52.1, 50.0, 45.9, 32.5, 27.0, 25.9. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 321.45$.

3-(2-Aminoquinazolin-7-yl)propanoic acid hydrochloride (209b)

Compound was prepared in analogues way as 209a, starting from tert-butyl 3-(2-aminoquinazolin-7-yl)propanoate 207e (400 mg , 1 equiv.) and TFA ($562 \mu \mathrm{~L}, 20$ equiv.). Light yellow powder, yield 140 mg (35%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.49$ (s, 1H), 8.56 (br. s, 1H), 8.03 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 173.3,168.9,155.4,152.4,139.5$, 129.4, 126.4, 116.7, 115.8, 34.2, 30.9. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 218.34$.

3-(2-Aminoquinazolin-7-yl)- N -ethylbenzamide (212a)

7-Bromoquinazolin-2-amine 204 ($150 \mathrm{mg}, 1$ equiv.) was dissolved under Ar atmosphere in dioxane: $\mathrm{H}_{2} \mathrm{O}$ 5:1 (10 mL) and (3-(ethylcarbamoyl)phenyl)-boronic acid 210a ($155 \mathrm{mg}, 1.2$ equiv.) was added thereto, followed by $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($142 \mathrm{mg}, 2$ equiv.) and PdCl_{2} (dppf) $\cdot \mathrm{DCM}(27 \mathrm{mg}, 5 \mathrm{~mol} \%$). Resulting solution heated at $100{ }^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction mixture evaporated in vacuo to dryness and water (30 mL) added thereto. Then reaction mixture extracted with EtOAc (75 mL). Organic extract washed with brine (2×20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by trituration with EtOAc to obtain product as a white beige solid. Yield 196 mg (quant.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}$, $1 \mathrm{H}), 7.91(\mathrm{td}, J=8.9,7.7,2.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=7.8,4.5$, $2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (br. s, 2H), $3.40-3.24$ (m, 2H)., 1.15 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 165.8,162.3,161.2,152.3,145.0,139.5,135.4,129.9,129.3$, 128.7, 127.4, 125.8, 122.2, 121.3, 118.9, 34.3, 14.9. LC-MS (ESI/APCI) [M+H] 293.48.

7-Phenylquinazolin-2-amine (212b)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 (150 mg , 1 equiv.) and phenylboronic acid 210b ($106 \mathrm{mg}, 1.3$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($177 \mathrm{mg}, 2.5$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(27 \mathrm{mg}, 5 \mathrm{~mol} \%$). Purified by trituration with EtOAc to obtain product as a beige solid. Yield $95 \mathrm{mg}(64 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.63$ $(\mathrm{s}, 1 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 1 \mathrm{H}), 6.85$ (br. s, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.2,161.2,152.3,145.7,139.5,129.2,128.6,128.5,127.3,121.8,121.4$, 118.7. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 222.36$.

7-(Pyridin-3-yl)quinazolin-2-amine (212c)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 (150 mg , 1 equiv.) and pyridin-3ylboronic acid 210c ($123 \mathrm{mg}, 1.5$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($177 \mathrm{mg}, 2.5$ equiv.) and PdCl_{2} (dppf)• $\mathrm{DCM}(27 \mathrm{mg}, 5 \mathrm{~mol} \%$). Purified by trituration with EtOAc to obtain product as a beige solid. Yield $68 \mathrm{mg}(46 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.19$ (dt, $J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.45(\mathrm{~m}$, 2H), 6.90 (br. s, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.4,161.2,152.2,149.4$, 148.1, 142.6, 135.1, 134.9, 128.9, 124.1, 122.3, 121.1, 119.0. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 223.34$.

Methyl 3-(2-aminoquinazolin-7-yl)benzoate (212d)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 ($500 \mathrm{mg}, 1$ equiv.) and (3-(methoxycarbonyl)phenyl)boronic acid 210d (481 mg, 1.2 equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (473 mg, 2 equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(73 \mathrm{mg}, 4 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a white beige solid. Yield $509 \mathrm{mg}(82 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.14$ (s , $1 \mathrm{H}), 8.26(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ (ddt, $J=17.6,7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 1 H), $7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (br. s, 2 H), $3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 166.2,162.3,161.3,152.2,144.5,140.1,132.1,130.5$, 129.8, 129.0, 128.9, 127.7, 122.2, 121.2, 118.9, 52.5. LC-MS (ESI/APCI) [M+H] 280.41

3-(2-Aminoquinazolin-7-yl)benzenesulfonamide (212e)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 ($90 \mathrm{mg}, 1$ equiv.) and (3-sulfamoylphenyl)boronic acid 210e ($97 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(85 \mathrm{mg}, 2\right.$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}$ ($16 \mathrm{mg}, 5 \mathrm{~mol} \%$). Purified by trituration with EtOAc to obtain product as a beige solid. Yield $92 \mathrm{mg}(76 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.66$ (m, 2H), 7.56 (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (s, 2H), 6.90 (br. s, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.4,161.3,152.3,145.0,144.2,140.3,130.6,130.0,129.0$, 125.3, 124.4, 122.3, 121.0, 119.0. LC-MS (ESI/APCI) [M+H] 301.39.

7-(3-Nitrophenyl)quinazolin-2-amine (212f)

Compound was prepared in analogues way as 212a, starting
from 7-bromoquinazolin-2-amine 204 (150 mg, 1 equiv.) and (3nitrophenyl)boronic acid $210 f(134 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($177 \mathrm{mg}, 2.5$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}$ ($27 \mathrm{mg}, 5 \mathrm{~mol} \%$). Purified by trituration with EtOAc to obtain product as a white beige solid. Yield $138 \mathrm{mg}(77 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.19(\mathrm{~m}$, $2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.3$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (br. s, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.4,161.3,152.2$, $148.5,143.3,141.2,134.0,130.8,129.0,123.1,122.7,121.8,121.1,119.1$ LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 267.38$.

N-(3-(2-Aminoquinazolin-7-yl)phenyl)acetamide (212g)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 (150 mg , 1 equiv.) and (3-acetamidophenyl)boronic acid $\mathbf{2 1 0 g}$ ($144 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(177 \mathrm{mg}, 2.5\right.$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}$ ($27 \mathrm{mg}, 5 \mathrm{~mol} \%$). Purified by trituration with EtOAc to obtain product as a yellow beige solid. Yield $138 \mathrm{mg}(77 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~s}, 1 \mathrm{H})$, $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{td}, J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.46$ (dd, $J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (br. s, 2H), 2.08 ($\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 168.8,162.2,161.2,152.2,145.7,140.1,140.0,129.6,128.7$, $122.0,121.8,121.2,119.0,118.8,117.8,24.2$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 279.43$.

7-(5-(Methylsulfonyl)pyridin-3-yl)quinazolin-2-amine (212h)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 (150 mg , 1 equiv.) and (5-(methylsulfonyl)pyridin-3-yl)boronic acid 210h (161 mg , 1.2 equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($177 \mathrm{mg}, 2.5$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(27 \mathrm{mg}, 5 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a beige solid. Yield $184 \mathrm{mg}(91 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.32(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.18(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.86 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (dd, $J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 (br. s, 2H), 3.42 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.5,161.3,152.6,152.2,147.0,140.8$, $137.4,135.5,133.7,129.1,123.2,121.1,119.3,43.7$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$ 301.40.

3-(2-Aminoquinazolin-7-yl)-N,N-diethylbenzamide (212i)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 (150 mg , 1 equiv.) and (3-(diethylcarbamoyl)phenyl)boronic acid 210i ($177 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($177 \mathrm{mg}, 2.5$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(27 \mathrm{mg}, 5 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a beige solid. Yield 130 mg (60%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.13(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (br. s, 2H), 3.22 (br. s, 4H), $1.31-0.95$ (m, 6 H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ $169.8,162.3,161.2,152.2,144.9,139.7,138.2,129.4,128.8,127.9,126.2,124.8,122.1$, 121.3, 118.9, 43.0, 14.2. LC-MS (ESI/APCI) [M+H] 321.52.
N-(3-(2-Aminoquinazolin-7-yl)phenyl)isobutyramide (212j)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 ($140 \mathrm{mg}, 1$ equiv.) and (3(3-isobutyramidophenyl)boronic acid $\mathbf{2 1 0 j}$ ($155 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($165 \mathrm{mg}, 2.5$ equiv.) and PdCl_{2} (dppf) $\cdot \mathrm{DCM}(25 \mathrm{mg}, 5 \mathrm{~mol} \%$). Purified by trituration with EtOAc to obtain product as a beige solid. Yield 105 mg (55%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.98$ (br. s, 1H), 9.12 (s, 1 H), $8.04(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ -7.40 (m, 2H), 6.85 (br. s, 2H), 2.61 (hept, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.12 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 175.7,162.2,161.2,152.2,145.7,140.2,140.0,129.6$,
128.7, 121.9, 121.8, 121.2, 119.2, 118.8, 117.9, 35.2, 19.6. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$ 307.50.

7-(3-(Methylsulfonyl)phenyl)quinazolin-2-amine (212k)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 ($200 \mathrm{mg}, 1$ equiv.) and (3(methylsulfonyl)phenyl)boronic acid 210k ($196 \mathrm{mg}, 1.1$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($189 \mathrm{mg}, 2.5$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(22 \mathrm{mg}, 5 \mathrm{~mol} \%)$. Purified by trituration with hot EtOH to obtain product as a white beige solid. Yield 180 $\mathrm{mg}(67 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=20.6,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.92 (br. s, 2H), 3.33 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.3,161.2,152.2$, 143.7, 141.7, 140.7, 132.3, 130.2, 128.8, 126.6, 125.6, 122.6, 121.1, 119.0, 43.4. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 300.0807$, found 300.0814.

N-[3-(2-Aminoquinazolin-7-yl)phenyl]methanesulfonamide (2121)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 213 ($250 \mathrm{mg}, 1$ equiv.) and (3-(methylsulfonamido)phenyl)boronic acid 2101 ($264 \mathrm{mg}, 1.1$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($236 \mathrm{mg}, 2$ equiv.) and PdCl_{2} (dppf) $\cdot \mathrm{DCM}$ ($27 \mathrm{mg}, 3 \mathrm{~mol} \%$). Purified by silica gel column chromatography using gradient from 0 to $5 \% \mathrm{MeOH}$ in DCM to obtain product as a white solid. Yield $141 \mathrm{mg}(40 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $\delta 9.91$ (br. s, 1H), $9.13(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{dt}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ (br. s, 2H), $3.06(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.1,161.2,152.2,145.1,140.7,139.1,130.1,128.6$, 122.7, 121.9, 121.1, 119.5, 118.8, 118.2 (one carbon is missing due to interference with DMSO signal). HR-MS (ESI/TOF) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 315.0916$, found 315.0919.

1-[3-(2-Aminoquinazolin-7-yl)phenyl]ethan-1-one (212m)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 ($200 \mathrm{mg}, 1$ equiv.) and (3acetylphenyl)boronic acid $\mathbf{2 1 0 m}$ ($175 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (236 mg , 2.5 equiv.) and PdCl_{2} (dppf) $\cdot \mathrm{DCM}$ ($36 \mathrm{mg}, 5$ $\mathrm{mol} \%$). Purified by silica gel column chromatography using gradient from 50 to 100%

EtOAc in petroleum ether to obtain product as a creamy solid. Yield $71 \mathrm{mg}(30 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ (ddd, $J=7.7$, $2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 198.0,162.2,161.2,152.2,144.7,140.0,137.6,131.8,129.5,128.7$, 127.9, 127.0, 122.2, 121.2, 118.8, 27.0. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 264.1137, found 264.1144.

1-[3-(2-Aminoquinazolin-7-yl)-4-fluorophenyl]ethan-1-one (212n)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 ($150 \mathrm{mg}, 1$ equiv.) and 1-(4-fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-
ethan-1-one 211a (212 mg , 1.2 equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (177 mg , 2.5 equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(27 \mathrm{mg}, 5 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a beige solid. Yield $97 \mathrm{mg}(52 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 9.17 (s, 1H), 8.16 (dd, $J=7.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (ddd, $J=8.6,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (d, J $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=10.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dt}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.91 (br. s, 2H), 2.64 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 196.8$, 162.4, 162.0 (d, J $=254.5 \mathrm{~Hz}), 161.2,151.8,139.8,134.0(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 130.7(\mathrm{~d}, J$ $=9.8 \mathrm{~Hz}), 128.4,128.0(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 124.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 122.8,118.9,117.0(\mathrm{~d}, J=$ $23.5 \mathrm{~Hz}), 27.0 .{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO- d_{6}) $\delta-110.72$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$ 282.40.

6-(2-Aminoquinazolin-7-yl)indolin-2-one (212o)

Compound was prepared in analogues way as 212a, starting from 7-bromoquinazolin-2-amine 204 ($150 \mathrm{mg}, 1$ equiv.) and 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indolin-2-one 211b ($208 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($177 \mathrm{mg}, 2.5$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(27 \mathrm{mg}, 5 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a beige solid. Yield $97 \mathrm{mg}(52 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.52$ (s, $1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33 (s, 2H), 7.14 (s, 1H), 6.83 (br. s, 2H), 3.53 (s, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 176.7,162.2,161.2,152.2,145.9,144.6,139.2,128.6,126.4,125.1,121.7,121.4$, 120.5, 118.7, 107.8, 35.8. LC-MS (ESI/APCI) [M+H]+ 277.42.

7-Bromoquinazolin-2-amine 204 ($1.5 \mathrm{~g}, 1$ equiv.) was dissolved under Ar atmosphere in Dioxane (90 mL) and bis(pinacolato)diboron $(2.04 \mathrm{~g}, 1.2$ equiv.) was added thereto, followed by KOAc ($1.97 \mathrm{~g}, 3$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(164 \mathrm{mg}, 3 \mathrm{~mol} \%)$. Resulting solution heated at $100^{\circ} \mathrm{C}$ for 16 h . After cooling down to room temperature reaction mixture evaporated in vacuo to dryness and 1 M HCl (80 mL) added thereto. Then reaction mixture extracted with EtOAc ($2 \times 70 \mathrm{~mL}$). Organic extract discarded, and water layer evaporated in vacuo to obtain crude product. Purified by trituration with cold $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ to obtain product as a brown solid. Yield 960 $\mathrm{mg}(76 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}$, $1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 162.7,159.1,150.1,128.3$, 126.2, 124.7, 118.5 (one carbon is missing due to proton exchange). LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 190.35$.
N-[3-(2-Aminoquinazolin-7-yl)phenyl]-1,1,1-trifluoro-methanesulfonamide (215a)

(2-Aminoquinazolin-7-yl)boronic acid 213 (120 mg, 1 equiv.) was dissolved under Ar atmosphere in dioxane: $\mathrm{H}_{2} \mathrm{O}$ 5:1 (8 mL) and N-(3-bromophenyl)-1,1,1-trifluoromethanesulfonamide 214a (155 mg , 1.2 equiv.) was added thereto, followed by $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($168 \mathrm{mg}, 2.5$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(26 \mathrm{mg}, 5 \mathrm{~mol} \%)$. Resulting solution heated at $100^{\circ} \mathrm{C}$ for 2 h . After cooling down to room temperature reaction mixture evaporated in vacuo to dryness and water (30 mL) added thereto. Then reaction mixture extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. Organic extract washed with brine $(2 \times 10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Purified by trituration with MeCN to obtain product as a beige solid. Yield $52 \mathrm{mg}(22 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.09$ (s, $1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (br.s., 1 H), 7.51 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=8.3$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dt}, J=7.6,1.5 \mathrm{~Hz}$, 1 H), 6.99 (dt, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.81 (br. s, 2 H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ 162.1, 161.2, 152.2, 148.7, 146.7, 139.5, 129.9, 129.2, 128.9, 128.4, 124.1, 123.2, 121.4, 120.1 (d, $J=308.0 \mathrm{~Hz}$), 118.5. ${ }^{19}$ F NMR (376 MHz, DMSO- d_{6}) $\delta-75.55$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 369.43$.

5-(2-Aminoquinazolin-7-yl)thiophene-2-sulfonamide (215b)

Compound was prepared in analogues way as 215a, starting from (2-aminoquinazolin-7-yl)boronic acid 213 (120 mg,

1 equiv.) and 5-bromothiophene-2-sulfonamide 214b (169 mg , 1.2 equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($168 \mathrm{mg}, 2.5$ equiv.) and PdCl_{2} (dppf) $\cdot \mathrm{DCM}$ (26 mg , $5 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a beige solid. Yield $142 \mathrm{mg}(73 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81(\mathrm{~s}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 (br. s, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 170.5,162.3,161.4$, 152.2, 146.8, 145.6, 137.5, 131.3, 129.3, 125.6, 120.7, 119.9. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 307.38$.
N-(3-(2-Aminoquinazolin-7-yl)phenyl)propane-2-sulfonamide (215c)

Compound was prepared in analogues way as 215a, starting from (2-aminoquinazolin-7-yl)boronic acid 213 (80 mg , 1 equiv.) and N-(3-bromophenyl)propane-2-sulfonamide 214c ($129 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($112 \mathrm{mg}, 2.5$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(17 \mathrm{mg}, 5 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a beige solid. Yield $42 \mathrm{mg}(29 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.93$ (br. s, 1H), $9.13(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{dt}$, $J=6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (br. s, 2H), 3.30 (p, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,162.3,161.2,152.2,145.1,140.7,139.5,130.2$, $128.8,122.5,121.9,121.2,119.2,118.9,117.8,51.6,16.2$ LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$ 343.47.
N-[3-(2-Aminoquinazolin-7-yl)phenyl]benzenesulfonamide (215d)

Compound was prepared in analogues way as 215a, starting from (2-aminoquinazolin-7-yl)boronic acid 213 (80 mg , 1 equiv.) and N-(3-bromophenyl)-benzenesulfonamide 214 d ($159 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(112 \mathrm{mg}, 2.5\right.$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}$ ($17 \mathrm{mg}, 5 \mathrm{~mol} \%$). Purified by trituration with EtOAc to obtain product as a beige solid. Yield $71 \mathrm{mg}(45 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.50$ (br. s, 1 H), 9.11 (s, 1H), $7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=4.3,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 1 H), 6.87 (br. s, 2 H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.3$, 161.2, 152.2, 145.0, $140.5,139.4,138.5,133.2,130.1,129.5,128.8,126.8,123.1,121.8,121.0,119.9,118.8$, 118.6. LC-MS (ESI/APCI) [M+H] 377.46.

3-(2-Aminoquinazolin-7-yl)-N,N-dimethylbenzenesulfonamide (215e)

Compound was prepared in analogues way as 215a, starting from (2-aminoquinazolin-7-yl)boronic acid 213 (80 mg, 1 equiv.) and 3-bromo- N, N-dimethylbenzenesulfonamide $\mathbf{2 1 4} \mathbf{e}$ ($145 \mathrm{mg}, 1.3$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($112 \mathrm{mg}, 2.5$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(17 \mathrm{mg}, 5 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a brown solid. Yield $52 \mathrm{mg}(37 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.20$ $-8.08(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65$ (m, 1H), 7.57 (dd, $J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.90 (br. s, 2H), 2.67 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.4,161.3,152.2,143.9,140.8,135.7,132.0,130.5,129.0,127.4$, 125.7, 122.6, 121.3, 119.1, 37.8. LC-MS (ESI/APCI) [M+H] 329.44 .

3-(2-Aminoquinazolin-7-yl)- N -methyl- N -(methylsulfonyl)benzenesulfonamide (215f)

Compound was prepared in analogues way as 226a, starting from (2-aminoquinazolin-7-yl)boronic acid 213 (80 mg , 1 equiv.) and 3 -bromo- N-methyl- N-(methylsulfonyl)benzenesulfonamide $\mathbf{2 1 4 f}$ (278 mg , 2 equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($135 \mathrm{mg}, 3$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(17 \mathrm{mg}, 5 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a beige solid. Yield $68 \mathrm{mg}(41 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=$ $8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (br. s, 2H), 3.29 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.5$, $161.3,152.2,143.6,140.8,139.4,133.1,130.6,129.1,127.3,126.1,122.6,121.1,119.1$, 42.5, 34.6. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 393.46$.
N-(7-Bromoquinazolin-2-yl)propionamide (216)
 7-Bromoquinazolin-2-amine 204 ($500 \mathrm{mg}, 1$ equiv.) was suspended in pyridine (10 mL) and propionic anhydride $(1.73 \mathrm{~mL}$, 6 equiv.) was added dropwise at room temperature. Resulting solution heated at $80^{\circ} \mathrm{C}$ for 2 h . Reaction cooled down to room temperature and water (40 mL) added thereto. Formed precipitate was filtered and washed with water $(2 \times 10 \mathrm{~mL})$ to obtain product as a solid. Purified by trituration with MeCN to obtain product as a white beige solid. Yield 463 mg (74\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 10.75$ (br. s, 1H), 9.49 (s, 1H), $8.07-7.95$ (m, $2 \mathrm{H}), 7.73$ (dd, $J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) $\delta 172.7,162.7,155.2,151.0,129.8,129.0,128.7,128.4$, 120.5, 29.8, 9.2. LC-MS (ESI/APCI) [M+H] ${ }^{+}$280.28/282.29.

N-\{7-[3-(Methylsulfonyl)phenyl]quinazolin-2-yl\}propionamide (217)

Compound was prepared in analogues way as 212a, starting from N-(7-bromoquinazolin-2-yl)propionamide 216 (150 mg , 1 equiv.) and (3-(methylsulfonyl)phenyl)boronic acid 210k ($139 \mathrm{mg}, 1.3$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (113 mg, 2 equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(31 \mathrm{mg}, 7 \mathrm{~mol} \%)$. Purified by trituration with EtOAc to obtain product as a white beige solid. Yield $70 \mathrm{mg}(37 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.69$ (br. s, $1 \mathrm{H}), 9.53(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.08-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.7$, 162.4, $155.0,150.7,144.4,141.8,140.0,132.5,130.3,128.8,126.9,125.9,125.0,124.3,121.2$, 43.4, 29.8, 9.2. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 356.1069$, found 356.1067.

1-(7-Bromoquinazolin-2-yl)-3-ethylurea (218)

7-Bromoquinazolin-2-amine 204 ($600 \mathrm{mg}, 1$ equiv.) was suspended in DMF (15 mL) and ethyl isocyanate ($636 \mu \mathrm{~L}, 3$ equiv.) was added dropwise at room temperature. Resulting solution heated at $100^{\circ} \mathrm{C}$ for 16 h . Reaction mixture cooled down to room temperature and water (40 mL) added thereto. Formed precipitate was filtered and washed with water $(2 \times 10 \mathrm{~mL})$ to obtain product as a solid. Light brown crystals, yield $463 \mathrm{mg}(74 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.93$ (br. s, 1H), $9.39(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{qd}, J=7.2,5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 163.6,156.0,154.1$, $149.9,130.2,129.3,128.6,128.1,119.7,34.4,15.5$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+}$ 295.31/297.33.

1-Ethyl-3-\{7-[3-(methylsulfonyl)phenyl]quinazolin-2-yl\}urea (219a)

Compound was prepared in analogues way as 212a, starting from 1-(7-bromoquinazolin-2-yl)-3-ethylurea 218 (150 mg , 1 equiv.) and (3-(methylsulfonyl)phenyl)boronic acid 210k ($102 \mathrm{mg}, 1$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($108 \mathrm{mg}, 2$ equiv.) and
$\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(41 \mathrm{mg}, 10 \mathrm{~mol} \%)$. Purified by trituration with hot EtOH to obtain product as a white beige solid. Yield $96 \mathrm{mg}(51 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $9.94(\mathrm{~s}, 1 \mathrm{H}), 9.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.47(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.29-8.22$ $(\mathrm{m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 163.1,155.8,153.9,149.3,144.7$, 141.8, 140.0, 132.6, 130.3, 128.9, 126.9, 125.7, 124.3, 123.6, 120.2, 43.4, 34.1, 15.4. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$371.1178, found 371.1189.

N-(3-(2-(3-Ethylureido)quinazolin-7-yl)phenyl)methanesulfonamide (219b)

Compound was prepared in analogues way as 212a, starting from 1-(7-bromoquinazolin-2-yl)-3-ethylurea 218 (150 mg , 1 equiv.) and (3-(methylsulfonamido)-phenyl)boronic acid 2101 ($131 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (108 mg , 2 equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(29 \mathrm{mg}, 7 \mathrm{~mol} \%)$. Purified by trituration with hot EtOH to obtain product as a grey solid. Yield $41 \mathrm{mg}(21 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.91$ (br. s, 2H), 9.49 (t, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 9.43 ($\mathrm{s}, 1 \mathrm{H}), 8.11$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.77$ (dd, $J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.44(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.9,155.7,153.9,149.3,146.2,140.0,139.7,130.1,128.8,124.2,123.0$, 122.6, 120.0, 119.9, 118.6, 39.4, 34.1, 15.4. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 386.1287$, found 386.1299.

N -(7-Methoxyquinazolin-2-yl)propionamide (220a)

Compound was prepared in analogues way as 216, starting from 7-methoxyquinazolin-2-amine 202e (150 mg , 1 equiv.) and propionic anhydride ($440 \mu \mathrm{~L}, 4$ equiv.). Purified by crystallization from EtOH to obtain product as a white beige solid. Yield $71 \mathrm{mg}(36 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.51$ (br. s , $1 \mathrm{H}), 9.26(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.6,164.3,160.8,155.0,152.8,129.2,118.4,117.2,104.9$, 55.8, 29.8, 9.3. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$232.1086, found 232.1096.

N-(7-Methoxyquinazolin-2-yl)acetamide (220b)

Compound was prepared in analogues way as 216, starting from 7-methoxyquinazolin-2-amine 202e ($150 \mathrm{mg}, 1$ equiv.) and acetic anhydride ($323 \mu \mathrm{~L}, 4$ equiv.). Purified by crystallization from EtOH to obtain product as a white solid. Yield $108 \mathrm{mg}(58 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.55$ (br. $\mathrm{s}, 1 \mathrm{H}$), $9.26(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}$, 3H), 2.27 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 169.3,164.3,160.8,155.0,152.8$, 129.2, 118.5, 117.2, 105.0, 55.8, 24.8. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 218.0930, found 218.0940.

1-Ethyl-3-(7-methoxyquinazolin-2-yl)urea (220c)

Compound was prepared in analogues way as 216, starting from 7-methoxyquinazolin-2-amine 202e ($150 \mathrm{mg}, 1$ equiv.) and ethyl isocyanate ($407 \mu \mathrm{~L}, 6$ equiv.). White yellow solid, yield 189 mg (90%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 9.72$ (br. s, 1 H), 9.48 (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 9.20 $(\mathrm{s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 164.7,161.4,155.8,154.0,151.6,129.4,117.5,116.2,104.6,55.9,34.1$, 15.4. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 247.1195$, found 247.1207.

5-Fluoroquinazolin-2-amine (222a)

Compound was prepared in analogues way as 204, starting from 2,6difluorobenzaldehyde 221a ($1.17 \mathrm{~g}, 1$ equiv.), guanidine carbonate ($1.59 \mathrm{~g}, 1.6$ equiv.) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.39 \mathrm{~g}, 1.6$ equiv.). Purified by trituration with EtOAc to obtain yellow solid. Yield 314 mg (23\%). Spectral data consistent with previously reported. ${ }^{100}$

7-Bromo-5-fluoroquinazolin-2-amine (222b)

Compound was prepared in analogues way as 204, starting from 4-bromo-2,6-difluorobenzaldehyde 221b ($3.28 \mathrm{~g}, 1$ equiv.), guanidine carbonate ($2.88 \mathrm{~g}, 1.6$ equiv.) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($2.52 \mathrm{~g}, 1.6$ equiv.). Purified by crystallization from EtOH to white beige solid. Yield 495 mg (14%). Spectral data consistent with previously reported. ${ }^{66}$
$\boldsymbol{N 5}$-[2-(Dimethylamino)ethyl]quinazoline-2,5-diamine (223)
5-Fluoroquinazolin-2-amine 222a (55 mg , 1 equiv.) was dissolved in $N, N-$ dimethyl-1,2-ethanediamine ($1 \mathrm{~mL}, 27$ equiv.) and resulting solution heated at $110{ }^{\circ} \mathrm{C}$ for 48 h . After cooling down to room temperature, reaction mixture directly purified by reverse phase column chromatography using gradient of MeCN in water to obtain product as a yellow solid. Yield $55 \mathrm{mg}(70 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (br. s, 1H), 5.28 (br. s, 2H), $3.27-$ $3.15(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2$, 156.1, 153.2, 146.0, 136.3, 113.5, 110.7, 102.2, 57.5, 45.2, 40.7. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}$232.1562, found 232.1568.
N-[3-(2-Amino-5-fluoroquinazolin-7-yl)phenyl]-methanesulfonamide (224)

Compound was prepared in analogues way as 212a, starting from 7-bromo-5-fluoroquinazolin-2-amine 222b (180 mg, 1 equiv.) and (3-(methylsulfonamido)phenyl)boronic acid 2101 ($192 \mathrm{mg}, 1.2$ equiv.). Coupling stage performed using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($158 \mathrm{mg}, 2$ equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{DCM}(42 \mathrm{mg}, 7 \mathrm{~mol} \%)$. Purified by trituration with CHCl_{3} to obtain product as a white brown solid. Yield $144 \mathrm{mg}(58 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.25$ (s , 1 H), $7.58-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.10$ (br. s, 2H), $3.04(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.7,159.2(\mathrm{~d}, J=255.1 \mathrm{~Hz}), 156.3(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, $153.4(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 146.1(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 139.8,139.4,130.5,122.9,120.3,118.4$, $118.3(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 108.9(\mathrm{~d}, J=16.1 \mathrm{~Hz}), 105.4(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 39.6 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta-123.02(\mathrm{~d}, J=10.8 \mathrm{~Hz})$. LC-MS (ESI/APCI) $[\mathrm{M}+\mathrm{H}]^{+} 333.43$.
N-(3-(2-Amino-5-((2-(dimethylamino)ethyl)amino)quinazolin-7yl)phenyl)methanesulfonamide (225)

N-(3-(2-Amino-5-fluoroquinazolin-7-yl)phenyl)methanesulfonamide 224 (100 mg , 1 equiv.) was dissolved in N, N-dimethyl-1,2-ethanediamine ($1 \mathrm{~mL}, 30$ equiv.) and resulting solution heated at $110^{\circ} \mathrm{C}$ for 48 h . After cooling down to room temperature, reaction mixture directly purified by reverse phase column chromatography using gradient of MeCN in water to obtain product as a yellow solid. Yield $32 \mathrm{mg}(27 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{td}, J=4.7,4.2$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.63$ (br. s, 1H), 5.39 (br. s, 2H), 3.25 (hept, $J=$
$3.8,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{dd}, J=6.6,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,156.1,153.2,147.9,146.2,143.1,137.5,130.2,124.4,120.8$, $120.3,111.8,109.9,101.6,57.4,45.2,40.7,39.8$. HR-MS (ESI/TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$401.1760, found 401.1754 .

CONCLUSIONS

1. Four series of perspective HK TCs inhibitors were synthesized for biological activity evaluation: derivatives of pyrazole-4-carboxamide, 2-aminoquinazoline, indazole and 3,4diphenylpyrazole.
2. Library of pyrazole-4-carboxamides was made by coupling of pyrazole-4-carboxylic acid with various alkyl and aryl amines. Unfortunately, this library showed no potential for the further development: enzymatic and in vitro antibacterial assays revealed no significant activity. On the other hand, X-Ray crystallography of CheA protein-ligand complex with the amide, bearing cyclic carbamate moiety, showed interaction of the compound exactly as predicted in CADD models. Such a discrepancy can be explained by weak interactions of the mentioned ligand with the protein.

3. Indazole based library was made starting from substituted 4-bromoindazoles using different types of palladium couplings. The compound with phenyl substituent possessed weak antibacterial activity against E. Coli, but its mechanism of antibacterial action remained unclear. Indazole bearing 3-aminopyrazole substituent, and its structural analogues, revealed moderate potency in enzymatic assay but showed no antibacterial activity.

E. Coli MIC $=62.5 \mu \mathrm{~g} / \mathrm{mL}$

S. Aureus PhoR $\mathrm{IC}_{50}=67 \mu \mathrm{M}$
4. Library of 2-aminoquinazolines was made using Heck reaction between 7-bromoquinazoline-2-amine and various alkenes. Newly formed alkenes were selectively reduced to form an alkyl linker. Additional compounds were derived from SuzukiMiyaura reaction between 7-bromoquinazoline-2-amine and arylboronic acids or between (2-aminoquinazolin-7-yl)boronic acid and aryl bromides. All compounds from these series were tested for their ability to bind to CheA protein (MST assay) and two compounds displayed the best binding affinity in their series.

5. A range of 3-phenylpyrazole derivatives were synthesized by reaction of isoflavones and β-diketones with hydrazine hydrate. Cyclization of the same starting materials with hydroxylamine allowed to obtain isoxazoles with identical to pyrazoles substitution pattern. Moreover, compounds with cleaved hydroxyl groups were synthesized by transformation of OH group to triflate with subsequent Pd-catalyzed reduction. SAR studies revealed the crucial parts of the molecules for antibacterial activity. Pyrazole core can be replaced with isoxazole without change in activity, however at least one polar group shall be retained in molecule to preserve an antibacterial potency. The mechanism of the antibacterial effect for these type of compounds remained unclear, but most probably is not connected with HK TCs inhibition.
6. New methods for the synthesis of 2-aminoquinazolines and N -protected indazoles were developed by usage of copper catalysed Chen-Evans-Lam reaction starting from 2formylphenylboronic acids. Reaction with guanidines proceeds to 2-aminoquinazolines, when the reaction with azodicarboxylates and hydrazine dicarboxylates delivering N protected indazoles. The reaction can be done in milder conditions compared to the known coupling reactions using 2-halobenzaldehydes.

REFERENCES

(1) Doron, S.; Gorbach, S. L. In International Encyclopedia of Public Health; Heggenhougen, H. K., Ed.; Academic Press: Oxford, 2008.
(2) Adedeji, W. A. Annals of Ibadan postgraduate medicine 2016, 14, 56.
(3) Coates, A. R.; Halls, G.; Hu, Y. British Journal of Pharmacology 2011, 163, 184.
(4) Kapoor, G.; Saigal, S.; Elongavan, A. Journal of Anaesthesiology Clinical Pharmacology 2017, 33, 300.
(5) Nikaido, H. Annual Review of Biochemistry 2009, 78, 119.
(6) McKenna, M. Nature 2013, 499, 394.
(7) Hutchings, M. I.; Truman, A. W.; Wilkinson, B. Current Opinion in Microbiology 2019, 51, 72.
(8) Felden, B.; Cattoir, V. Antimicrobial Agents and Chemotherapy 2018, 62, e02503.
(9) Tierney, A. R.; Rather, P. N. Future Microbiology 2019, 14, 533.
(10) Thomason, P.; Kay, R. Journal of Cell Science 2000, 113, 3141.
(11) Cheung, J.; Hendrickson, W. A. Current Opinion in Microbiology 2010, 13, 116.
(12) Buschiazzo, A.; Trajtenberg, F. Annual Review of Microbiology 2019, 73, 507.
(13) Boibessot, T.; Zschiedrich, C. P.; Lebeau, A.; Bénimèlis, D.; Dunyach-Rémy, C.; Lavigne, J.-P.; Szurmant, H.; Benfodda, Z.; Meffre, P. Journal of Medicinal Chemistry 2016, 59, 8830.
(14) Stock, J. B.; Baker, M. D. In Encyclopedia of Microbiology (Third Edition); Schaechter, M., Ed.; Academic Press: Oxford, 2009.
(15) (a) Makino, K.; Shinagawa, H.; Amemura, M.; Nakata, A. Journal of molecular biology 1986, 192, 549(b) Carmany, D. O.; Hollingsworth, K.; McCleary, W. R. Journal of bacteriology 2003, 185, 1112.
(16) Casino, P.; Rubio, V.; Marina, A. Cell 2009, 139, 325.
(17) Marina, A.; Waldburger, C. D.; Hendrickson, W. A. The EMBO Journal 2005, 24, 4247.
(18) Kanamaru, K.; Aiba, H.; Mizushima, S.; Mizuno, T. Journal of Biological Chemistry 1989, 264, 21633.
(19) Baba, T.; Bae, T.; Schneewind, O.; Takeuchi, F.; Hiramatsu, K. 2008, 190, 300.
(20) Van Tyne, D.; Martin, M. J.; Gilmore, M. S. 2013, 5, 895.
(21) Kaper, J. B.; Nataro, J. P.; Mobley, H. L. T. Nature Reviews Microbiology 2004, 2, 123.
(22) Ahmed, M. O.; Baptiste, K. E. Microbial Drug Resistance 2017, 24, 590.

Hu, E.; Tasker, A.; White, R. D.; Kunz, R. K.; Human, J.; Chen, N.; Bürli, R.; Hungate, R.; Novak, P.; Itano, A.; Zhang, X.; Yu, V.; Nguyen, Y.; Tudor, Y.; Plant, M.; Flynn, S.; Xu, Y.; Meagher, K. L.; Whittington, D. A.; Ng, G. Y. Journal of Medicinal Chemistry 2008, 51, 3065.
(26) Vasbinder, M. M.; Aquila, B.; Augustin, M.; Chen, H.; Cheung, T.; Cook, D.; Drew, L.; Fauber, B. P.; Glossop, S.; Grondine, M.; Hennessy, E.; Johannes, J.; Lee, S.; Lyne, P.; Mortl, M.; Omer, C.; Palakurthi, S.; Pontz, T.; Read, J.; Sha, L.; Shen, M.; Steinbacher, S.; Wang, H.; Wu, A.; Ye, M. J. Med. Chem. 2013, 56, 1996.
(27) Keylor, M. H.; Gulati, A.; Kattar, S. D.; Johnson, R. E.; Chau, R. W.; Margrey, K. A.; Ardolino, M. J.; Zarate, C.; Poremba, K. E.; Simov, V.; Morriello, G. J.; Acton, J. J.; Pio, B.; Yan, X.; Palte, R. L.; McMinn, S. E.; Nogle, L.; Lesburg, C. A.; Adpressa, D.; Lin, S.; Neelamkavil, S.; Liu, P.; Su, J.; Hegde, L. G.; Woodhouse, J. D.; Faltus, R.; Xiong, T.; Ciaccio, P. J.; Piesvaux, J.; Otte, K. M.;
Wood, H. B • Kennedy M. E ; Bennett, D. J. DiMauro, E. F.; Fell, M. J.; Fuller, Wood, H. B.; Kennedy, M. E.; Bennett, D. J.; DiMauro, E. F.; Fell, M. J.; Fuller, P. H. Journal of Medicinal Chemistry 2022, 65, 838.
(28) Huang, X.; Yang, H.; Fu, H.; Qiao, R.; Zhao, Y. Synthesis 2009, $2009,2679$.
(29) Li, H.; Cao, Z.; Huang, X. Guangdong Huagong 2015, 42, 57.
(30) Radhakrishnan, K.; Das, S.; Kundu, L. M. ChemistrySelect 2018, 3, 13098.
(31) Thakur, M. S.; Nayal, O. S.; Bhatt, V.; Sharma, S.; Kumar, N. Asian J. Org. Chem. 2016, 5, 750.
Babu, D. S.; Srinivasulu, D.; Kotakadi, V. S. Chemistry of Heterocyclic Compounds 2015, 51, 60.
Hynes, J. B.; Campbell, J. P.; Hynes, J. D. Journal of Heterocyclic Chemistry 1995, 32, 1185.
(27) (a) Li, W.; Boon, J. K.; Zhao, Y. Chemical Science 2018, 9, 600(b) Lin, S.; Wang, C.; Ji, M.; Wu, D.; Lv, Y.; Zhang, K.; Dong, Y.; Jin, J.; Chen, J.; Zhang, J.; Sheng, L.; Li, Y.; Chen, X.; Xu, H. J. Med. Chem. 2018, 61, 6087.
(a) Embrechts, W.; Herschke, F.; Pauwels, F.; Stoops, B.; Last, S.; Pieters, S.;

Pande, V.; Pille, G.; Amssoms, K.; Smyej, I.; Dhuyvetter, D.; Scholliers, A.;
Mostmans, W.; Van Dijck, K.; Van Schoubroeck, B.; Thone, T.; De Pooter, D.;
Fanning, G.; Jonckers, T. H. M.; Horton, H.; Raboisson, P.; McGowan, D. J. Med. Chem. 2018, 61, 6236(b) Kim, Y.-K.; Na, H.-K.; Kwack, S.-J.; Ryoo, S.-R.; Lee, Y.; Hong, S.; Hong, S.; Jeong, Y.; Min, D.-H. ACS Nano 2011, 5, 4550.
(34) Pandya, A. N.; Villa, E. M.; North, E. J. Tetrahedron Letters 2017, 58, 1276.
(35) Chen, J.; Liang, E.; Shi, J.; Wu, Y.; Wen, K.; Yao, X.; Tang, X. RSC Advances 2021, 11, 4966.
(36) Lin, S.; Wang, C.; Ji, M.; Wu, D.; Lv, Y.; Zhang, K.; Dong, Y.; Jin, J.; Chen, J.; Zhang, J.; Sheng, L.; Li, Y.; Chen, X.; Xu, H. Journal of Medicinal Chemistry 2018, 61, 6087.
(37) Embrechts, W.; Herschke, F.; Pauwels, F.; Stoops, B.; Last, S.; Pieters, S.; Pande, V.; Pille, G.; Amssoms, K.; Smyej, I.; Dhuyvetter, D.; Scholliers, A.; Mostmans, W.; Van Dijck, K.; Van Schoubroeck, B.; Thone, T.; De Pooter, D.; Fanning, G.; Jonckers, T. H. M.; Horton, H.; Raboisson, P.; McGowan, D. Journal of Medicinal Chemistry 2018, 61, 6236.
(38) Vlaar, T.; Cioc, R. C.; Mampuys, P.; Maes, B. U. W.; Orru, R. V. A.; Ruijter, E. Angewandte Chemie International Edition 2012, 51, 13058.
(39) Wang, H.-X.; Wei, T.-Q.; Xu, P.; Wang, S.-Y.; Ji, S.-J. The Journal of Organic Chemistry 2018, 83, 13491.
(40) Wei, T.-Q.; Xu, P.; Wang, S.-Y.; Ji, S.-J. European Journal of Organic Chemistry 2016, 2016, 5393.
(41) Liu, Q.; Zhao, Y.; Fu, H.; Cheng, C. Synlett 2013, 24, 2089.
(42) Åkerbladh, L.; Odell, L. R. The Journal of Organic Chemistry 2016, 81, 2966.
(43) Sharma, S.; Jain, A. Tetrahedron Letters 2014, 55, 6051.
(44) Sharma, S.; Basavaraju, K. C.; Singh, A. K.; Kim, D.-P. Organic Letters 2014, 16, 3974.
(45) (a) Kumar, V.; Mohan, C.; Gupta, M.; Mahajan, M. P. Tetrahedron 2005, 61, 3533(b) Goel, R. K.; Kumar, V.; Mahajan, M. P. Bioorganic \& Medicinal Chemistry Letters 2005, 15, 2145.
(46) Zeghida, W.; Debray, J.; Chierici, S.; Dumy, P.; Demeunynck, M. The Journal of Organic Chemistry 2008, 73, 2473.
(47) Debray, J.; Bonte, S.; Lozach, O.; Meijer, L.; Demeunynck, M. Mol. Diversity 2012, 16, 659.
(48) Bol, S. M.; Moerland, P. D.; Limou, S.; van Remmerden, Y.; Coulonges, C.; van Manen, D.; Herbeck, J. T.; Fellay, J.; Sieberer, M.; Sietzema, J. G.; van 't Slot, R.; Martinson, J.; Zagury, J.-F.; Schuitemaker, H.; van 't Wout, A. B. PLOS ONE 2011, 6, e17190.
(49) O’Roak, B. J.; Vives, L.; Fu, W.; Egertson, J. D.; Stanaway, I. B.; Phelps, I. G.; Carvill, G.; Kumar, A.; Lee, C.; Ankenman, K.; Munson, J.; Hiatt, J. B.; Turner, E. H.; Levy, R.; O’Day, D. R.; Krumm, N.; Coe, B. P.; Martin, B. K.; Borenstein, E.; Nickerson, D. A.; Mefford, H. C.; Doherty, D.; Akey, J. M.; Bernier, R.; Eichler, E. E.; Shendure, J. Science 2012, 338, 1619.
(50) Sales, Z. S.; Mani, N. S.; Allison, B. D. Tetrahedron Letters 2018, 59, 1623.
(51) Debray, J.; Lévêque, J.-M.; Philouze, C.; Draye, M.; Demeunynck, M. The Journal of Organic Chemistry 2010, 75, 2092.
(52) Jones, M. L.; Kuyper, L. F.; Styles, V. L.; Caddell, J. M. Journal of Heterocyclic Chemistry 1994, 31, 1681.
(53) Chen, J.; Kassenbrock, A.; Li, B. X.; Xiao, X. MedChemComm 2013, 4, 1275.
(54) (a) Henriksen, S. T.; Sorensen, U. S. Tetrahedron Lett. 2006, 47, 8251(b)

Mohamed, T.; Rao, P. P. N. Eur. J. Med. Chem. 2017, 126, 823.
(55) (a) Ram, V. J.; Farhanullah; Tripathi, B. K.; Srivastava, A. K. Bioorg. Med. Chem. 2003, 11, 2439(b) Lee, J. Y.; Shin, Y. S.; Jeon, S.; Lee, S. I.; Noh, S.; Cho, J.-E.; Jang, M. S.; Kim, S.; Song, J. H.; Kim, H. R.; Park, C. M. Bioorg. Med. Chem. Lett. 2021, 39, 127885.
(56) (a) Fleeman, R.; Van Horn, K. S.; Barber, M. M.; Burda, W. N.; Flanigan, D. L.; Manetsch, R.; Shaw, L. N. Antimicrob. Agents Chemother. 2017, 61, e00059/1(b) Font, M.; Gonzalez, A.; Palop, J. A.; Sanmartin, C. Eur. J. Med. Chem. 2011, 46, 3887.
(57) Sasse, K. Synthesis 1978, 379.
(58) Quattropani, A.; Kulkarni, S. S.; Giri, A. G.; Gaokar, V. S.; Devendran, S.; Asceneuron S.A., 2016, IN2014MU02766.
(59) Tang, G.; Lin, X.; Qiu, Z.; Li, W.; Zhu, L.; Wang, L.; Li, S.; Li, H.; Lin, W.; Yang, M.; Guo, T.; Chen, L.; Lee, D.; Wu, J. Z.; Yang, W. ACS Med. Chem. Lett. 2011, 2, 603.
(60) Lee, H. J.; Cho, Y. J.; Eum, S. J.; Kwon, H. J.; Kim, B. O.; Kim, S. M.; Yoon, S. S.; Rohm and Haas Electronic Materials Korea, Ltd., 2012, US20120217485.
(61) Bathini, Y.; Singh, I.; Harvey, P. J.; Keller, P. R.; Singh, R.; Micetich, R. G.; Fry, D. W.; Dobrusin, E. M.; Toogood, P. L. Bioorganic \& Medicinal Chemistry Letters 2005, 15, 3881.
(62) Uehling, D. E.; Joseph, B.; Chung, K. C.; Zhang, A. X.; Ler, S.; Prakesch, M. A.; Poda, G.; Grouleff, J.; Aman, A.; Kiyota, T.; Leung-Hagesteijn, C.; Konda, J. D.;

Marcellus, R.; Griffin, C.; Subramaniam, R.; Abibi, A.; Strathdee, C. A.; Isaac, M. B.; Al-awar, R.; Tiedemann, R. E. J. Med. Chem. 2021, 64, 11129.

Nie, W.; Lu, Y.; Pan, C.; Gao, J.; Luo, M.; Du, J.; Wang, J.; Luo, P.; Zhu, H.; Che, J.; He, Q.; Dong, X. Bioorg. Chem. 2022, 121, 105673.
(64) Zhang, Y.; Xie, X.; Wang, X.; Wen, T.; Zhao, C.; Liu, H.; Zhao, B.; Zhu, Y. Bioorganic \& Medicinal Chemistry 2021, 38, 116114.
(65) Huang, X.; Xu, S.; Tan, Q.; Gao, M.; Li, M.; Xu, B. Chemical Communications 2014, 50, 1465.
(66) Blake, J. F.; Chen, H.; Chicarelli, M. J.; DeMeese, J.; Garrey, R. F.; Gaudino, J.; Gazzard, L.; Kaus, R. J.; Kintz, S.; Mohr, P. J.; Moreno, D. A.; Schwarz, J.; Siedem, C. S.; Wallace, E. M.; Array BioPharma Inc. Genentech, Inc., 2013, WO2013020062.
(67) DiMauro, E. F.; Newcomb, J.; Nunes, J. J.; Bemis, J. E.; Boucher, C.; Buchanan, J. L.; Buckner, W. H.; Cee, V. J.; Chai, L.; Deak, H. L.; Epstein, L. F.; Faust, T.; Gallant, P.; Geuns-Meyer, S. D.; Gore, A.; Gu, Y.; Henkle, B.; Hodous, B. L.; Hsieh, F.; Huang, X.; Kim, J. L.; Lee, J. H.; Martin, M. W.; Masse, C. E.; McGowan, D. C.; Metz, D.; Mohn, D.; Morgenstern, K. A.; Oliveira-dos-Santos, A.; Patel, V. F.; Powers, D.; Rose, P. E.; Schneider, S.; Tomlinson, S. A.; Tudor, Y.-Y.; Turci, S. M.; Welcher, A. A.; White, R. D.; Zhao, H.; Zhu, L.; Zhu, X. J. Med. Chem. 2006, 49, 5671.
(68) Brigham, J. L.; Perera, B. G. K.; Maly, D. J. ACS Chemical Biology 2013, 8, 691.
(69) Papa, F. R.; Backes, B. J.; Maly, D. J.; The Regents of the University of California University of Washington, 2022, WO2022104148.
(70) Woodbury, D. J.; Whitt, E. C.; Coffman, R. E. Biophysical Reports 2021, 1, 100012.
(71) Neckers, L.; Blagg, B.; Haystead, T.; Trepel, J. B.; Whitesell, L.; Picard, D. Cell Stress and Chaperones 2018, 23, 467.
(72) Chen, J.; Xu, Z.; Wang, T.; Lyssikatos, J. P.; Ndubaku, C. O. Synlett 2014, 25, 89.
(73) De Lucca, G. V.; Shi, Q.; Liu, Q.; Batt, D. G.; Beaudoin Bertrand, M.; Rampulla, R.; Mathur, A.; Discenza, L.; D'Arienzo, C.; Dai, J.; Obermeier, M.; Vickery, R.; Zhang, Y.; Yang, Z.; Marathe, P.; Tebben, A. J.; Muckelbauer, J. K.; Chang, C. J.; Zhang, H.; Gillooly, K.; Taylor, T.; Pattoli, M. A.; Skala, S.; Kukral, D. W.; McIntyre, K. W.; Salter-Cid, L.; Fura, A.; Burke, J. R.; Barrish, J. C.; Carter, P. H.; Tino, J. A. J. Med. Chem. 2016, 59, 7915.
(74) Su, Y.; Wang, J.; Bao, R.; Shanghai Hansoh Biomedical Co., Ltd. Jiangsu Hansoh Pharmaceutical Group Co., Ltd., 2020, WO2020228756.

Stock, A.; Chen, T.; Welsh, D.; Stock, J. 1988, 85, 1403.
(76) Jerabek-Willemsen, M.; André, T.; Wanner, R.; Roth, H. M.; Duhr, S.; Baaske, P.; Breitsprecher, D. Journal of Molecular Structure 2014, 1077, 101.
(77) Zhao, F.; Yu, J.; Zuo, H.; Wang, Y.; Zhang, C.; Hao, L.; Hong, Y.; Liao, X.; Xia, G.; Shanghai Pharmaceuticals Holding Co., Ltd., 2021.
(78) Penefsky, H. The Journal of biological chemistry 1974, 249, 3579.
(79) (a) Li, G.; Walker, M. J.; De Oliveira, D. M. P. 2023, 11, 24(b) Lockey, C.; Edwards, R. J.; Roper, D. I.; Dixon, A. M. Scientific Reports 2020, 10, 5727.
(80) Kralik, P.; Ricchi, M. Frontiers in Microbiology 2017, 8.
(81) Vo, C. D.; Shebert, H. L.; Zikovich, S.; Dryer, R. A.; Huang, T. P.; Moran, L. J.; Cho, J.; Wassarman, D. R.; Falahee, B. E.; Young, P. D.; Gu, G. H.; Heinl, J. F.; Hammond, J. W.; Jackvony, T. N.; Frederick, T. E.; Blair, J. A. Bioorganic \& Medicinal Chemistry Letters 2017, 27, 5235.
(82) Wells, J.; Velikova, N.; Wageningen Universiteit, 2021, EP3827825.
(83) (a) Kupchevskaya, I. P.; Khilya, V. P. Dopov. Akad. Nauk Ukr. RSR, Ser. B: Geol., Khim. Biol. Nauki 1978, 234(b) Drysdale, M. J.; Dymock, B. W.; BarrilAlonso, X.; Workman, P.; Pearl, L. H.; Prodromou, C.; MacDonald, E.;
Ribotargets Limited, Cancer Research Technology Limited, The Institute of Cancer Research, 2003, WO2003055860.
(84) (a) Pivovarenko, V. G.; Khilya, V. P.; Vasil'ev, S. A. Khim. Prir. Soedin. 1989, 639(b) Schiltz, G. E.; Mishra, R. K.; Han, H.; Abdulkadir, S. A.; Izquierdo-Ferrer, J.; Jain, A. D.; Northwestern University, 2020, WO2020046382.
(85) (a) Moskvina, V. S.; Shilin, S. V.; Khilya, V. P. Chem. Heterocycl. Compd. (N. Y., NY, U. S.) 2015, 51, 799(b) Drysdale, M. J.; Dymock, B. W.; Finch, H.; Webb, P.; McDonald, E.; James, K. E.; Cheung, K. M.; Mathews, T. P.; Vernalis Cambridge Limited Cancer Research Technology Ltd The Institute of Cancer Research, 2004, WO2004072051.
(86) Sloop, J. C.; Bumgardner, C. L.; Loehle, W. D. J. Fluorine Chem. 2002, 118, 135.
(87) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Letters 1998, 39, 2933.
(88) Marcum, J. S.; McGarry, K. A.; Ferber, C. J.; Clark, T. B. The Journal of Organic Chemistry 2016, 81, 7963.
(91) Prime, M. E.; Andersen, O. A.; Barker, J. J.; Brooks, M. A.; Cheng, R. K. Y.; Toogood-Johnson, I.; Courtney, S. M.; Brookfield, F. A.; Yarnold, C. J.; Marston, R. W.; Johnson, P. D.; Johnsen, S. F.; Palfrey, J. J.; Vaidya, D.; Erfan, S.; Ichihara, O.; Felicetti, B.; Palan, S.; Pedret-Dunn, A.; Schaertl, S.; Sternberger, I.; Ebneth, A.; Scheel, A.; Winkler, D.; Toledo-Sherman, L.; Beconi, M.; Macdonald, D.; Munoz-Sanjuan, I.; Dominguez, C.; Wityak, J. J. Med. Chem. 2012, 55, 1021.
(92) Barber, J. S.; Kong, D.; Li, W.; McAlpine, I. J.; Nair, S. K.; Sakata, S. K.; Sun, N.; Patman, R. L. Synlett 2021, 32, 202.
(93) Pan, B.-S.; Perera, S. A.; Piesvaux, J. A.; Presland, J. P.; Schroeder, G. K.; Cumming, J. N.; Trotter, B. W.; Altman, M. D.; Buevich, A. V.; Cash, B.; Cemerski, S.; Chang, W.; Chen, Y.; Dandliker, P. J.; Feng, G.; Haidle, A.; Henderson, T.; Jewell, J.; Kariv, I.; Knemeyer, I.; Kopinja, J.; Lacey, B. M.; Laskey, J.; Lesburg, C. A.; Liang, R.; Long, B. J.; Lu, M.; Ma, Y.; Minnihan, E. C.; O'Donnell, G.; Otte, R.; Price, L.; Rakhilina, L.; Sauvagnat, B.; Sharma, S.; Tyagarajan, S.; Woo, H.; Wyss, D. F.; Xu, S.; Bennett, D. J.; Addona, G. H. Science (Washington, DC, U. S.) 2020, 369, 6098.
(94) Bream, R. N.; Clark, H.; Edney, D.; Harsanyi, A.; Hayler, J.; Ironmonger, A.; Mc Cleary, N.; Phillips, N.; Priestley, C.; Roberts, A.; Rushworth, P.; Szeto, P.; Webb, M. R.; Wheelhouse, K. Org. Process Res. Dev. 2021, 25, 529.
(95) Chaudhari, S. S.; Gharat, L. A.; Iyer, P.; Dhone, S. V.; Adik, B. G.; Wadekar, P. D.; Gowda, N.; Bajpai, M.; Ichnos Sciences S. A., 2020, WO2020070331.
(96) Zbinden, K. G.; Anselm, L.; Banner, D. W.; Benz, J.; Blasco, F.; Decoret, G.; Himber, J.; Kuhn, B.; Panday, N.; Ricklin, F.; Risch, P.; Schlatter, D.; Stahl, M.; Thomi, S.; Unger, R.; Haap, W. Eur. J. Med. Chem. 2009, 44, 2787.
(97) Crawford, J. J.; Dossetter, A. G.; Finlayson, J. E.; Heron, N. M.; AstraZeneca AB, AstraZeneca UK Limited, 2008, WO2009001127.
(98) Bacani, G.; Chrovian, C. C.; Eccles, W.; Fourie, A. M.; Gomez, L.; Grice, C. A.; Kearney, A. M.; Landry-Bayle, A. M.; Lee-Dutra, A.; Santillan, A.; Tanis, V. M.; Wiener, J. J. M.; Janssen Pharmaceutica NV, 2010, WO2010132599.
(99) Tietze, L. F.; Vock, C. A.; Krimmelbein, I. K.; Nacke, L. Synthesis 2009, 2040.
(100) Solomin, V.; Seins, A.; Jirgensons, A. Synlett 2020, 31.
(101) Taylor, N. J.; Emer, E.; Preshlock, S.; Schedler, M.; Tredwell, M.; Verhoog, S.; Mercier, J.; Genicot, C.; Gouverneur, V. J. Am. Chem. Soc. 2017, 139, 8267.

Annex I
 Synthesis and SAR of phenylazoles, active against Staphylococcus aureus Newman

Vitalii V. Solomin ${ }^{\text {a,b }}$, Blanca Fernandez Ciruelos ${ }^{\text {c }}$, Nadya Velikova ${ }^{\text {c }}$, Jerry Wells ${ }^{\mathrm{c}}$, Marco Albanese ${ }^{\mathrm{d}}$, Anmol Adhav ${ }^{\mathrm{e}}$, Aigars Jirgensons ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Latvian Institute of Organic Synthesis, 21 Aizkraukles St., Riga LV-1006, Latvia; e-mail: vitalijs.solomins@osi.lv
${ }^{\text {b }}$ Riga Technical University, Faculty of Materials Science and Applied Chemistry, 3/7 Paula Valdena St., Riga LV-1048, Latvia
${ }^{\text {c Wageningen }}$ University \& Research, Department of Animal Sciences, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
${ }^{\mathrm{d}}$ Oxford Drug Design, Oxford Centre for Innovation, New Road, Oxford OX1 1BY, United Kingdom
${ }^{\text {}}$ Instituto de Biomedicina de Valencia CSIC, 11 Jaime Roig, Valencia 46010, Spain
Chemistry of Heterocyclic Compounds, 2022, DOI: 10.1007/s10593-023-03151-9

Synthesis and SAR of phenylazoles, active against Staphylococcus aureus Newman

Vitalii V. Solomin ${ }^{1,2 *}$, Blanca Fernandez Ciruelos ${ }^{3}$, Nadya Velikova ${ }^{3}$, Jerry Wells ${ }^{3}$, Marco Albanese ${ }^{4}$, Anmol Adhav ${ }^{5}$, Aigars Jirgensons ${ }^{1,2}$,
${ }^{1}$ Latvian Institute of Organic Synthesis, 21 Aizkraukles St., Riga LV-1006, Latvia; e-mail: vitalijs-solomins@osi.lv
${ }^{2}$ Riga Technical University, Faculty of Materials Science and Applied Chemistry, 3/7 Paula Valdena St., Riga LV-1048, Latvia
${ }^{3}$ Wageningen University \& Research, Department of Animal Sciences, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
${ }^{4}$ Oxford Drug Design, Oxford Centre for Innovation, New Road, Oxford OXI 1BY, United Kingdom
${ }^{5}$ Instituto de Biomedicina de Valencia CSIC,
II Jaime Roig, Valencia 46010, Spain

Submitted July 8, 2022
Accepted after revision October 27, 2022

Series of new potent inhibitors of growth of Staphylococcus aureus Newman, based on 3,4-diphenylpyrazole and 4,5-diphenylisoxazole derivatives were discovered. Structures of interest were selectively modified to check their structure-activity relationship. Studies revealed the most essential groups in the molecule for the antimicrobial activity retention. Active compounds with good MIC range should contain both nonpolar aromatic residues and hydrogen bond donating groups. The best MIC results in selected cases were lower than $1 \mu \mathrm{~g} / \mathrm{ml}$.
Keywords: diphenylazole, isoflavone, isoxazole, pyrazole, antimicrobial activity, Staphylococcus aureus Newman.

The antibiotic resistance is one of the greatest health challenges requiring efficient solutions to prevent the increased number of lethal outcomes caused by bacterial infections. ${ }^{1}$ The control of antimicrobial infections in hospitals is already complicated due to so-called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) which are resistant to virtually all marketed antibiotics. ${ }^{2}$ The new antimicrobial drugs acting by yet unexploited mechanism are therefore urgently needed.

Recently Vo et al. reported 3,4-diarylpyrazole-based antibacterial compound series which was repurposed from compounds with anticancer activity acting as a heat shock protein 90 (HSP90) inhibitors (Fig. 1). ${ }^{3}$ The antibacterial activity was linked to the inhibition of bacterial histidine
kinases by binding to ATP-binding domain which share high similarity to the ATPase domain of eukaryotic HSP90. The representative compound $\mathbf{1}$ displayed micromolar inhibition of histidine kinases C. crescentus CckA and Salmonella PhoQ and medium activity against certain Gram negative and Gram positive bacterial strains. Structurally similar hit 2 with good potency against S. aureus was revealed in Wells lab by screening of compound libraries in antibacterial susceptibility tests. In this paper, we describe systematic investigation of SAR of diarylpyrazole-based compounds as well as scaffold hopping studies for the replacement of the pyrazole heterocycle with isoxazole.

The key intermediates for the synthesis of 3,4-diarylpyrazoles 8a-l were isoflavones $7 \mathbf{a}-\mathbf{k}$ (Scheme 1). ${ }^{4}$ These were synthesized from readily available resorcinol (3) and

MIC (B. subtilis) $50-74 \mu \mathrm{~g} / \mathrm{ml}$
MIC (E. coli) $12-25 \mu \mathrm{~g} / \mathrm{ml}$

Figure 1. 3,4-Diarylpyrazoles with antibacterial activity.
phenylacetic acid derivatives $\mathbf{4 a - c}$ in two steps. ${ }^{4 b, 5}$ The first step included Friedel-Crafts acylation of resorcinol (3), catalyzed by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The resulting acylresorcinols $\mathbf{5 a - c}$ underwent condensation with acid anhydride followed by the cyclization to give isoflavones $6 \mathbf{a}-\mathrm{d}$. O-Alkylation provided isoflavone derivatives $7 \mathbf{a}-\mathbf{k}$ which were condensed with hydrazine to provide the novel target compounds 8a-l.

Synthesis of previously reported monoaryl pyrazoles $10 a, c$ and novel pyrazoles $10 b, d$ was achieved by the condensation of diketones $9 \mathbf{a}-\mathbf{c}$ with hydrazine (Scheme 2). One of the monoarylpyrazoles, compound 10a, was further

Scheme 2. Synthesis 3-aryl- and 3,4-diarylpyrazoles 10a-d, 12

9, 10 a R ${ }^{1}=\mathrm{Ph}, \mathbf{b} \mathrm{R}^{1}=2-\mathrm{HO}-4-\mathrm{MeOC}_{6} \mathrm{H}_{3}, \mathbf{c} \mathrm{R}^{1}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}$

brominated to obtain bromo derivative 11 which was subjected to Suzuki-Miyaura coupling to provide the novel diarylpyrazole 12 (Scheme 2).

Scheme 1. Synthesis 3,4-diarylpyrazoles 2, 8a-1

4, 5 a R ${ }^{1}=\mathrm{H}, \mathbf{b} \mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{cR}^{1}=4-\mathrm{MeO}$
$6 a R^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Me} ; b R^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CF}_{3} ; c \mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CF}_{3} ; d \mathrm{R}^{1}=4-\mathrm{MeO}, \mathrm{R}^{2}=\mathrm{CF}_{3}$
7 a $R^{1}=4-C I, R^{2}=C F_{3}, R^{3}=M e ; b R^{1}=H, R^{2}=C F_{3}, R^{3}=M e ; c R^{1}=4-M e O, R^{2}=C F_{3}, R^{3}=M e ; d R^{1}=4-C I, R^{2}=C F_{3}, R^{3}=B n ;$ e $R^{1}=H, R^{2}=C F F_{3}, R^{3}=\mathrm{Bn} ; \mathbf{f} \mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=\mathrm{MOM} ; \boldsymbol{g} \mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}$;
$h R^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} ; i \mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=i-\mathrm{Pr} ; j \mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=\mathrm{Me} \mathrm{e}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} ;$
$k R^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=\mathrm{PhSO}_{2}$
$2 R^{1}=4-C l, R^{2}=C F_{3}, R^{3}=H ; 8$ a $R^{1}=4-C l, R^{2}=M e, R^{3}=H ; b R^{1}=4-C l, R^{2}=C F_{3}, R^{3}=M e ; c R^{1}=H, R^{2}=C F_{3}, R^{3}=M e ;$
$d R^{1}=4-M e O, R^{2}=C F_{3}, R^{3}=M e ; e R^{1}=4-C l, R^{2}=C F_{3}, R^{3}=B n ; f R^{1}=H, R^{2}=C F_{3} . R^{3}=B n ; g R^{1}=4-C l, R^{2}=C F_{3}, R^{3}=M O M$;
$h R^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} ; i \mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} ; j \mathrm{R}^{1}=4-\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=\mathrm{PhSO}_{2} ;$
$k R^{1}=4-\mathrm{CI}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=i-\mathrm{Pr} ; I \mathrm{R}^{1}=4-\mathrm{CI}, \mathrm{R}^{2}=\mathrm{CF}_{3}, \mathrm{R}^{3}=\mathrm{Me}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}$
Chem. Heterocycl. Compd. 2022, 58(12), 737-748 [Химия гетерочикл. соединений 2022, 58(12), 737-748]

Scheme 4. Synthesis of 4,5-diarylisoxazoles 18 and 20

Novel isoxazole-based analogs $13 \mathrm{a}-\mathrm{e}, 14$, and 15 were obtained from isoflavone derivatives $\mathbf{6 c}, 7 \mathbf{d}, \mathbf{f}, \mathbf{i} \mathbf{j} \mathbf{j}$ (Scheme 3). Their reaction with hydroxylamine provided isoxazoles 13a-e. ${ }^{6} O$-MOM-protected product 13 c was methylated at the free phenolic OH group, and the resulting derivative 14 was subjected to MOM deprotection in acid media to obtain isoxazole 15.

Not previously described deoxygenated diarylisoxazole analogs 18 and $\mathbf{2 0}$ were prepared starting from isoflavone derivative 6c (Scheme 4). Triflate formation with subsequent reduction has been tried. First, isoflavone 6 c transformed to triflate 16 in which the $\mathrm{C}-\mathrm{O}$ bond was cleaved under Pdcatalyzed hydrogenolysis conditions using triethylsilane as hydrogen transfer reagent. The resulting isoflavone derivative 17 was converted to isoxazole 18. It was then transformed to triflate 19 which was reduced to give product 20.

Previously reported isoxazole 21a and the novel isoxazole 21b without a substituent in position 4 of heterocycle were prepared starting from diketones $\mathbf{9 a , b}$ (Scheme 5).

Scheme 5. Synthesis of 4,5-diarylisoxazoles 21

All synthesized compounds 8a-1, 10a-d, 12, 13a-e, 15, 18, 20, 21a,b were subjected to in vitro growth inhibiton tests of Staphylococcus aureus Newman. The results of these tests are summarized in Tables 1-4.

Compound with methyl group as R^{2} substituent (compound 8a, Table 1) exhibited fourfold lower potency compared to the original hit $\mathbf{2}$.

An improvement of the antibacterial potency was achieved by addition of methyl group as R^{3} substituent (compound $\mathbf{8 b}$, Table 1). Replacement of 4 -chlorophenyl with phenyl group as $\mathrm{R}^{1} \mathrm{C}_{6} \mathrm{H}_{4}$ substituent (compound 8 c) or 4 -methoxyphenyl group (compound $\mathbf{8 d}$) slightly decreased the antibacterial potency. However, O-benzyl group as R^{3} substituent had a positive effect to antibacterial potency (compounds 8e,f). Curiously, in the case of compounds 8e,f, the difference in R^{1} substitution did not affect MIC values which were retained around $1.56 \mu \mathrm{~g} / \mathrm{ml}$ for both of

Table 1. Antibacterial activity of compounds 8a-1

		Co-I		
Compound	R^{\prime}	R^{2}	R^{3}	MIC, ${ }^{*} \mu \mathrm{~g} / \mathrm{ml}$
8 a	4-Cl	Mc	H	25
8 b	$4-\mathrm{Cl}$	CF_{3}	Me	3.12
8 c	H	CF_{3}	Me	12.5
8 d	4 -OMe	CF_{3}	Me	12.5
8 c	4-Cl	CF_{3}	Bn	1.56
8 f	H	CF_{3}	Bn	1.56
8 g	4-Cl	CF_{3}	MOM	3.12
8h	$4-\mathrm{Cl}$	CF_{3}	2,6-Cl $\mathrm{Cl}_{2} \mathrm{Bn}$	1.56
81	$4-\mathrm{Cl}$	CF_{3}	$4-\mathrm{BrBn}$	1.56
8 j	$4-\mathrm{Cl}$	CF_{3}	PhSO_{2}	1.56
8k	$4-\mathrm{Cl}$	CF_{3}	$i-\mathrm{Pr}$	0.78
81	4-Cl	CF_{3}	i-Amyl	<0.39

[^1]Chem. Heterocycl. Compd. 2022, 58(12), 737-748 [Химия гетерочикл. соединений 2022, 58(12), 737-748]

Table 2. Antibacterial activity of compounds 10a-d, 12

Compound	R^{1}	R^{2}	$\mathrm{MIC},{ }^{*} \mu \mathrm{~g} / \mathrm{ml}$
$\mathbf{1 0 a}$	H	Ph	50
$\mathbf{1 0 b}$	H	2-(HO)-4-(MeO) $\mathrm{C}_{6} \mathrm{H}_{3}$	25
$\mathbf{1 0 c}$	H	2-(HO) $\mathrm{C}_{6} \mathrm{H}_{4}$	125
$\mathbf{1 0 d}$	H	2,4-di(HO) $\mathrm{C}_{6} \mathrm{H}_{3}$	250
$\mathbf{1 2}$	4-ClC $\mathrm{Cl}_{6} \mathrm{H}_{5}$	Ph	1.56

* Staphylococcus aureus Newman.
the compounds. MOM group as R^{3} substituent (compound 8 g) only slightly increased activity in comparison with hit compound 2. Substitution of benzyl group with 2,5 -dichlorobenzyl (compound 8h), 4-bromobenzyl (compound 8i), and phenylsulfonyl (compound $8 \mathbf{j}$) group did not change the activity of the compounds in comparison with benzyl analog 8 e . The best antimicrobial activity in this series was exhibited by the compounds bearing lipophilic R^{3} substituents such as isopropyl group (compound $\mathbf{8 k}$) and isoamyl group (compound 81).
Derivatives 10a-d lacking substituents at position 4 of pyrazole ring showed significantly worse results in comparison with the hit compound 2 (Table 2). However, compound $\mathbf{1 2}$ with 4 -chlorophenyl group as R^{i} substituent and phenyl group as R^{2} substituent exhibited activity four times higher than compound 2 (Table 2). These results point to the importance of the two aryl substituents at the pyrazole ring to ensure high antimicrobial potency. In addition, the high antimicrobial potency of compound 12 implies that hydroxyl groups at the phenyl group as the R^{1} substituent are not essential.

Isoxazole analogs 13a-e (Table 3) showed similar potency and SAR to their pyrazole peers $\mathbf{8 e}, \mathbf{g}, \mathrm{k}, \mathbf{l}$, (Table 1). An interesting deviation was observed for isoxazoles 15, 18,

Table 3. Activity of isoxazole-based compounds $13 \mathrm{a}-\mathrm{e}$

Compound	R^{3}	MIC,* $\mu \mathrm{g} / \mathrm{ml}$
13a	H	3.12
13b	Bn	0.78
13e	MOM	3.12
13 d	i - Pr	0.78
13e	i-Amyl	<0.39

[^2]Table 4. Activity of simplified isoxazole-based compounds 15, 18, 20, 21a,b

Compound	R^{\prime}	R^{2}	MIC, ${ }^{*} \mu \mathrm{~g} / \mathrm{ml}$
$21 \mathrm{a}$	H	Ph	Inactive
21b	H	2-(HO)-4-(McO) $\mathrm{C}_{6} \mathrm{H}_{3}$	6.25
15	4- $\mathrm{ClC}_{6} \mathrm{H}_{5}$	2 -(MeO)-4-(HO)C6 C_{3}	3.12
18	$4-\mathrm{ClC}_{6} \mathrm{H}_{5}$	$2-(\mathrm{HO}) \mathrm{C}_{6} \mathrm{H}_{4}$	3.12
20	$4-\mathrm{ClC}_{6} \mathrm{H}_{5}$	Ph	Inactive

20, and 21a,b (Table 4). Compound 21a, contrary to its pyrazole-based analog 10a, completely lost activity against S. aureus. Compound 21b possesses increased activity level in comparison with compound 10b. Surprisingly, methylation of o-hydroxy group in R^{2} substituent (compound 15, Table 4) did not affect MIC value - it was retained at $3.12 \mu \mathrm{~g} / \mathrm{ml}$. Finally, compound $\mathbf{2 0}$ totally lost the antimicrobial potency (Table 4) in comparison with pyrazole derivative $\mathbf{1 2}$ having the same substitution pattern (Table 2).

The most efficient compounds, such as $\mathbf{8 k}, \mathbf{1}$ were exhibiting activity level against Staphylococcus aureus Newman comparable with well-known antibiotics such as ampicillin (MIC $1.0 \mu \mathrm{~g} / \mathrm{ml}$), ciprofloxacin (MIC $0.5 \mu \mathrm{~g} / \mathrm{ml}$), and vancomycin (MIC $1.0 \mu \mathrm{~g} / \mathrm{ml}$).

The SAR of the compounds provides the directions for further structural improvements to achieve more potent phenylazole-based antimicrobials. Thus, introduction of the lipophilic groups at position 5 of phenolic ring of the molecule increased the potency of compounds $\mathbf{8 e}, \mathbf{k}$. Further increase of lipophilicity in this position could increase the potency. Additionally, further work should explore another suitable 5 -membered cycles such as imidazole, 1,2,3-triazole, or isothiazole as scaffolds to improve the potency of the compounds. Nevertheless, the SAR of the pairs of compounds $\mathbf{1 2}$ and $\mathbf{2 0}$, or $\mathbf{1 8}$ and $\mathbf{2 0}$ implies that at least one NH or OH group should be retained in the inhibitor to preserve its potency.

Our investigation of growth inhibition of S. aureus Newman by 3,4 -diphenylpyrazole and 4,5-diphenylisoxazole derivatives lead to several very potent antibacterial compounds. The most potent growth inhibitors were pyrazole-based compounds $\mathbf{8 k}, \mathbf{1}$ and their isoxazole analogs 13d,e with MIC $<1 \mu \mathrm{~g} / \mathrm{ml}$. The studies revealed the most crucial elements for their antimicrobial activity. The structure should contain at least one hydrogen bond donor either in heterocycle or at aryl groups. Pyrazole replacement with isoxazole in most cases did not affect activity, however, several differences were found. For example, both aryl groups were needed at positions 3 and 4 for pyrazole-based compounds to exhibit high potency, however, relatively potent compound 21b was found in
isoxazole series lacking aryl group at position 3 of isoxazole. The mechanism of action for pyrazole- and isoxazole-based S. aureus growth inhibitors needs further investigation.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded on 300,400 , or 600 MHz Bruker spectrometers. ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on 400 (101 and 376 MHz , respectively) or 600 MHz Bruker spectrometers (151 and 564 MHz , respectively) using the residual solvent peak as internal reference $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ nuclei and 77.2 ppm for ${ }^{13} \mathrm{C}$ nuclei; DMSO- $d_{6}: 2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ nuclei and 39.5 ppm for ${ }^{13} \mathrm{C}$ nuclei; $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}: 2.05 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ nuclei and 29.8 and 206.3 ppm for ${ }^{13} \mathrm{C}$ nuclei). HRMS were determined on a Waters Synapt G2-Si hybrid quadrupole time-of-flight (TOF) mass spectrometer equipped with an electron spray ion source (ESI). Melting points were detected with an OptiMelt MPA100 melting point apparatus, with a heating rate of $3^{\circ} \mathrm{C} / \mathrm{min}$. When necessary, compounds were purified by crystallization or by column chromatography on silica gel (petroleum ether - EtOAc gradient).

Reagents were purchased from commercial sources and used as received. Reactions requiring anhydrous conditions were performed with the usual precautions for rigorous exclusion of moisture.

Synthesis of 1-(2,4-dihydroxyphenyl)-2-phenylethan-1-ones 5a-c (General method). Procedure described in literature have been used. ${ }^{8} \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(15.46 \mathrm{ml}, 17.47 \mathrm{~g}$, 123 mmol) was added slowly to a solution of resorcinol (3) $(4.52 \mathrm{~g}, 41 \mathrm{mmol})$ and phenylacetic acid $\mathbf{4 a - c}(41 \mathrm{mmol})$ in anhydrous $\mathrm{PhMe}(120 \mathrm{ml})$. Resulting solution was heated at $100^{\circ} \mathrm{C}$ for 3 h and cooled down to room temperature. The mixture was poured into saturated NaOAc solution $(300 \mathrm{ml})$ and then partitioned with EtOAc $(300 \mathrm{ml})$. The EtOAc extract was washed with brine $(2 \times 200 \mathrm{ml})$. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Thus obtained crude product was triturated with PhMe or purified by column chromatography on silica gel using gradient EtOAc in petroleum ether.

1-(2,4-Dihydroxyphenyl)-2-phenylethan-1-one (5a) was synthesized from phenylacetic acid (4a) (1.1 g). Yield 1.23 g (66%), yellowish sticky oil. Spectral data was in accordance with the previously reported. ${ }^{9}$

2-(4-Chlorophenyl)-1-(2,4-dihydroxyphenyl)ethan-1-one (5b) was synthesized from 4-chlorophenylacetic acid (4b) $(7.0 \mathrm{~g})$. Yield $6.0 \mathrm{~g}(56 \%)$, slightly pink solid. Spectral data was in accordance with the previously reported. ${ }^{10}$

1-(2,4-Dihydroxyphenyl)-2-(4-methoxyphenyl)ethan-1-one (5c) was synthesized from 4-methoxyphenylacetic acid (4c) (350 mg). Yield $640 \mathrm{mg}(78 \%)$, yellowish solid. Spectral data was in accordance with the previously reported. ${ }^{11}$

3-(4-Chlorophenyl)-7-hydroxy-2-methyl-4H-chromen-4-one (6a). Procedure, described in literature, have been used. ${ }^{12}$ 2-(4-Chlorophenyl)-1-(2,4-dihydroxyphenyl)ethan-1-one (5b) ($700 \mathrm{mg}, 2.7 \mathrm{mmol}$) and anhydrous NaOAc $(437 \mathrm{mg}, 5.4 \mathrm{mmol})$ were dissolved in $\mathrm{Ac}_{2} \mathrm{O}(4 \mathrm{ml}$, 42.6 mmol). The mixture was refluxed for 14 h , cooled,
and poured into $\mathrm{H}_{2} \mathrm{O}$. The precipitate was filtered off, dried, and recrystallized from EtOH to obtain acylated intermediate as a slightly yellow solid ($594 \mathrm{mg}, 1.8 \mathrm{mmol}$). This material was suspended in $\mathrm{EtOH}(5 \mathrm{ml})$, and aqueous $\mathrm{NaOH}(86.7 \mathrm{mg}, 2.2 \mathrm{mmol})$ was added thereto. After heating at $50^{\circ} \mathrm{C}$ for 15 min , solvent was distilled off under reduced pressure, residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and acidified by 1 M HCl . Formed precipitate was filtered off and dried. Yield 496 mg (65% over 2 steps), white-beige solid. Spectral data was in accordance with the previously reported. ${ }^{12}$

Synthesis of 7-hydroxy-3-phenyl-2-(trifluoromethyl)4 H -chromen-4-ones 6 b -d (General method). Procedure, described in literature, have been used. ${ }^{13}$ Trifluoroacetic acid anhydride ($9 \mathrm{ml}, 13.6 \mathrm{~g}, 64.8 \mathrm{mmol}$) was added dropwise to an ice-cooled solution of deoxybenzoin (16.2 mmol) in pyridine $(20 \mathrm{ml})$. The resulting solution was stirred for 14 h at room temperature. Reaction mixture was diluted with $\mathrm{EtOAc}(200 \mathrm{ml})$, washed with $1 \mathrm{M} \mathrm{HCl}(3 \times 150 \mathrm{ml})$, brine $(150 \mathrm{ml})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by evaporation in vacuo. Crude product was triturated with $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, 1: 1$ (for compounds $\mathbf{6 b , c}$) or EtOAc - petroleum ether, $1: 3$ (for compound $\mathbf{6 d}$) mixture.

7-Hydroxy-3-phenyl-2-(trifluoromethyl)-4H-chromen-4-one (6b) was synthesized from compound 5a (570 mg). Yield $497 \mathrm{mg}(65 \%)$, white-beige solid. Spectral data was in accordance with the previously reported. ${ }^{14}$

3-(4-Chlorophenyl)-7-hydroxy-2-(trifluoromethyl)$\mathbf{4 H}$-chromen-4-one (6 c) was synthesized from compound 5b $(4.25 \mathrm{~g})$. Yield $3.47 \mathrm{~g}(63 \%)$, white-yellow solid, $\mathrm{mp} 248-250^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 11.18(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; 7.93(1 \mathrm{H}, \mathrm{d}, J=8.8$, $\mathrm{H}-5) ; 7.52\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.31(2 \mathrm{H}, \mathrm{d}, J=8.5$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.02(1 \mathrm{H}, \mathrm{dd}, J=8.8, J=2.2, \mathrm{H}-8) ; 6.96(1 \mathrm{H}, \mathrm{d}$, $J=2.2$, H-6). ${ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}\right.$, DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 175.1 ; 164.1 ; 156.6 ; 146.8(\mathrm{q}, J=35.5)$; $133.6 ; 131.9 ; 128.6 ; 128.2 ; 127.6 ; 124.0 ; 119.4$ (q, $J=276.4$); 116.6; 115.5; 102.4. ${ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz , DMSO- d_{6}), δ, ppm: -62.86 . Found, $m / z: 341.0198[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{O}_{3}$. Calculated, $m / z: 341.0192$.

7-Hydroxy-3-(4-methoxyphenyl)-2-(trifluoromethyl)$4 H$-chromen-4-one (6 d) was synthesized from compound 5c (640 mg). Yield 258 mg (31%), light-brown solid. Spectral data was in accordance with the previously reported. ${ }^{13}$

Synthesis of 7-(alkyloxy)-3-(4-chlorophenyl)-2-(tri-fluoromethyl)-4 H -chromen-4-ones $7 \mathrm{a}-\mathrm{j}$ (General method). Alkyl chloride, iodide, or bromide $(0.6 \mathrm{mmol})$ was added to a stirred solution of compound $\mathbf{6 b}-\mathbf{d}(0.45 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$ in DMF $(3 \mathrm{ml})$. The resulting solution was stirred for 14 h at room temperature. Reaction mixture was diluted with EtOAc $(50 \mathrm{ml})$, washed with brine $(3 \times 50 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Crude product was crystallized from EtOH .

3-(4-Chlorophenyl)-7-methoxy-2-(trifluoromethyl)$\mathbf{4 H}$-chromen-4-one (7a) was synthesized from compound $\mathbf{6 c}(300 \mathrm{mg})$, using MeI as alkylating agent. Yield 258 mg (83%), white solid, mp $162-164^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}(J, \mathrm{~Hz}): 8.12(1 \mathrm{H}, \mathrm{d}, J=8.9$,

H-5); $7.42\left(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.20(2 \mathrm{H}, \mathrm{d}, J=8.4$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.05(1 \mathrm{H}, \mathrm{dd}, J=8.9, J=2.4, \mathrm{H}-8) ; 6.95(1 \mathrm{H}, \mathrm{d}$, $J=2.3, \mathrm{H}-6) ; 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 175.9 ; 165.3 ; 157.1$; 148.3 ($\mathrm{q}, J=36.5$) ; 135.1; 131.4; 128.7; 128.0; 127.7; 124.6; $119.4(\mathrm{q}, J=276.7) ; 117.1 ; 116.2 ; 100.3 ; 56.2 .{ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ, ppm: -63.56 . Found, m / z : $355.0360[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{O}_{3}$. Calculated, $m / z: 355.0349$.

7-Methoxy-3-phenyl-2-(trifluoromethyl)-4H-chromen-4-one (7b) was synthesized from compound $\mathbf{6 b}(200 \mathrm{mg})$ using MeI as alkylating agent. Yield 98 mg (47%), yellowish solid. Spectral data was in accordance with the previously reported. ${ }^{15}$

7-Methoxy-3-(4-methoxyphenyl)-2-(trifluoromethyl)$\mathbf{4 H}$-chromen-4-one (7c) was synthesized from compound $\mathbf{6 d}(138 \mathrm{mg})$ using MeI as alkylating agent. Yield 114 mg (79%), beige solid, mp $135-138^{\circ} \mathrm{C} .{ }^{\circ} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}(J, \mathrm{~Hz}): 8.13(1 \mathrm{H}, \mathrm{d}, J=8.9$, $\mathrm{H}-5) ; 7.19\left(2 \mathrm{H}, \mathrm{d}, J=8.7, \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \mathrm{OMc}\right) ; 7.03(1 \mathrm{H}, \mathrm{dd}, J=8.9$, $J=2.4, \mathrm{H}-8) ; 6.97\left(2 \mathrm{H}, \mathrm{d}, J=8.8, \mathrm{H} \mathrm{Ar}, \mathrm{C}_{6} \underline{H}_{4} \mathrm{OMe}\right) ; 6.94$ $(1 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{H}-6) ; 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.85(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$, ppm $(J, \mathrm{~Hz}): 176.5 ; 165.1 ; 160.1 ; 157.1 ; 148.1(\mathrm{q}, J=35.6)$; $131.2 ; 128.0 ; 125.5 ; 121.2 ; 119.6(\mathrm{q}, J=275.8) ; 117.3 ; 116.0$, $113.9,100.2,56.2,55.4 .{ }^{19} \mathrm{~F}$ NMR spectrum $(376 \mathrm{MHz}$, DMSO- d_{6}), δ, ppm: -62.58 . Found, $m / z: 351.0857[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{4}$. Calculated, $m / z: 351.0844$.

7-(Benzyloxy)-3-(4-chlorophenyl)-2-(trifluoromethyl)$\mathbf{4 H}$-chromen-4-one (7 d) was synthesized from compound $\mathbf{6 c}(500 \mathrm{mg})$ using BnBr as alkylating agent. Yield 585 mg (92%), white solid, mp $160-162^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}(J, \mathrm{~Hz}): 8.14(1 \mathrm{H}, \mathrm{d}, J=8.9$, H-5); 7.49-7.35 (7H, m, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 7.20(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.13(1 \mathrm{H}, \mathrm{dd}, J=8.9, J=2.4, \mathrm{H}-8) ; 7.03$ $(1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}-6) ; 5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Ph}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 175.9 ; 164.3$; 156.9; 148.3 (q, $J=36.2$); 135.4; 135.1; 131.4; 129.0; 128.7 (2C); 128.1; 127.7; 127.6; 124.6; 119.4 (q, $J=276.8$); 117.3; 116.7; 101.4; 70.9. ${ }^{19} \mathrm{~F}$ NMR spectrum $(376 \mathrm{MHz}$, DMSO- d_{6}), δ, ppm: -62.74 . Found, $m / z: 431.0672[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{O}_{3}$. Calculated, $m / z: 431.0662$.

7-(Benzyloxy)-3-phenyl-2-(trifluoromethyl)-4 H-chromen-4-one (7e) was synthesized from compound $\mathbf{6 b}$ (180 mg) using BnBr as alkylating agent. Yield 60 mg (26%), white solid, mp $123-125^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz}$, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 8.02(1 \mathrm{H}, \mathrm{d}, J=9.1, \mathrm{H}-5) ; 7.53-$ $7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ph}) ; 7.44-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ph}) ; 7.37-7.32$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ph}) ; 7.32-7.27(2 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ph}) ; 7.26(1 \mathrm{H}, \mathrm{d}, J=2.2$, $\mathrm{H}-8) ; 7.20(1 \mathrm{H}, \mathrm{dd}, J=8.9, J=2.4, \mathrm{H}-6) ; 5.34(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$, $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 176.1 ; 165.1 ; 157.8 ; 148.3(\mathrm{q}, J=35.7)$; $137.1 ; 130.9(\mathrm{q}, J=1.4) ; 130.7 ; 129.5 ; 129.3 ; 129.1 ; 128.7$; 128.6; 128.2; 126.6; 120.6 (q, $J=275.6$); 118.1; 117.3; $102.3 ; 71.5 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$, δ, ppm: -64.31 . Found, $m / z: 397.1057[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{3}$. Calculated, $m / z: 397.1052$.

3-(4-Chlorophenyl)-7-(methoxymethoxy)-2-(trifluoro-methyl)-4H-chromen-4-one (7f) was synthesized from compound $6 \mathrm{c}(400 \mathrm{mg})$ using MOMCl as alkylating agent.

Yield $262 \mathrm{mg}(58 \%)$, off-white solid, mp $125-127^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 8.14$ $(1 \mathrm{H}, \mathrm{d}, J=8.9, \mathrm{H}-5) ; 7.42\left(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.23-$ $7.17(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.13(1 \mathrm{H}, \mathrm{dd}, J=8.9, J=2.3, \mathrm{H}-6)$; $5.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}):$ $176.0 ; 162.7 ; 156.7 ; 148.5(\mathrm{q}, J=36.2) ; 135.2 ; 131.4$; $128.7 ; 128.0 ; 127.7 ; 124.6 ; 119.4$ (q, $J=276.4$); 117.9; $117.0 ; 103.3 ; 94.6 ; 56.7 .{ }^{19} \mathrm{~F}$ NMR spectrum $(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta$, ppm: -63.57 . Found, $m / z: 385.0465[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{O}_{4}$. Calculated, $m / z: 385.0454$.

3-(4-Chlorophenyl)-7-[(2,6-dichlorobenzyl)oxy]-2-(tri-fluoromethyl)-4H-chromen-4-one (7 g) was synthesized from compound $\mathbf{6 c}(150 \mathrm{mg}$) using 2-(bromomethyl)-1,3dichlorobenzene as alkylating agent. Yield $172 \mathrm{mg}(78 \%)$, light-yellow solid, mp $196-197^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 8.16(1 \mathrm{H}, \mathrm{d}, J=9.4, \mathrm{H}-5)$; $7.46-7.39(4 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.31(1 \mathrm{H}, \mathrm{dd}, J=8.8, J=7.2$, H Ar); $7.21\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.16-7.10(2 \mathrm{H}, \mathrm{m}$, H Ar); $5.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$, ppm $(J, \mathrm{~Hz}): 175.9 ; 164.3 ; 156.9$; $137.2 ; 135.2 ; 131.4 ; 131.2 ; 130.9 ; 128.8 ; 128.7 ; 128.1$; $127.7 ; 124.7 ; 119.4(\mathrm{~d}, J=276.6) 117.5 ; 116.6 ; 101.3$; 100.1; 65.9. ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$, ppm: -63.55 . Found, $m / z: 498.9877[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{23} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{O}_{3}$. Calculated, $m / z: 498.9882$.

7-[(4-Bromobenzyl)oxy]-3-(4-chlorophenyl)-2-(trifluoro-methyl)-4H-chromen-4-one (7h) was synthesized from compound 6 c (150 mg) using 1-bromo-4-(bromomethyl)benzene as alkylating agent. Yield $114 \mathrm{mg}(51 \%)$, pink solid, mp $153-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 8.14(1 \mathrm{H}, \mathrm{d}, J=8.9, \mathrm{H}-5) ; 7.56(2 \mathrm{H}, \mathrm{d}, J=8.4$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right) ; 7.42\left(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.33(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right) ; 7.20\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.11(1 \mathrm{H}$, dd, $J=8.9, J=2.4, \mathrm{H}-8) ; 7.00(1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}-6) ; 5.15$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right) .{ }^{13} \mathrm{C}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 175.9 ; 164.0 ; 156.9 ; 148.4(\mathrm{q}, J=36.0)$; $135.2 ; 134.4 ; 132.2 ; 131.3 ; 129.2 ; 128.7 ; 128.2 ; 127.6$; $124.7 ; 122.7 ; 120.8 ; 119.4$ (q, $J=276.7$); 116.6; 101.4; 70.1. ${ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ, ppm: -63.53 . Found, $m / z: 508.9775[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{23} \mathrm{H}_{14} \mathrm{BrClF}_{3} \mathrm{O}_{3}$. Calculated, $m / z: 508.9767$.

3-(4-Chlorophenyl)-7-isopropoxy-2-(trifluoromethyl)-4H-chromen-4-one (7i) was synthesized from compound $\mathbf{6 c}(250 \mathrm{mg})$ using i-PrI as alkylating agent. Yield 275 mg (98%), yellowish solid, mp $128-130^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 8.11(1 \mathrm{H}, \mathrm{d}, J=8.9, \mathrm{H}-5)$; $7.42\left(2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.20(2 \mathrm{H}, \mathrm{d}, J=8.4$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.00(1 \mathrm{H}, \mathrm{dd}, J=8.9, J=2.3, \mathrm{H}-8) ; 6.91(1 \mathrm{H}, \mathrm{d}$, $J=2.3, \mathrm{H}-6) ; 4.70\left(1 \mathrm{H}\right.$, hept, $\left.J=5.8, \mathrm{OC} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.43$ $\left(6 \mathrm{H}, \mathrm{d}, J=6.1, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 175.9 ; 163.8 ; 157.1 ; 148.2$ (q, $J=36.3$) ; 135.1; 131.4; 128.7; 128.0; 127.8; 124.6; 119.5 (q, $J=276.7$); 117.2; 116.8; 101.5; 71.3; 21.9. ${ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ, ppm: -63.58 . Found, m / z : $383.0656[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{O}_{3}$. Calculated, $m / z: 383.0662$.

3-(4-Chlorophenyl)-7-(isopentyloxy)-2-(trifluoromethyl)$\mathbf{4 H}$-chromen-4-one (7 j) was synthesized from compound $6 \mathrm{c}(250 \mathrm{mg})$ using isoamyl bromide as alkylating agent.

Chem. Heterocycl. Compd. 2022, 58(12), 737-748 [Химия гетероцикл. соединений 2022, 58(12), 737-748]

Yield $297 \mathrm{mg}(98 \%)$, yellow solid, mp $80-82^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 8.11(1 \mathrm{H}, \mathrm{d}$, $J=8.9, \mathrm{H}-5) ; 7.42\left(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.20(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.03(1 \mathrm{H}, \mathrm{dd}, J=8.9, J=2.3, \mathrm{H}-8) ; 6.94$ ($1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}-6$); $4.12\left(2 \mathrm{H}, \mathrm{t}, J=6.6, \mathrm{OCH} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right.$) ; $1.95-1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.77(2 \mathrm{H}, \mathrm{t}, J=6.5$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$); $1.00\left(6 \mathrm{H}, \mathrm{d}, J=6.5, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right.$). ${ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}(J, \mathrm{~Hz}):$ 175.9; 164.8; $157.1 ; 148.3$ ($\mathrm{q}, J=36.3$); 135.1; 131.4; 128.6; 127.9; 124.6; 119.5 (q, $J=276.7$); 116.9; 116.6; $110.2 ; 100.7 ; 67.6 ; 37.7 ; 25.2 ; 22.7 .{ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta, \mathrm{ppm}:-63.59$. Found, $m / z: 411.0981$ $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClF}_{3} \mathrm{O}_{3}$. Calculated, $m / z: 411.0975$.
3-(4-Chlorophenyl)-4-ox0-2-(trifluoromethyl)-4H-chromen-7-yl benzenesulfonate (7k). Phenylsulfonyl chloride ($233 \mathrm{mg}, 1.33 \mathrm{mmol}$) was added to a stirred solution of compound $6 \mathrm{c}(300 \mathrm{mg}, 0.88 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(245 \mu \mathrm{l}, 1.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. Resulting solution was stirred for 14 h at room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$, washed with brine ($3 \times 50 \mathrm{ml}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Crude product was purified by silica gel column chromatography, using gradient from 5 to 20\% EtOAc in petroleum ether. Yield $390 \mathrm{mg}(92 \%)$, brown oil. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , $\left.\mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 8.16(1 \mathrm{H}, \mathrm{d}, J=8.8, \mathrm{H}-5) ; 7.91$ ($2 \mathrm{H}, \mathrm{d}, J=7.3, \mathrm{H} \mathrm{Ar}) ; 7.74(1 \mathrm{H}, \mathrm{t}, J=7.5, \mathrm{H} \mathrm{Ar}) ; 7.60$ $(2 \mathrm{H}, \mathrm{t}, J=7.9, \mathrm{HAr}) ; 7.49-7.35(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.18(2 \mathrm{H}$, d, $\left.J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.07(1 \mathrm{H}, \mathrm{dd}, J=8.8, J=2.2, \mathrm{H}-6)$. ${ }^{13} \mathrm{C}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta, \mathrm{ppm}(J, \mathrm{~Hz})$: 175.9; 155.4; 154.1; 149.1 (q, $J=36.6$); 135.5; 135.1; 135.0; $131.2 ; 129.7 ; 128.8 ; 128.6 ; 128.5 ; 127.0 ; 125.0 ; 121.9 ; 121.0 ;$ $119.2(\mathrm{q}, J=277.2) ; 112.4 .{ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz , CDCl_{3}), δ, ppm: -63.56 . Found, $m / z: 481.0128[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{O}_{5} \mathrm{~S}$. Calculated, $m / z: 481.0124$.
Synthesis of pyrazoles 2, 8a-1 (General method). Hydrazine hydrate ($1.3 \mathrm{ml}, 27.6 \mathrm{mmol}$) was added to a stirred solution of compound $\mathbf{6 a , c}, 7 \mathrm{a}-\mathrm{k}(0.67 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{ml})$. Resulting solution was stirred for 2 h at reflux. Reaction mixture was evaporated to dryness and triturated with cold $\mathrm{H}_{2} \mathrm{O}$.
4-[4-(4-Chloropheny)-5-(trifluoromethyl)-1 H -pyrazol-3-yl]benzene-1,3-diol (2) was synthesized from compound $6 \mathrm{c}(258 \mathrm{mg})$. Yield $208 \mathrm{mg}(77 \%)$, white solid. Spectral data was in accordance with the previously reported. ${ }^{16}$

4-[4-(4-Chlorophenyl)-5-methyl-1 H-pyrazol-3-yl]-benzene-1,3-diol (8a) was synthesized from compound 6a $(183 \mathrm{mg})$. Yield $158 \mathrm{mg}(94 \%)$, white solid, $\mathrm{mp} 231-234^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz , DMSO- d_{6}), $\delta, \mathrm{ppm}(J, \mathrm{~Hz})$: $12.52(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; 10.58(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 9.38(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $7.37-7.20\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.76(1 \mathrm{H}, \mathrm{d}, J=7.8, \mathrm{H} \mathrm{Ar})$; 6.29-6.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}$); $2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum (101 MHz, DMSO- d_{6}), δ, ppm: 157.9; 157.0 ; 147.0; 137.6; 131.4; 130.3; 128.8; 128.5; 128.1; 115.1; 109.7; 106.3; 102.8; 12.9. Found, $m / z: 301.0752[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{2}$. Calculated, m / z : 301.0744 .

2-[4-(4-Chlorophenyl)-5-(trifluoromethyl)-1 H -pyrazol-3-yl|-5-methoxyphenol (8b) was synthesized from compound $7 \mathrm{a}(600 \mathrm{mg})$. Yield $600 \mathrm{mg}(96 \%)$, white-beige solid, mp $178-180^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $(300 \mathrm{MHz}$,

DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.39\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)$; $7.19\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.85(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-5)$; $6.42(1 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{H}-2) ; 6.29(1 \mathrm{H}, \mathrm{dd}, J=8.5, J=2.4, \mathrm{H}-6)$; $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum (101 MHz , DMSO- d_{6}), $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 161.2 ; 156.8 ; 139.8 ; 138.1(\mathrm{q}, J=36.0)$; 132.2; 131.9; 131.4; 130.6; 128.4; 122.2 ($\mathrm{q}, J=269.2$); 116.9; 107.8; 105.0; 101.5; 55.2. ${ }^{19}$ F NMR spectrum (376 MHz , DMSO- d_{6}), δ, ppm: -57.88 . Found, $m / z: 369.0628[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, $m / z: 369.0618$.

5-Methoxy-2-[4-phenyl-5-(trifluoromethyl)-1H-pyrazol-3-yllphenol ($8 \mathbf{c}$) was synthesized from compound $7 \mathbf{b}$ (91 mg). Yield $82 \mathrm{mg}(86 \%)$, white solid, $\mathrm{mp} 145-147^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.35-7.24$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.21-7.14(2 \mathrm{H}, \mathrm{m}, \mathrm{H}$ Ar); $6.85(1 \mathrm{H}, \mathrm{d}, J=8.5$, H-3); 6.45 ($1 \mathrm{H}, \mathrm{d}, J=2.5, \mathrm{H}-6$); 6.31 ($1 \mathrm{H}, \mathrm{dd}, J=8.6, J=2.5$, $\mathrm{H}-4) ; 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $(101 \mathrm{MHz}$, DMSO- d_{6}), $\delta, \operatorname{ppm}(J, H z): 160.9 ; 156.7 ; 139.3 ; 138.1(\mathrm{q}$, $J=34.8) ; 131.8 ; 131.5 ; 129.6 ; 128.1 ; 127.1 ; 122.2(\mathrm{q}$, $J=269.2$) ; 118.0; 108.0; 104.7; 101.3; 55.0. ${ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz, DMSO- d_{6}), δ, ppm: -57.80 . Found, m / z : $335.1021[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, $m / z: 335.1007$.

5-Methoxy-2-[4-(4-methoxyphenyl)-5-(trifluoromethyl)1 H -pyrazol-3-yl]phenol (8d) was synthesized from compound $7 \mathrm{c}(102 \mathrm{mg})$. Yield $77 \mathrm{mg}(73 \%)$, beige powder, $\mathrm{mp} 75-79^{\circ} \mathrm{C} .{ }^{\circ} \mathrm{H}$ NMR spectrum (400 MHz, DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.09\left(2 \mathrm{H}, \mathrm{d}, J=8.2, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right) ; 6.87(3 \mathrm{H}$, $\mathrm{t}, J=8.2, \mathrm{HAr}) ; 6.45(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6) ; 6.32(1 \mathrm{H}, \mathrm{d}, J=9.9$, $\mathrm{H}-4) ; 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) ; 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum (101 MHz, DMSO- d_{6}), $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 160.7$; 158.3; 156.7; 139.2; 138.1 (q, $J=36.0$); 131.7; 130.7; 123.5; 122.3 (q, $J=270.1$); 117.6; 113.6; 108.2; 104.7; 101.3; $55.0(\mathrm{q}, J=4.4) .{ }^{19} \mathrm{~F}$ NMR spectrum $(376 \mathrm{MHz}$, DMSO- d_{6}), δ, ppm: -57.84 . Found, $m / z: 365.1121[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calculated, $m / z: 365.1113$.

5-(Benzyloxy)-2-[4-(4-chlorophenyl)-5-(trifluoromethyl)1 H -pyrazol-3-yl]phenol (8e) was synthesized from compound 7 d (289 mg). Yield $274 \mathrm{mg}(92 \%)$, white solid, $\mathrm{mp} 78-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum (300 MHz, DMSO- d_{6}), $\delta, \mathrm{ppm}(\mathrm{J}, \mathrm{Hz}): 7.46-7.28\left(7 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{6}\right)$; $7.18\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.89(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-3)$; $6.50(1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}-6) ; 6.43(1 \mathrm{H}, \mathrm{dd}, J=8.5, J=2.3$, H-4); $5.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum $(101 \mathrm{MHz}$ DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 160.2 ; 156.7 ; 139.8 ; 138.2(\mathrm{q}$, $J=34.7$); 136.9; 132.2; 131.9; 131.4; 130.6; 128.6; 128.4; 128.1; 127.9; 122.2 (q, $J=269.2$); 117.0; 108.0; 105.8; 102.4; 69.3. ${ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz , DMSO- d_{6}), δ, ppm: - 57.59 . Found, $m / z: 445.0934[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{23} \mathrm{H}_{1} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ Calculated, $m / z: 445.0931$.

5-(Benzyloxy)-2-[4-phenyl-5-(trifluoromethyl)-1 H -pyrazol-3-yllphenol ($8 \mathbf{f}$) was synthesized from compound $7 \mathrm{e}(48 \mathrm{mg})$. Yield $46 \mathrm{mg}(92 \%)$, white solid, $\mathrm{mp} 84-88^{\circ} \mathrm{C}$ ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz})$: $7.46-7.26\left(9 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 6.90(1 \mathrm{H}, \mathrm{d}, J=8.6$, $\mathrm{H}-3) ; 6.63(1 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{H}-6) ; 6.40(1 \mathrm{H}, \mathrm{dd}, J=8.6, J=2.4$, $\mathrm{H}-4), 5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right), \delta, \mathrm{ppm}(J, \mathrm{~Hz}): 161.4 ; 157.3 ; 140.3 ;$ $138.1 ; 132.9 ; 132.2 ; 131.1 ; 129.3 ; 129.1 ; 128.7 ; 128.5 ; 128.2$; 122.3 ($\mathrm{q}, J=268.8$); 119.0; 109.4; 107.0; 103.5; 70.5 ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right), \delta, \mathrm{ppm}:-59.66$.

Found, m / z : $411.1344[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, m / z : 411.1320.

2-[4-(4-Chlorophenyl)-5-(trifluoromethyl)-1 H-pyrazol-3-yl]-5-(methoxymethoxy)phenol (8 g) was synthesized from compound $7 \mathrm{f}(136 \mathrm{mg})$. Yield $117 \mathrm{mg}(83 \%)$, whitegray powder, mp $190-193^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz}$, DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 10.00(2 \mathrm{H}$, br. $\mathrm{s}, \mathrm{NH}, \mathrm{OH})$; $7.39\left(2 \mathrm{H}, \mathrm{d}, J=8.3, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.19(2 \mathrm{H}, \mathrm{d}, J=8.3$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.91(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-3) ; 6.57(1 \mathrm{H}, \mathrm{d}, J=2.0$, $\mathrm{H}-6) ; 6.43(1 \mathrm{H}, \mathrm{dd}, J=8.5, J=2.0, \mathrm{H}-4) ; 5.13(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right) ; \quad 3.35\left(3 \mathrm{H}, \quad \mathrm{s}, \quad \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ spectrum $\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right), \delta, \mathrm{ppm}(J, \mathrm{~Hz}): 158.5$; $156.6 ; 139.5 ; 138.1(\mathrm{q}, J=34.3) ; 132.0 ; 131.7 ; 131.3$; $130.5 ; 128.3 ; 122.1(\mathrm{q}, J=269.0) ; 116.9 ; 108.6 ; 106.9 ; 103.3$; 93.6; $55.6 .{ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), δ, ppm : -57.84 . Found, $m / z: 399.0735[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calculated, $m / z: 399.0723$.

2-[4-(4-Chlorophenyl)-5-(trifluoromethyl)-1H-pyrazol-3-yl]-5-[(2,6-dichlorobenzyl)oxylphenol (8h) was synthesized from compound 7 g (161 mg). Yield 138 mg (83%), white solid, mp $92-94^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz}$, DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.60-7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.46$ $(1 \mathrm{H}, \mathrm{dd}, J=8.9, J=7.1, \mathrm{H} \mathrm{Ar}) ; 7.40(2 \mathrm{H}, \mathrm{d}, J=8.5$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.21\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.95(1 \mathrm{H}, \mathrm{d}, J=8.3$, $\mathrm{H}-3) ; 6.59-6.47(2 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 5.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}):$ $160.3 ; 156.8 ; 139.8 ; 138.3(\mathrm{q}, J=34.4) ; 136.2 ; 132.2$; $132.1 ; 131.8 ; 131.6 ; 131.5 ; 130.6 ; 128.9 ; 128.4 ; 122.2$ (q, $J=269.1) ; 117.0 ; 108.6 ; 105.3 ; 102.3 ; 65.0 .{ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz , DMSO- d_{6}), δ, ppm: -57.83 . Found, m / z : $513.0157[\mathrm{M}+\mathrm{H}]^{+} . \quad \mathrm{C}_{23} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, m / z : 513.0151.

5-[(4-Bromobenzyl)oxy]-2-[4-(4-chlorophenyl)-5-(tri-fluoromethyl)-1H-pyrazol-3-yl]phenol (8i) was synthesized from compound $7 \mathrm{~h}(114 \mathrm{mg})$. Yield $93 \mathrm{mg}(79 \%)$, beige solid, mp $83-85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $(300 \mathrm{MHz}$, DMSO- d_{6}), δ, ppm ($J, \mathrm{~Hz}$): $7.58\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right)$; 7.44-7.30 ($\left.4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right) ; 7.18(2 \mathrm{H}, \mathrm{d}, J=8.4$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.86(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-3) ; 6.47(1 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{H}-6)$; $6.37(1 \mathrm{H}, \mathrm{dd}, J=8.6, J=2.4, \mathrm{H}-4) ; 5.01(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}\right.$, DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 160.0 ; 156.8 ; 139.7 ; 138.2(\mathrm{q}, J=33.3)$; $136.4 ; 132.2 ; 131.9 ; 131.5 ; 131.4 ; 130.6 ; 130.0 ; 128.4$; $122.2(\mathrm{q}, J=269.1) ; 121.1 ; 117.0 ; 108.2 ; 105.7 ; 102.4$; 68.5. ${ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz, DMSO- d_{6}), δ, ppm: -57.84 . Found, $m / z: 525.0023[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{23} \mathrm{H}_{16} \mathrm{BrClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, $m / z: 525.0040$.

4-[4-(4-Chlorophenyl)-5-(trifluoromethyl)-1H-pyrazol-3-yl]-3-hydroxyphenyl benzenesulfonate (8 j) was synthesized from compound $7 \mathrm{k}(250 \mathrm{mg})$. Yield $228 \mathrm{mg}(89 \%)$, beige solid, $\mathrm{mp} 193-196^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz}$, DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.87-7.79(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.66$ $(2 \mathrm{H}, \mathrm{t}, J=7.8, \mathrm{H} \mathrm{Ar}) ; 7.40\left(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.15$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.90(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-2) ; 6.51$ $(1 \mathrm{H}, \mathrm{d}, J=2.4, \mathrm{H}-5) ; 6.28(1 \mathrm{H}, \mathrm{dd}, J=8.5, J=2.4, \mathrm{H}-6)$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz})$: $158.0(\mathrm{~d}, J=16.5) ; 149.4(\mathrm{~d}, J=4.1) ; 140.3(\mathrm{~d}, J=14.2) ; 138.2$ (d, $J=34.3) ; 134.9 ; 134.4 ; 132.0 ; 131.4 ; 131.0(\mathrm{~d}, J=8.6) ;$ $130.1(\mathrm{~d}, J=13.6) ; 129.8 ; 128.3 ; 128.1 ; 122.4(\mathrm{~d}, J=272.6)$;
$116.3(\mathrm{~d}, J=9.0) ; 115.3(\mathrm{~d}, J=4.6) ; 111.2(\mathrm{~d}, J=9.9)$; 109.6. ${ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz , DMSO- d_{6}), δ, ppm: -57.30. Found, $m / z: 495.0407[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$. Calculated, $m / z: 495.0393$

2-[4-(4-Chlorophenyl)-5-(trifluoromethyl)-1H-pyrazol-3-yl]-5-isopropoxyphenol (8k) was synthesized from compound $7 \mathrm{i}(130 \mathrm{mg})$. Yield $129 \mathrm{mg}(95 \%)$, white solid, mp $176-178^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$, $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.38\left(2 \mathrm{H}, \mathrm{d}, J=8.1, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.18(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.1, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.86(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-3) ; 6.41(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6) ;$ $6.32(1 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{H}-4) ; 4.49\left(1 \mathrm{H}\right.$, sept, $\left.J=5.7, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $1.22\left(6 \mathrm{H}, \mathrm{d}, J=5.9, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 159.2 ; 156.8 ; 139.8$; $138.0(\mathrm{q}, J=34.6) ; 131.9 ; 131.6 ; 131.3 ; 130.7 ; 128.2$; $122.2(\mathrm{q}, J=269.0) ; 116.6 ; 107.4 ; 106.1 ; 102.8 ; 69.2 ; 21.8$.
${ }^{19} \mathrm{~F}$ NMR spectrum $\left(564 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}:-53.02$. Found, $m / z: 397.0932[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, $m / z: 397.0931$.

2-[4-(4-Chlorophenyl)-5-(trifluoromethyl)-1H-pyrazol-3-yll-5-(isopentyloxy)phenol (81) was synthesized from compound 7 j (140 mg). Yield $141 \mathrm{mg}(97 \%)$, light-yellow solid, mp $73-75^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 7.38\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.24(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.3, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.82(1 \mathrm{H}, \mathrm{d}, J=8.8, \mathrm{H}-3) ; 6.49(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6)$; $6.27(1 \mathrm{H}, \mathrm{dd}, J=8.8, J=1.9, \mathrm{H}-4) ; 3.92(2 \mathrm{H}, \mathrm{t}$, $\left.J=6.7, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.77(1 \mathrm{H}$, sept, $J=6.7$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.63\left(2 \mathrm{H}, \mathrm{q}, J=6.7, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;$ $0.93\left(6 \mathrm{H}, \mathrm{d}, J=6.6, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right), \delta$, ppm $(J, \mathrm{~Hz}): 160.6$; 156.7; 139.8; 138.3 (q, $J=32.9$); 132.2; 131.9; 131.5 ; 130.7; 128.4; $122.2(\mathrm{q}, J=269.1) ; 116.9 ; 107.7 ; 105.5$; $102.0 ; 66.0 ; 37.5 ; 24.7 ; 22.5 .{ }^{19} \mathrm{~F}$ NMR spectrum $(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}:-59.35$. Found, $m / z: 425.1240[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, $m / z: 425.1244$.

Synthesis of pyrazoles $10 \mathrm{a}-\mathrm{c}$ (General method). Hydrazine hydrate ($1.86 \mathrm{ml}, 38 \mathrm{mmol}$) was added to a stirred solution of diketone $9 \mathrm{a}-\mathrm{c}(1.9 \mathrm{mmol})$ in $\mathrm{EtOH}(15 \mathrm{ml})$. The resulting solution was stirred for 14 h at reflux. Reaction mixture was evaporated to dryness and triturated with cold $\mathrm{H}_{2} \mathrm{O}$.

3-Phenyl-5-(trifluoromethyl)-1 H -pyrazole (10a) was synthesized from 4,4,4-trifluoro-1-phenylbutane-1,3-dione (9a) (1.7 g). Yield $1.52 \mathrm{~g}(91 \%)$, white solid. Spectral data was in accordance with the previously reported. ${ }^{17}$

5-Methoxy-2-[5-(trifluoromethyl)-1H-pyrazol-3-yl]phenol (10b) was synthesized from 4,4,4-trifluoro-1-(2-hydroxy-4-methoxyphenyl)butane-1,3-dione (9b) (500 mg) (synthesized analogously to literature-described procedure ${ }^{18}$ from 1-(2-hydroxy-4-methoxyphenyl)ethan-1-one). Yield $397 \mathrm{mg}(80 \%)$, white solid, $\mathrm{mp} 149-151^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.59(1 \mathrm{H}$, d, $J=8.5, \mathrm{H}-3) ; 6.97(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6) ; 6.61-6.44(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ pyrazol, H-5); $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 160.6 ; 155.6 ; 141.4$; $140.9(\mathrm{q}, J=39.0) ; 128.6 ; 122.1(\mathrm{q}, J=268.0) ; 108.1$; $105.5 ; 101.6 ; 101.4 ; 55.1 .{ }^{19} \mathrm{~F}$ NMR spectrum $(376 \mathrm{MHz}$, DMSO- d_{6}), δ, ppm: -60.28 . Found, $m / z: 259.0698[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, $m / z: 259.0694$.

2-[5-(Trifluoromethyl)-1H-pyrazol-3-yl]phenol (10c) was synthesized from 4,4,4-trifluoro-1-(2-hydroxyphenyl)-
butane-1,3-dione (9 c) (390 mg) according to the literaturedescribed procedure. ${ }^{19}$ Yield $271 \mathrm{mg}(71 \%)$, white-beige solid. Spectral data was in accordance with the previously reported. ${ }^{20}$

4-[5-(Trifluoromethyl)-1 H -pyrazol-3-yl]benzene-
1,3-diol (10d). Boron tribromide (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.65 \mathrm{ml}$, 3.65 mmol) was added dropwise to an ice-cooled solution of compound $\mathbf{1 0 b}$ ($236 \mathrm{mg}, 0.91 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. After stirring for 2 h at $25^{\circ} \mathrm{C}$, the reaction mixture was poured into ice water, and neutralized with addition of saturated aqueous NaHCO_{3}, followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{ml})$. Organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Pure product was obtained by trituration with EtOAc - petroleum ether. Yield 31 mg (14%), white solid, $\mathrm{mp}>220^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz, DMSO- d_{6}), $\delta, \mathrm{ppm}(J, \mathrm{~Hz})$: $13.32(1 \mathrm{H}$, br. s, NH); $10.22(1 \mathrm{H}$, br. s, OH$) ; 9.65(1 \mathrm{H}, \mathrm{br} . \mathrm{s}$, $\mathrm{OH}) ; 7.45(1 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{H}-5) ; 6.90$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$ pyrazol); 6.44 ($1 \mathrm{H}, \mathrm{d}, J=2.2, \mathrm{H}-6$); $6.31(1 \mathrm{H}, \mathrm{dd}, J=8.5, J=2.3$, $\mathrm{H}-2)$. ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz, DMSO- d_{6}), δ, ppm: $159.0 ; 155.6 ; 141.7 ; 128.6 ; 107.2 ; 106.6 ; 102.9 ; 100.9\left(\mathrm{CF}_{3}\right.$ and $\mathrm{C}-\mathrm{CF}_{3}$ carbons can not be observed due to proton exchange process). ${ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz, DMSO- d_{6}), δ, ppm: -60.24 . Found, $m / z: 245.0550[\mathrm{M}+\mathrm{H}]{ }^{+} . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, $m / z: 245.0538$.

4-(4-Chlorophenyl)-3-phenyl-5-(trifluoromethyl)-1 H pyrazole (12). 4-Bromo-3-phenyl-5-(trifluoromethyl)-1 H pyrazole $11(405 \mathrm{mg}, 1.39 \mathrm{mmol})$ (synthesized by literaturedescribed procedure ${ }^{21}$) was dissolved in dioxane- $\mathrm{H}_{2} \mathrm{O}, 4: 1$ mixture (20 ml) under argon, followed by addition of 4-chlorophenylboronic acid ($282 \mathrm{mg}, 1.8 \mathrm{mmol}$), caesium carbonate ($1.18 \mathrm{~g}, 3.62 \mathrm{mmol}$), and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(59 \mathrm{mg}$, 0.08 mmol). Resulting mixture was heated for 14 h at $100^{\circ} \mathrm{C}$. After cooling to room temperature, the reaction mixture was diluted with EtOAc (60 ml), washed with brine ($3 \times 60 \mathrm{ml}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Crude product was purified by silica gel column chromatography, using gradient from 5 to $20 \% \mathrm{EtOAc}$ in petroleum ether to obtain product. Yield 118 mg (26%), white solid, $\mathrm{mp} 187-190^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 11.02(1 \mathrm{H}$, br. s, NH); $7.45-7.37$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}$ Ar); 7.35-7.21 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}$ Ar). ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz, DMSO- d_{6}), δ, ppm ($J, \mathrm{~Hz}$): 142.0 ; $139.6(\mathrm{q}, J=35.0) ; 132.9 ; 132.1 ; 129.8 ; 129.2 ; 129.0$; 128.8; 127.9; 125.7; 121.9 (q, $J=269.4$); 116.3. ${ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz , DMSO- d_{6}) $\delta, \mathrm{ppm}:-58.19$. Found, m / z : $323.0571\left[\mathrm{M}+\mathrm{H}^{+} . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{~N}_{2}\right.$. Calculated, $m / z: 323.0563$.

Synthesis of isoxazoles 13a-e (General method). Hydroxylamine hydrochloride ($42 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added to a stirred solution of compound $\mathbf{6 c}, 7 \mathbf{e}, \mathbf{f}, \mathbf{i}, \mathbf{j}(0.3 \mathrm{mmol})$ in pyridine (2 ml). The resulting solution was stirred for 14 h at $90^{\circ} \mathrm{C}$. After cooling to room temperature, the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{ml})$ which was acidified with 1 M HCl . Product further was extracted with EtOAc $(40 \mathrm{ml})$, organic layer was washed with brine $(3 \times 30 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Obtained isoxazoles $\mathbf{1 3 a}, \mathbf{b}, \mathbf{d}, \mathrm{e}$ were analytically pure and no further purification needed. Isoxazole 13 c was purified by column chromatography on silica gel, using 5 to 30% gradient of EtOAc in petroleum ether.

4-[4-(4-Chlorophenyl)-3-(trifluoromethyl)isoxazol-5-yl]-benzene-1,3-diol (13a) was synthesized from compound 6c (130 mg). Yield $115 \mathrm{mg}(85 \%)$, slightly gray solid, mp $165-168^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 9.95(2 \mathrm{H}, \mathrm{d}, J=3.7,2 \mathrm{OH}) ; 7.51-7.45(2 \mathrm{H}$, m, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.30-7.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.09(1 \mathrm{H}, \mathrm{d}, J=8.5$, $\mathrm{H}-5) ; 6.33(1 \mathrm{H}, \mathrm{d}, J=2.2, \mathrm{H}-2) ; 6.28(1 \mathrm{H}, \mathrm{dd}, J=8.5, J=2.3$, H-6). ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz , DMSO- d_{6}), δ, ppm $(J, H z): 169.3 ; 161.4 ; 157.1 ; 152.6$ (d, $J=35.2$); 133.3; 131.6; $131.1 ; 128.7 ; 127.0 ; 120.0(\mathrm{q}, J=271.8) ; 113.4 ; 107.4 ; 103.6$; 102.8. ${ }^{19}$ F NMR spectrum (376 MHz , DMSO- d_{6}), δ, ppm: -60.58 . Found, $m / z: 356.0302[\mathrm{M}+\mathrm{H}] . . \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{NO}_{3}$. Calculated, $m / z: 356.0301$.

5-(Benzyloxy)-2-[4-(4-chlorophenyl)-3-(trifluoromethyl)-isoxazol-5-yllphenol (13b) was synthesized from compound 7d (130 mg). Yield $129 \mathrm{mg}(96 \%)$, white solid, $\mathrm{mp} 141-143^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR spectrum (600 MHz , DMSO- d_{6}), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 10.26(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; 8.64(1 \mathrm{H}, \mathrm{s}, \mathrm{H} \mathrm{Ar}) ; 7.54-$ $7.27\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 6.62(1 \mathrm{H}, \mathrm{dd}, J=8.6$, $J=2.2, \mathrm{H}-6) ; 6.55(1 \mathrm{H}, \mathrm{d}, J=2.1, \mathrm{H}-4) ; 5.12(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR spectrum (151 MHz , DMSO- d_{6}), δ, ppm $(J, \mathrm{~Hz}): 168.8 ; 161.9 ; 157.1 ; 152.7(\mathrm{q}, J=35.2) ; 149.4$; $136.5 ; 136.4 ; 133.4 ; 131.7 ; 131.2 ; 128.7 ; 128.5 ; 128.0$; 127.8; 126.7; 124.0; 119.9 ($\mathrm{q}, J=271.8$); 114.0; 106.4; $105.4 ; 102.3 ; 69.3 .{ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz , DMSO- d_{6}), $\delta, \mathrm{ppm}:-60.58$. Found, $m / z: 446.0767[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{NO}_{3}$. Calculated, $m / z: 446.0771$.

2-[4-(4-Chlorophenyl)-3-(trifluoromethyl)isoxazol-5-yl]-5-(methoxymethoxy)phenol (13c) was synthesized from compound $7 \mathrm{f}(190 \mathrm{mg})$. Yield $124 \mathrm{mg}(63 \%)$, white solid, $\mathrm{mp} 119-121^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.40\left(2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.25(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.5, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.00(1 \mathrm{H}, \mathrm{d}, J=8.8, \mathrm{H}-3) ; 6.65(1 \mathrm{H}, \mathrm{d}$, $J=2.4, \mathrm{H}-6) ; 6.53(1 \mathrm{H}, \mathrm{dd}, J=8.8, J=2.4, \mathrm{H}-4) ; 6.23$ $(1 \mathrm{H}$, br. s, OH$) ; 5.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right) ; 3.47(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$). ${ }^{13} \mathrm{C}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 167.5 ; 161.1 ; 155.8 ; 154.6(\mathrm{q}, J=36.4)$; 135.4; 131.3; 130.5; 129.6; 126.0; 119.9 (q, $J=272.4$); 113.4; 109.7; 106.4; 105.1; 94.3; 56.5. ${ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta, \mathrm{ppm}:-61.51$. Found, $m / z: 400.0550$ $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{NO}_{4}$. Calculated, $m / z: 400.0563$.

2-[4-(4-Chlorophenyl)-3-(trifluoromethy)isoxazol-5-yl]-5-isopropoxyphenol (13d) was synthesized from compound $7 \mathrm{i}(124 \mathrm{mg})$. Yield $125 \mathrm{mg}(97 \%)$, white solid, mp $111-113^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.40\left(2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.25(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.95(1 \mathrm{H}, \mathrm{d}, J=8.8, \mathrm{H}-3) ; 6.46(1 \mathrm{H}, \mathrm{d}$, $J=2.4, \mathrm{H}-6) ; 6.36(1 \mathrm{H}, \mathrm{dd}, J=8.8, J=2.4, \mathrm{H}-4) ; 6.31(1 \mathrm{H}$, br. s, OH$) ; 4.53\left(1 \mathrm{H}\right.$, septet, $\left.J=6.0, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.33(6 \mathrm{H}$, d, $\left.J=6.1, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum (101 MHz , $\left.\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}(J, \mathrm{~Hz}): 167.8 ; 162.0 ; 156.1 ; 154.6(\mathrm{q}$, $J=36.2) ; 135.4 ; 131.3 ; 130.4 ; 129.6 ; 126.1 ; 119.9(\mathrm{q}$, $J=272.3$); 112.3; 109.4; 104.9; 104.0; 70.4; 22.1. ${ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ, ppm: -61.54 . Found, m / z : $398.0768[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{NO}_{3}$. Calculated, $m / z: 398.0771$.

2-[4-(4-Chlorophenyl)-3-(trifluoromethyl)isoxazol-5-yl]-5-(isopentyloxy)phenol (13e) was synthesized from compound $7 \mathrm{j}(140 \mathrm{mg})$. Yield $132 \mathrm{mg}(91 \%)$, white-yellow solid, mp $112-114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $(600 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.40\left(2 \mathrm{H}, \mathrm{d}, J=8.5, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.25$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.96(1 \mathrm{H}, \mathrm{d}, J=8.8, \mathrm{H}-3) ; 6.48(1 \mathrm{H}$, d, $J=2.4, \mathrm{H}-6) ; 6.39(1 \mathrm{H}, \mathrm{dd}, J=8.8, J=2.4, \mathrm{H}-4) ; 6.32$ $(1 \mathrm{H}$, br. s, OH$) ; 3.97\left(2 \mathrm{H}, \mathrm{t}, J=6.7, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $1.80\left(1 \mathrm{H}\right.$, dsept, $\left.J=13.4, J=6.7, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $1.66\left(2 \mathrm{H}, \mathrm{q}, J=6.7, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.95(6 \mathrm{H}, \mathrm{d}$, $\left.J=6.7, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $(151 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 167.8 ; 163.1 ; 156.0 ; 154.6$ (q, $J=36.1) ; 135.4 ; 131.3 ; 130.3 ; 129.6 ; 126.1 ; 119.9(\mathrm{q}$, $J=272.4) ; 112.9 ; 108.7 ; 105.0 ; 103.1 ; 66.9 ; 37.8 ; 25.2$; 22.7. ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$, ppm: -61.54 . Found, $m / z: 426.1085[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{NO}_{3}$. Calculated, $m / z: 426.1084$.

4-(4-Chlorophenyl)-5-[2-methoxy-4-(methoxymethoxy)-phenyl]-3-(trifluoromethyl)isoxazole (14). Methyl iodide ($53 \mu \mathrm{l}, 0.85 \mathrm{mmol}$) was added to a stirred solution of compound $13 \mathrm{c}(114 \mathrm{mg}, 0.285 \mathrm{mmol})$ with $\mathrm{K}_{2} \mathrm{CO}_{3}(98 \mathrm{mg}$, $0.71 \mathrm{mmol})$ in DMF $(2 \mathrm{ml})$ at room temperature. The reaction mixture was stirred for 14 h and then partitioned between EtOAc $(20 \mathrm{ml})$ and brine $(10 \mathrm{ml})$. Organic layer was separated, washed with brine ($2 \times 20 \mathrm{ml}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to obtain pure product. Yield 117 mg (99%), colorless oil. ${ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}(J, \mathrm{~Hz}): 7.36(1 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{H}-6) ; 7.32$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.17\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)$; $6.69(1 \mathrm{H}, \mathrm{dd}, J=8.6, J=2.2, \mathrm{H}-5) ; 6.53(1 \mathrm{H}, \mathrm{d}, J=2.2$, $\mathrm{H}-3) ; 5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right) ; 3.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$; $3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 167.7 ; 161.3 ; 158.1 ; 153.8(\mathrm{q}, J=36.1)$; $134.4 ; 131.8 ; 130.6 ; 128.8 ; 127.6 ; 120.2(\mathrm{q}, J=272.2)$; $114.6 ; 109.1 ; 108.1 ; 100.5 ; 94.5 ; 56.5 ; 55.1 .{ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ, ppm: -61.32 Found, m / z : $414.0734[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{NO}_{4}$. Calculated, $m / z: 414.0720$.

4-[4-(4-Chlorophenyl)-3-(trifluoromethyl)-isoxazol-5-yl]-3-methoxyphenol (15). $12 \mathrm{M} \mathrm{HCl}(30 \mu \mathrm{l}, 0.97 \mathrm{mmol})$ was added to a stirred solution of isoxazole 14 ($88 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{ml})$, and the reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, reaction mixture was evaporated to dryness, partitioned between $\mathrm{EtOAc}(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$. Organic layer was separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo to obtain pure product. Yield $76 \mathrm{mg}(97 \%)$, whiteyellow solid, mp $148-150^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.35-7.28(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.16$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 6.47(1 \mathrm{H}, \mathrm{dd}, J=8.4, J=2.3$, H-6) ; $6.37(1 \mathrm{H}, \mathrm{d}, J=2.3, \mathrm{H}-2) ; 5.38(1 \mathrm{H}$, br. s, OH); 3.39 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 167.8 ; 159.8 ; 158.4 ; 153.8(\mathrm{q}, J=36.1)$; $134.4 ; 132.1 ; 130.6 ; 128.8 ; 127.6 ; 120.1(\mathrm{q}, J=272.1)$; $114.5 ; 108.2 ; 108.0 ; 99.7 ; 55.1 .{ }^{19} \mathrm{~F}$ NMR spectrum $(376 \mathrm{MHz}$, CDCl_{3}), δ, ppm: -61.32 . Found, $m / z: 370.0457[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{NO}_{3}$. Calculated, $m / z: 370.0458$.

3-(4-Chlorophenyl)-4-oxo-2-(trifluoromethyl)-4H-chromen-7-yl trifluoromethanesulfonate (16). Trifluoromethanesulfonic anhydride ($530 \mu \mathrm{l}, 3.22 \mathrm{mmol}$) was added dropwise under ice cooling to a stirred solution of compound $6 \mathrm{c}(1 \mathrm{~g}, 2.93 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(818 \mu \mathrm{l}, 5.87 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$. After 1 h of stirring at room temperature, reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$, oganic layer
was washed with brine $(20 \mathrm{ml})$, separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Product was purified by silica gel column chromatography using 5% EtOAc in petroleum ether. Yield $1.32 \mathrm{~g}(95 \%)$, lightyellow oil. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$, ppm $(J, \mathrm{~Hz}): 8.35(1 \mathrm{H}, \mathrm{d}, J=8.9, \mathrm{H}-5) ; 7.58(1 \mathrm{H}, \mathrm{d}, J=2.3$, $\mathrm{H}-8) ; 7.51-7.35(3 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.20(2 \mathrm{H}, \mathrm{d}, J=8.4$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$, ppm $(J, \mathrm{~Hz}): 175.6 ; 155.4 ; 153.2 ; 149.4(\mathrm{q}, J=36.5) ; 135.7$; $131.2 ; 129.4 ; 128.9 ; 126.7 ; 125.4 ; 122.9 ; 120.5 ; 120.4$; $120.1 ; 117.7 ; 117.2 ; 112.0 .{ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz , CDCl_{3}), δ, ppm: $-63.60 ;-72.50$. Found, $m / z: 472.9687$ $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{17} \mathrm{H}_{8} \mathrm{ClF}_{6} \mathrm{O}_{5} \mathrm{~S}$. Calculated, $m / z: 472.9685$.

3-(4-Chlorophenyl)-2-(trifluoromethyl)-4H-chromen-4-one (17). Triethylsilane ($1.12 \mathrm{ml}, 7 \mathrm{mmol}$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($98 \mathrm{mg}, 0.14 \mathrm{mmol}$) were added to a stirred solution of compound $\mathbf{1 6}(1.32 \mathrm{~g}, 2.8 \mathrm{mmol})$ in DMF $(15 \mathrm{ml})$ at room temperature. The reaction mixture was allowed to heat at $60^{\circ} \mathrm{C}$ for 1 h . After cooling to room temperature, reaction mixture was partitioned between $\mathrm{EtOAc}(30 \mathrm{ml})$ and brine $(20 \mathrm{ml})$. Organic layer was separated, washed with brine $(2 \times 20 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Crude residue was crystallized from petroleum ether to obtain pure product. Yield $530 \mathrm{mg}(58 \%)$, yellow solid, mp $107-109^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 8.24(1 \mathrm{H}, \mathrm{dd}, J=8.0, J=1.6, \mathrm{H}-5) ; 7.80$ (1 H , ddd, $J=8.6, J=7.2, J=1.7, \mathrm{H}-7) ; 7.59(1 \mathrm{H}, \mathrm{d}, J=8.5$, $\mathrm{H}-8) ; 7.50(1 \mathrm{H}, \mathrm{t}, J=7.6, \mathrm{H}-6) ; 7.44(2 \mathrm{H}, \mathrm{d}, J=8.4$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.21\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 176.8 ; 155.2 ; 148.8(\mathrm{q}$, $J=36.3$); 135.3; 135.2; 131.4; 128.7; 127.6; 126.6; 126.5; 124.6; $123.3 ; 119.4(\mathrm{q}, J=277.0) ; 118.5 .{ }^{19} \mathrm{~F} \quad \mathrm{NMR}$ spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$, ppm: -63.60 . Found, m / z : $325.0249[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{O}_{2}$. Calculated, $m / z: 325.0243$.

2-[4-(4-Chlorophenyl)-3-(trifluoromethyl)isoxazol-5-yl]phenol (18). Hydroxylamine hydrochloride (227 mg , 3.26 mmol) was added to a stirred solution of compound 17 ($530 \mathrm{mg}, 1.63 \mathrm{mmol}$) in pyridine $(5 \mathrm{ml})$. The resulting solution was stirred for 14 h at $90^{\circ} \mathrm{C}$. After cooling to room temperature, the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{ml})$ which was acidified with 1 M HCl . Product further was extracted with $\mathrm{EtOAc}(60 \mathrm{ml})$, organic layer was washed with brine $(3 \times 30 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Yield 550 mg (99\%), pink solid, mp $147-150^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.40-7.33\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, \mathrm{H} \mathrm{Ar}\right)$; $7.27-7.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) ; 7.14(1 \mathrm{H}, \mathrm{dd}, J=7.9, J=1.7$, $\mathrm{H}-3) ; 6.96(1 \mathrm{H}, \mathrm{dd}, J=8.3, J=1.1, \mathrm{H}-4) ; 6.88(1 \mathrm{H}, \mathrm{ddd}$, $J=7.8, J=7.3, J=1.1, \mathrm{H}-6) ; 6.04(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 167.4 ; 154.5(\mathrm{q}$, $J=36.4$) ; 154.2; 135.5; 133.1; 131.1; 129.8; 129.5; 125.9; $121.1 ; 119.9(\mathrm{q}, J=272.4) ; 117.9 ; 114.7 ; 112.7 .{ }^{19} \mathrm{~F}$ NMR spectrum ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ, ppm: -61.42 . Found, m / z : $340.0341[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{NO}_{2}$. Calculated, $m / z: 340.0352$.

2-[4-(4-Chlorophenyl)-3-(trifluoromethyl)isoxazol-5-yl]phenyl trifluoromethanesulfonate (19). Trifluoromethanesulfonic anhydride ($200 \mu \mathrm{l}, 1.22 \mathrm{mmol}$) was added dropwise under ice cooling to a stirred solution of compound 18 ($295 \mathrm{mg}, 0.87 \mathrm{mmol}$) and triethylamine ($242 \mu \mathrm{l}, 1.74 \mathrm{mmol}$) in
dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. After 1 h of stirring at room temperature, the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$, oganic layer was washed with brine (15 ml), separated, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Product was purified by silica gel column chromatography, using 5% EtOAc in petroleum ether. Yield 399 mg (97\%), lightyellow oil. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}$ $(J, \mathrm{~Hz}): 7.60(1 \mathrm{H}$, ddd, $J=8.3, J=6.8, J=2.5, \mathrm{H}-6) ; 7.44$ $7.33\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}, \mathrm{H} \mathrm{Ar}\right) ; 7.18\left(2 \mathrm{H}, \mathrm{d}, J=8.4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz})$: $164.3 ; 154.2$ (q, $J=36.7$); 146.6; 135.7; 133.2; 131.8; $130.9 ; 129.5 ; 129.0 ; 125.0 ; 123.2 ; 120.5 ; 118.6(\mathrm{q}, J=320.9)$; $119.8(\mathrm{q}, J=272.4) ; 117.1 .{ }^{19} \mathrm{~F}$ NMR spectrum $(376 \mathrm{MHz}$, CDCl_{3}), δ, ppm: $-61.36,-73.40$. Found, $m / z: 471.9847$ $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{17} \mathrm{H}_{9} \mathrm{ClF}_{6} \mathrm{NO}_{4} \mathrm{~S}$. Calculated, $m / z: 471.9845$.

4-(4-Chlorophenyl)-5-phenyl-3-(trifluoromethyl)-
isoxazole (20). Triethylsilane ($772 \mu \mathrm{l}, 4.83 \mathrm{mmol}$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(28 \mathrm{mg}, 0.04 \mathrm{mmol})$ were added to a stirred solution of compound 19 ($380 \mathrm{mg}, 0.8 \mathrm{mmol}$) in DMF $(7 \mathrm{ml})$ at room temperature. Reaction mixture was allowed to heat at $60^{\circ} \mathrm{C}$ for 1 h . After cooling to room temperature, the reaction mixture was partitioned between EtOAc (20 ml) and brine $(20 \mathrm{ml})$. Organic layer was separated, washed with brine $(2 \times 10 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Product was purified by silica gel column chromatography, using gradient from 1 to 5% EtOAc in petroleum ether. Yield 190 mg (73\%), white solid, mp $88-90^{\circ} \mathrm{C}$. ${ }^{\mathrm{H}} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.54-7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,6) ; 7.47-7.41(3 \mathrm{H}$, $\mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.41-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{H} \mathrm{Ar}) ; 7.29(2 \mathrm{H}, \mathrm{d}, J=8.4$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$, ppm $(J, \mathrm{~Hz}): 168.2 ; 154.8(\mathrm{q}, J=36.1) ; 135.5 ; 131.6 ; 131.1$; $129.6 ; 129.2 ; 127.2 ; 126.3 ; 126.1 ; 119.9$ (q, $J=272.2$); 113.2. ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$, ppm: -61.64. Found, $m / z: 324.0398[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{NO}$. Calculated, m/z: 324.0403.

5-Phenyl-3-(trifluoromethyl)isoxazole (21a). Hydroxylamine hydrochloride $(1.74 \mathrm{~g}, 25 \mathrm{mmol})$ was added to a stirred solution of 4,4,4-trifluoro-1-phenyl-1,3-butanedione (9 a) $(1.8 \mathrm{~g}, 8.33 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{ml})$ at room temperature. The reaction mixture was allowed to heat at $80^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and 1 M $\mathrm{HCl}(20 \mathrm{ml})$. Organic layer was separated, washed with brine $(2 \times 20 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Obtained residue then was dissolved in glacial $\mathrm{AcOH}(25 \mathrm{ml})$, and $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{ml}, 37.5 \mathrm{mmol})$ was added dropwise. The resulting mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h and cooled down to room temperature followed by evaporation in vacuo. After trituration of crude residue with cold $\mathrm{H}_{2} \mathrm{O}$, solid precipitated from the solution. This solid was filtered off, the filter cake was washed several times with distilled $\mathrm{H}_{2} \mathrm{O}$ and dried in air. Yield $1.125 \mathrm{~g}(63 \%)$, beige crystals. Spectral data was in accordance with those previously reported. ${ }^{22}$

5-Methoxy-2-[3-(trifluoromethyl)isoxazol-5-yl]phenol (21b). Hydroxylamine hydrochloride ($341 \mathrm{mg}, 4.91 \mathrm{mmol}$) was added to a stirred solution of 4,4,4-trifluoro-1-(2-hydroxy-4-methoxyphenyl)butane-1,3-dione (9 b) ($600 \mathrm{mg}, 2.3 \mathrm{mmol}$)
in pyridine $(7 \mathrm{ml})$ at room temperature. The reaction mixture was allowed to heat at $100^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, reaction mixture was partitioned between $\mathrm{EtOAc}(30 \mathrm{ml})$ and $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{ml})$. Organic layer was separated, washed with brine $(2 \times 30 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Obtained residue then was dissolved in glacial $\mathrm{AcOH}(10 \mathrm{ml})$, and $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}(500 \mu \mathrm{l}, 9.38 \mathrm{mmol})$ was added dropwise. The resulting mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h and cooled down to room temperature followed by evaporation in vacuo. After trituration of crude residue with cold $\mathrm{H}_{2} \mathrm{O}$, solid precipitated from the solution. This solid was filtered off, filter cake was washed several times with distilled $\mathrm{H}_{2} \mathrm{O}$ and dried in air. Crude compound was purified by trituration with hot EtOAc - petroleum ether $1: 3$ mixture to obtain pure product. Yield 242 mg (38%), beige crystals, $\mathrm{mp}>150^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz}$, DMSO- $\left.d_{6}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 10.98(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; 7.76(1 \mathrm{H}, \mathrm{d}$, $J=9.5, \mathrm{H}-3) ; 7.12(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$ isoxazole $) ; 6.63-6.58(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-4,6) ; 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $(101 \mathrm{MHz}$, DMSO- d_{6}), $\delta, \operatorname{ppm}(J, H z): 169.5 ; 162.8 ; 156.9 ; 155.0(\mathrm{q}$, $J=37.0) ; 128.2 ; 120.0(\mathrm{q}, J=270.9) ; 106.4 ; 105.8 ; 101.4$; 98.0; 55.3. ${ }^{19} \mathrm{~F}$ NMR spectrum (376 MHz, DMSO- d_{6}), δ, ppm: -62.25 . Found, $m / z: 260.0530[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{3}$. Calculated, $m / z: 260.0535$.

MIC assay. All of the compounds for the MIC tests had the purity level not lower than 95%. Staphylococcus aureus strain Newman was cultured overnight at $37^{\circ} \mathrm{C}$ in Mueller Hinton broth (MHB) (Oxoid). The MIC was determined using the microdilution method according to guidelines of the Clinical Laboratory Standards Institute. ${ }^{7}$ In a 96 -well plate, a series of twofold dilutions of each compound were added to a $1: 100$ dilution of an overnight culture of S. aureus in a final volume of $100 \mu \mathrm{l}$ and incubated overnight at $37^{\circ} \mathrm{C}$. The final concentration of the compounds was in a range $50-0.39 \mu \mathrm{~g} / \mathrm{ml}$. MIC was determined as the lowest concentration where no growth was detected by measurement of optical density at 600 nm (OD600). Compounds that did not inhibit growth were retested at higher concentrations ($250-1.95 \mu \mathrm{~g} / \mathrm{ml}$). Wells containing bacteria with or without 1% DMSO and medium alone were included as controls in every plate.

Supplementary information file containing ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR spectra and HRMS data of all synthesized compounds is available at the journal website http://hgs.osi.lv.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 765147.

References

1. Murray, C. J. L.; Ikuta, K. S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S. C.; Browne, A. J.; Chipeta, M. G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B. H.; Kumaran, E. A. P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.;

Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A. J.; Cooper, B.; Cressey, T. R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N. P. J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S. J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garrett, D.; Gastmeier, P.; Giref, A. Z.; Greer, R. C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S. I.; Holm, M.; Hopkins, S.; Iregbu, K. C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H. H.; Lim, C.; Limmathurotsakul, D.; Loftus, M. J.; Lunn, M.; Ma, J.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M. M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C. W.; OlivasMartinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizucla, E.; Peleg, A. Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J. V.; Roca, A.; Rudd, K. E.; Russell, N.; Schnall, J.; Scott, J. A. G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A. J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H. R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A. D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Lancet 2022, 399(10325), 629.
2. Santajit, S.; Indrawattana, N. Biomed. Res. Int. 2016, 2475067.
3. Vo, C. D.; Shebert, H. L.; Zikovich, S.; Dryer, R. A.; Huang, T. P.; Moran, L. J.; Cho, J.; Wassarman, D. R.; Falahee, B. E.; Young, P. D.; Gu, G. H.; Heinl, J. F.; Hammond, J. W.; Jackvony, T. N.; Frederick, T. E.; Blair, J. A. Bioorg. Med. Chem. Lett. 2017, 27, 5235.
4. (a) Kupchevskaya, I. P.; Khilya, V. P. Dopov, Akad. Nauk Ukr. RSR, Ser. B: Geol., Khim. Biol. Nauki 1978, 3, 234. (b) Drysdale, M. J.; Dymock, B. W.; Barril-Alonso, X.; Workman, P.; Pearl, L. H.; Prodromou, C.; MacDonald, E. WO Patent $2003055860,2003$.
5. (a) Pivovarenko, V. G.; Khilya, V. P.; Vasil'ev, S. A. Chem. Nat. Compd. 1989, 25, 542. (b) Schiltz, G. E.; Mishra, R. K.; Han, H.; Abdulkadir, S. A.; Izquierdo-Ferrer, J.; Jain, A. D. WO Patent 2020046382, 2020.
6. (a) Moskvina, V. S.; Shilin, S. V.; Khilya, V. P. Chem Heterocycl. Compd. 2015, 51, 799. (b) Drysdale, M. J.; Dymock, B. W.; Finch, H.; Webb, P.; McDonald, E.; James, K. E.; Cheung, K. M.; Mathews, T. P. WO Patent 2004072051, 2004.
7. Cockerill, F. R. C. Laboratory Standards, I. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard; Clinical and Laboratory Standards Institute: Wayne, 2012.
8. Kushner, P. J.; Myles, D. C.; Harmon, C. L.; Hodges Gallagher, L. C. US Patent $20160311805 \mathrm{Al}, 2016$.
9. Balasubramanian, S.; Nair, M. G. Synth. Commun. 2000, 30, 469.
10. Yeap, G.-Y.; Yam, W.-S.; Takeuchi, D.; Osakada, K.; Gorecka, E.; Mahmood, W. A. K.; Boey, P.-L.; Hamid, S. A. Liq. Cryst. 2008, 35, 315.
11. Ng, L.-T.; Ko, H.-H.; Lu, T.-M. Bioorg. Med. Chem. 2009, 17, 4360.
12. Garazd, M. M.; Frasinyuk, M. S. Chem. Nat. Compd. 2019, $55,813$.
13. Frasinyuk, M. S.; Bondarenko, S. P.; Khilya, V. P.; Liu, C.; Watt, D. S.; Sviripa, V. M. Org. Biomol. Chem. 2015, 13, 1053.
14. Wu, E. S. C.; Loch, J. T.; Toder, B. H.; Borrelli, A. R.; Gawlak, D.; Radov, L. A.; Gensmantel, N. P. J. Med. Chem. 1992, 35, 3519.
15. Semeniuchenko, V.; Exner, T. E.; Khilya, V.; Groth, U. Appl. Organomet. Chem. 2011, 25, 804.
16. Tang, B.; Frasinyuk, M. S.; Chikwana, V. M.; Mahalingan, K. K.; Morgan, C. A.; Segvich, D. M.; Bondarenko, S. P.; Mrug, G. P.; Wyrebek, P.; Watt, D. S.; DePaoli-Roach, A. A.; Roach, P. J.; Hurley, T. D. J. Med. Chem. 2020, 63, 3538.
17. Wang, Y.; Han, J.; Chen, J.; Cao, W. Tetrahedron 2015, 71, 8256.
18. Cotman, A. E.; Cahard, D.; Mohar, B. Angew. Chem., Int. Ed. 2016, 55, 5294.
19. Liu, C.; Cui, Z.; Yan, X.; Qi, Z.; Ji, M.; Li, X. Molecules 2016, $21(7), 828$
20. Sapegin, A. V.; Kalinin, S. A.; Smimov, A. V.; Dorogov, M. V.; Krasavin, M. Tetrahedron 2014, 70, 1077.
21. Jeon, S. L.; Choi, J. H.; Kim, B. T.; Jeong, I. H. J. Fluorine Chem. 2007, 128, 1191.
22. Poh, J.-S.; Garcia-Ruiz, C.; Zuniga, A.; Meroni, F.; Blakemore, D. C.; Browne, D. L.; Ley, S. V. Org. Biomol. Chem. 2016, 14, 5983.

Annex II

2-Aminoquinazolines by Chan-Evans-Lam Coupling of Guanidines with (2-Formylphenyl)boronic Acids

Vitalii V. Solomin ${ }^{\text {a,b }}$, Alberts Seins ${ }^{\text {a,b }}$ Aigars Jirgensons ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
${ }^{\mathrm{b}}$ Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia

Synlett, 2020, DOI: 10.1055/s-0040-1707080

2-Aminoquinazolines by Chan-Evans-Lam Coupling of Guanidines with (2-Formylphenyl)boronic Acids

Vitalii V. Solomin ${ }^{\text {a,b }}$
Alberts Seins ${ }^{2, b}$
Aigars Jirgensons ${ }^{* a, b}$ ©
'Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga
LV-1006, Latvia
algarseosi.tv
${ }^{\circ}$ Faculty of Materials Science and Applied Chemistry. Riga
Technical University, P. Valdena Str. 3, Riga LV-1048، Latvia

$R=H, \mathrm{MeO}, \mathrm{BnO}, \mathrm{Cl}, \mathrm{F} \quad \mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{Alk}, \mathrm{Ph}$

23 examples
yields: 17-66\%

Received: 30.04.2020

Accepted after revision: 10.06.2020
Published online: 08.07.2020
DOI: 10.1055/s-0040-1707080; Art ID: st-2020-k0256-I
License terms: (c)
O 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution and reproduction, so long as the original work is properly cited.
(https://creativecommons.org/licenses/by/4.0/)
Abstract A new method is presented for the synthesis of 2 -aminoquinazolines, which is based on a Chan-Evans-Lam coupling of (2formylphenyl)boronic acids with guanidines. Relatively mild conditions involving the use of inexpensive Cul as a catalyst and methanol as a solvent permit the application of the method to a wide range of substrates. Nonsubstituted, N -monosubstituted, and N, N-disubstituted guanidines can be used as reactants to give the corresponding 2 -aminoquinazolines in moderate yields from readily available (2 -formylphenyl)boronic acids.

Key words guanidines, Chan-Evans-Lam coupling, quinazolines, copper catalysis, formylphenylboronic acids

2-Aminoquinazoline is an important substructure for the development of pharmaceutically relevant compounds, especially for the discovery of kinase inhibitors. ${ }^{1-6}$ A number of methods for the construction of 2 -aminoquinazolines are know; ${ }^{7-16}$ However, there are only a few approaches that exploit guanidines as reaction components. orthoHalobenzaldehydes and aryl ketones can be condensed with guanidines in most cases if they contain an additional electron-withdrawing group that facilitates an $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. ${ }^{3,6,13,14,17,18}$ For nonactivated substrates, a copper-catalyzed arylation of guanidines with aryl bromides has been described as a useful method for accessing 2 -aminoquinazolines. ${ }^{19}$ However, the reaction conditions are very harsh (DMF, $120^{\circ} \mathrm{C}$), which limits the scope of this approach.

The Chan-Evans-Lam coupling ${ }^{20-24}$ is an attractive $\mathrm{C}-\mathrm{N}$ bond-forming reaction that proceeds under relatively mild copper-catalyzed conditions and tolerates alcoholic solvents. To our knowledge, the only precedent for accessing quinazoline derivatives by using Chan-Evans-Lam coupling is a synthesis of quinazolonimines by arylation of N, N disubstituted guanidines, formed in situ, with (2-cyanophenyl)boronic acids. ${ }^{25}$ To facilitate our kinase-inhibitordevelopment program, we examined whether the Chan-Evans-Lam coupling might also be applicable to the synthesis of aminoquinazolines under mild conditions by using readily available reagents.

A screening of the reaction conditions was performed for the synthesis of unsubstituted quinazoline-2-amine (3). Representative results are reported in Table 1 [see Supporting Information (SI) for the full set of experiments]. Due to the polarity of the product 3 , its purification by chromatography was difficult, and it was therefore purified by trituration from ethyl acetate. An identical scale and workup were applied in all experiments to permit comparison of the effects of other reaction parameters. Methanol as a reaction solvent, CuI as a catalyst, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base were found to be productive conditions for the formation of quinazoline-2-amine (3) from (2-formylphenyl)boronic acid (1) and guanidine hydrochloride (2a) (Table 1, entries 1 and 2).

Excess amounts of the base and guanidine were beneficial in improving the yield of product $\mathbf{3}$ (Table 1, entry 2). Other copper catalysts $\left[\mathrm{CuCl}\right.$ and $\left.\mathrm{Cu}(\mathrm{OAc})_{2}\right]$ were found to be less efficient than CuI (entries 3 and 4). The use of KOH as base improved the yield of product $\mathbf{3}$ when an excess of guanidine was used (entries 5 and 6). EtOH could also be successfully used as the reaction solvent (entry 7). Guanidine carbonate ($\mathbf{2 b}$) as a reactant gave a reduced yield of quinazoline 3 (entries 8 and 9). All the experiments listed in Table 1 were performed open to air to ensure reoxidation

		THIEME	
Synlett	V. V. Solomin et al.	OPEN access	Letter

Table 1 Chan-Evans-Lam Conditions for the Synthesis of 2-Aminoquinazoline (3) ${ }^{\text {a }}$

Entry	Solvent	Temp (${ }^{\circ} \mathrm{C}$)	Reactant (equiv)	Catalyst	Base (equiv)	Yield ${ }^{\text {b }}$ (\%)
1	MeOH	70	2a (1.5)	Cul	$\mathrm{K}_{2} \mathrm{CO}_{3}(2.5)$	31
2	MeOH	70	2a(2.5)	Cul	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (3)	44
3	MeOH	70	2a (2.5)	$\mathrm{Cu}(\mathrm{OAC})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}(3)$	35
4	MeOH	70	2a(2.5)	CuCl	$\mathrm{K}_{2} \mathrm{CO}_{3}(3)$	23
5	MeOH	70	2a (1.5)	Cul	$\mathrm{KOH}(1.5)$	34
6	MeOH	70	2a (3)	Cul	$\mathrm{K}_{2} \mathrm{CO}_{3}(3)$	51 (65) ${ }^{\text {c }}$
7	EtOH	90	2a (3)	Cul	$\mathrm{K}_{2} \mathrm{CO}_{3}(3)$	52
8	MeOH	70	2 b (3)	Cul	-	13
9	MeOH	70	2b (1.5)	Cul	$\mathrm{KOH}(3)$	17

${ }^{4}$ Reactions were performed open to the air, reaction time: 12-17 h.
${ }^{\circ}$ P Purified by trituration with EtOAc to a purity of $>98 \%$.
${ }^{\text {' }}$ NMR yield with $1,3,5$-trimethoxybenzene as an internal standard.
of the copper catalyst. Performing the reaction under an oxygen atmosphere or adding hydrogen peroxide did not substantially improve the yield of product $\mathbf{3}$ (see SI).

Next, (2-formylphenyl)boronic acid (1) was treated with a range of guanidines under the most productive reaction conditions (Table 1, entry 6). ${ }^{26}$ Both N -monosubstituted guanidines $\mathbf{4 a - g}$ and N, N-disubstituted guanidines ($\mathbf{4 h}-\mathbf{j}$) provided the corresponding $\mathbf{2}$-aminoquinazolines $\mathbf{5 a - j}$ in fairly good yields (Table 2).

Several (2-formylphenyl)boronic acids 6a-f were next explored as substrates for the synthesis of aminoquinazolines 7a-f and 8a-f (Table 3). Both guanidines 2a and 4a gave the expected products but the isolated yields were generally somewhat higher in the case of the N-methylsubstituted guanidine 4a (Table 3; entries 3 and 4,5 and 6, 7 and 8).

Boronic acid derivatives such as the pinacolate ester 9a and the trifluoroborate $\mathbf{9 b}$ were also competent substrates, providing aminoquinazoline derivative $\mathbf{5 a}$ in yields comparable to those from boronic acid $\mathbf{1}$ (Scheme 1). These results complement the relatively few reported cases of the use of boronic acid derivatives as partners for Chan-Evans-Lam coupling. ${ }^{27,28}$

In contrast, the boronic acids 10a and 10b bearing a keto group were found to be unsuitable reaction partners for the synthesis of the corresponding quinazolines 11a and 11b (Scheme 2). In the case of these substrates, complex mixtures were obtained containing the O -arylation products 12a and 12b as the only identifiable byproducts. The failure of (2-acylphenyl)boronic acids 10a and 10b to give
the expected products implies that the formation of an arylidene guanidine is the first step in the synthesis of aminoquinazolines $\mathbf{3 , 5}, 7$, and 8 , followed by intramolecular arylation

Table 2 Guanidine Scope for the Synthesis of Aminoquinazolines

C

Synlett	V.V.		$\begin{aligned} & \mathrm{OPE} \\ & \mathrm{ACCE} \end{aligned}$			Letter
Table 3 Boronic Acid Scope for the Synthesis of Aminoquinazolines						
Entry	Boronic acid	Guanidine		Product		Yield' (\%)
1	$6 \mathrm{a}, \mathrm{R}^{1}=4-\mathrm{MeO}$	2a ($\left.\mathrm{R}^{2}=\mathrm{H}\right)$			7 a	55
2		$4 \mathrm{a}\left(\mathrm{R}^{2}=\mathrm{Me}\right)$			8 a	59°
3	6b, $R=4-8 \mathrm{nO}$	2a $\left(\mathrm{R}^{2}=\mathrm{H}\right)$			7 b	32 (53) ${ }^{\text {c }}$
4		$4 \mathrm{a}\left(\mathrm{R}^{2}=\mathrm{Me}\right)$			8 b	57°
5	6c, R - 5-MeO	2a ($\left.\mathrm{R}^{2}-\mathrm{H}\right)$			7 c	17 (53) ${ }^{\text {c }}$
6					8 C	
7	6d, $R=5-\mathrm{F}$	$\mathbf{2 a}\left(\mathrm{R}^{2}-\mathrm{H}\right)$			7d	36 (45) ${ }^{\text {c }}$
8		4a ($\mathrm{R}^{2}-\mathrm{Me}$)			8d	52°
9	6e, $\mathrm{R}=3-\mathrm{F}$	2a $\left(\mathrm{R}^{2}=\mathrm{H}\right)$			7 e	52
10					8 e	46^{6}
11	6f, $\mathrm{R}=5 \mathrm{Cl}$	2a $\left(\mathrm{R}^{2}-\mathrm{H}\right)$			7 f	35
12		4a ($\mathrm{R}^{2}=\mathrm{Me}$)			8 f	55°

${ }^{\text {a }}$ Purified by trituration with EtOAc unless stated otherwise.
${ }^{\text {b }}$ Purified by column chromatography.
${ }^{\text {© NMR y }}$ yield with 1,3,5-trimethoxybenzene as an internal standard.

Scheme 1 Synthesis 2-aminoquinazoline from a boronic acid ester and trifluoroborate

Scheme 2 Attempt to condense keto-group-containing boronic acids with guanidine

In summary, 2-aminoquinazolines can be obtained by Chan-Evans-Lam coupling of (2-formylphenyl)boronic acids with guanidines. The relatively mild reaction conditions permit the use of this method for the synthesis of pharmacologically relevant compounds bearing a 2 -aminoquinazoline scaffold.

Funding Information

H2020 MSC-ITN project CARTNET "Combating Antimicrobial Resistance Training Network". Grant agreement ID: 765147

Acknowledgment

We thank Dr. Janis Veliks for his advice and revision of the data.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707080.

References and Notes

(1) Bathini, Y.; Singh, I.; Harvey, P. J.; Keller, P. R.; Singh, R.; Micetich, R. G.; Fry, D. W.; Dobrusin, E. M.; Toogood, P. L. Bioorg. Med. Chem. Lett. 2005, 15, 3881.
(2) Esvan, Y. J.: Zeinyeh, W.: Boibessot, T.: Nauton, L.; Théry, V.: Knapp, S.; Chaikuad, A.; Loaëc, N.; Meijer, L; Anizon, F.; Giraud, F.; Moreau, P. Eur. J. Med. Chem. 2016, 118, 170.
(3) Zeinyeh, W.: Esvan, Y. J.: Josselin, B.; Baratte, B.; Bach, S.; Nauton, L.; Théry, V.; Ruchaud, S.; Anizon, F.; Giraud, F.; Moreau, P. Bioorg. Med. Chem. 2019, 27, 2083.
(4) DiMauro, E. F.; Newcomb, J.; Nunes, J. J.; Bemis, J. E.; Boucher, C.; Buchanan, J. L; Buckner, W. H.; Cee, V. J.; Chai, L; Deak, H. L.; Epstein, L. F.; Faust, T.; Gallant, P.; Geuns-Meyer, S. D.; Gore, A.; Gu, Y.; Henkle, B.; Hodous, B. L.; Hsieh, F.; Huang. X.; Kim. J. L.; Lee, J. H.; Martin, M. W.; Masse, C. E; McGowan, D. C.; Metz, D.; Mohn, D.; Morgenstern, K. A.; Oliveira-dos-Santos, A.; Patel, V. F.; Powers, D.; Rose, P. E.; Schneider, S.; Tomlinson, S. A.; Tudor, Y.-Y.: Turci, S. M.; Welcher, A. A.; White, R. D.; Zhao, H.; Zhu, L.; Zhu, X. J. Med. Chem. 2006, 49, 5671.
(5) Vasbinder, M. M.; Aquila, B.; Augustin, M.; Chen, H.; Cheung, T.; Cook, D.; Drew, L.; Fauber, B. P.; Glossop, S.; Grondine, M.; Hennessy, E.; Johannes, J.; Lee, S.; Lyne, P.; Mörtl, M.; Omer, C.; Palakurthi, S.; Pontz, T.; Read, J.: Sha, L.; Shen, M.; Steinbacher, S.; Wang, H.; Wu, A.; Ye, M.J. Med. Chem. 2013, 56, 1996.
(6) Li, C.; Shan, Y.; Sun, Y.; Si, R.; Liang, L.; Pan, X.; Wang, B.; Zhang, J. Eur. J. Med. Chem. 2017, 141, 506.
(7) Li, J.-S.; Fan, Y.-H.; Zhang. Y.; Marky, L. A.; Gold, B. J. Am. Chem. Soc. 2003, 125, 2084.
(8) Bathini, Y.; Sidhu, I.; Singh, R.; Micetich, R. G.; Toogood, P. L. Tetrahedron Lett. 2002, 43, 3295.
(9) Chen, X.; Han, J.; Zhu, Y.; Yuan, C.; Zhang, J.; Zhao, Y. Chem. Commun. 2016, 52, 10241.
(10) Liu, Q.: Zhao, Y.; Fu, H.; Cheng, C. Synlett 2013, 24, 2089.
(11) Sasse, K. Synthesis 1978, 379.
(12) Kikelj, D. In Science of Synthesis, Vol. 16; Yamamoto, Y.; Shinkai, L., Ed.; Thieme: Stuttgart, 2004, Chap. 16.3573.
(13) Babu, D. S.; Srinivasulu, D.; Kotakadi, V. S. Chem. Heterocycl. Compd. 2015, 51, 60.
(14) Smith, A. L.; Andrews, K. L;; Beckmann, H.; Bellon, S. F.; Beltran, P. J.; Booker, S.; Chen, H.; Chung, Y.-A.; D'Angelo, N. D.; Dao, J.; Dellamaggiore, K. R.; Jaeckel, P.; Kendall, R.; Labitzke, K.; Long, A. M.; Materna-Reichelt, S.; Mitchell, P.; Norman, M. H.; Powers, D.; Rose, M.; Shaffer, P. L.; Wu, M. M.; Lipford, J. R.J. Med. Chem. 2015, 58, 1426.
(15) Pandya, A. N.; Villa, E. M.; North, E. J. Tetrahedron Lett. 2017, 58 , 1276.
(16) Zhou, G.; Aslanian, R.; Gallo, G.; Khan, T.: Kuang, R.; Purakkattle, B.; Ruiz, M. D.; Stamford, A.; Ting. P.; Wu, H.; Wang. H.; Xiao, D.; Yu, T.; Zhang. Y.; Mullins, D.; Hodgson, R. Bioorg. Med. Chem. Lett. 2016, 26, 1348.
(17) Bollenbach, M.; Salvat, E.; Daubeuf, F.; Wagner, P.; Yalcin, I.; Humo, M.; Letellier, B.; Becker, L J.; Bihel, F.; Bourguignon, J.-J.; Villa, P.; Obrecht, A.; Frossard, N.; Barrot, M.; Schmitt, M. Eur. J. Med. Chem. 2018, 147, 163.
(18) Huang, K. H.; Barta, T. E.; Rice, J. W.; Smith, E. D.; Ommen, A. J.; Ma, W.; Veal, J. M.; Fadden, R. P.; Barabasz, A. F.; Foley, B. E.; Hughes, P. F.: Hanson, G. J.; Markworth, C. J.; Silinski, M.; Partridge, J. M.; Steed, P. M.; Hall, S. E. Bioorg. Med. Chem. Lett. 2012, 22, 2550.
(19) Huang, X.; Yang. H.; Fu, H.; Qjao, R.; Zhao, Y. Synthesis 2009, 2679.
(20) Chan, D. M. T.; Monaco, K. L. Wang. R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
(21) Evans, D. A.; Katz, J. L; West, T. R. Tetrahedron Lett. 1998, 39. 2937.
(22) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, $39,2941$.
(23) Chen, J.-Q:: Liu, X.: Guo, J.: Dong. Z-B. Eur. J. Org. Chem. 2020, 2414.
(24) Liu, X.; Dong, Z--B. J. Org. Chem. 2019, 84, 11524.
(25) Rodrigues, R.; Tran, L. Q.; Darses, B.; Dauban, P.; Neuville, L. Adv. Synth. Catal. 2019, 361, 4454.
(26) Quinazolin-2-amine (3); Typical Procedure

A mixture of guanidine hydrochloride (2a; $765 \mathrm{mg}, 8 \mathrm{mmol}$) and KOH ($441 \mathrm{mg}, 8 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ and the mixture was stirred for 10 min at r.t. (2-Formylphenyl)boronic acid (1; 400 mg .2 .67 mmol) was added in one portion followed by $\mathrm{Cul}(76 \mathrm{mg}, 0.4 \mathrm{mmol})$, and the resulting mixture was heated at $70^{\circ} \mathrm{C}$ overnight. The mixture was then concentrated under reduced pressure and partitioned between aq $\mathrm{NH}_{3}(30 \mathrm{~mL})$ and EtOAc (120 mL). The organic layer washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The crude product was purified by trituration with EtOAc (3 mL) to give a slightly beige solid; yield: 198 mg (51%); mp 194-196 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=9.10(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}$, $J-7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d d_{6}): $\delta-$ $162.4,160.9,151.2,134.1,127.9,124.5,122.0,119.5$ LC/MS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3}: 146.17$; found: $\mathbf{1 4 6 . 1 6}$. The spectral data correspond to the reported values (see Ref. 10).
N -Methylquinazolin-2-amine (5a)
Prepared from (2-Formylphenyl)boronic acid (1) and N -methylguanidine hydrochloride (4a), and purified by column chromatography [silica gel, EtOAc-PE (20 to 50% gradient)] as a yellowish solid: yield: $134 \mathrm{mg}(63 \%)$; $\mathrm{mp} 81-83^{\circ} \mathrm{C} ; R_{f}=0.63$ (EtOAC). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.03(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.56(\mathrm{~m}, 3 \mathrm{H})$. $7.22(\mathrm{t}, J-7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (br s, 1 H$), 3.12(\mathrm{~d}, J-4.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.01,160.50,152.44,134.37$. $127.79,125.83,122.72,120.75,28.77$. HRMS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3}: 160.0875$; found: 160.0881 .
6-(Benzyloxy)- N -methylquinazolin-2-amine (8b)
Prepared from boronic acid $\mathbf{6 b}$ and N-methylguanidine hydrochloride (4a), and purified by column chromatography [silica gel, EtOAc-PE (20 to 60% gradient)] as a yellowish solid; yield: 150 mg (57\%); $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}, R_{f}=0.38$ ($50 \% \mathrm{EtOAC}-\mathrm{PE}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.88(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1$ H), $7.51-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{~d}, J-2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.12$ (s, 2 H), $3.10(\mathrm{~d}, \mathrm{~J}-5.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $160.67,159.78,154.12,148.30,136.70,128.80,128.28,127.67$, 127.23, 127.13, 120.32, 106.82, 70.55, 28.76. HRMS: $m / z[\mathrm{M}+$ $\mathrm{H}]^{*}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}: 266.1293$; found: 266.1292.
(27) Marcum, J. S.; McGarry, K. A.; Ferber, C. J.; Clark, T. B. J. Org. Chem. 2016, 81, 7963.
(28) Vantourout, J. C.; Law, R. P.; Isidro-Llobet, A.; Atkinson, S. J.; Watson, A. J. B. J. Org. Chem. 2016, 81, 3942.

Supporting Information for DOI: $10.1055 / \mathrm{s}-0040-1707080$
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

SUPPORTING INFORMATION

2-Aminoquinazolines by Chan-Evans-Lam coupling of guanidines with $\mathbf{2}$-formylphenylboronic acids

Vitalii V. Solomin, ${ }^{\text {a,b }}$ Alberts Seins, ${ }^{\text {a,b }}$ Aigars Jirgensons ${ }^{\text {a,b* }}$
${ }^{\text {a }}$ Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia.
${ }^{\text {b }}$ Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia.
Email: aigars@osi.lv

Contents

1. General information .. 1
2. Synthesis of substituted guanidine hydrochlorides $\mathbf{4 c} \mathbf{c} \mathbf{g}, \mathbf{4 i}, \mathbf{j}$... 1
3. Synthesis of 2-aminoquinazolines (3, 5a-j, 7a-f, 8a-f) .. 3
4. Characterization data of 2-aminoquinazolines 3, 5a-j, 7a-f, 8a-f. 5
5. Copies of NMR spectra.. 12

1. General information

All reagents were purchased from commercial source and used without further purification. Melting points were determined using a digital melting point apparatus and uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz using TMS as internal standard, ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 101 MHz using TMS as internal standard. All chemical shifts were reported as δ values (ppm) relative to TMS and observed coupling constants (J) are given in Hertz (Hz). High resolution molecular masses (HRMS) were determined on a hybrid quadrupole time-of-flight (TOF) mass spectrometer Waters Synapt G2-Si equipped with an electron spray ion source (ESI). PE refers to light petroleum ether.
2. Synthesis of substituted guanidine hydrochlorides $4 \mathrm{c}-\mathrm{g}, 4 \mathrm{i}, \mathrm{j}$

Guanidines $\mathbf{4 c - g}, \mathbf{4 i}, \mathbf{j}$ were prepared according to the Scheme 1

Scheme 1

General procedure. Subsituted guanidines were prepared according to the literature procedure. ${ }^{1}$ To a stirred solution of 1 H -pyrazole-1-carboxamidine hydrochloride ($1.00 \mathrm{~g} ; 6.8$ $\mathrm{mmol} ; 1.00$ equiv.) and DIPEA ($1.24 \mathrm{~mL} ; 7.2 \mathrm{mmol} ; 1.05$ equiv.) in $\mathrm{MeCN}(25 \mathrm{~mL})$, benzylamine ($782 \mu \mathrm{~L} ; 7.2 \mathrm{mmol} ; 1.05$ equiv.) was added. The reaction mixture was stirred at ambient temperature overnight and precipitated solid filtered and washed with MeCN and $\mathrm{Et}_{2} \mathrm{O}$ to obtain pure product 4 c as an off-white solid.
The guanidines prepared are shown in the Table 1.
Table 1

Entry	R or Amine	Product	Yield
4 c	Bn		85\%
4d	Phenethyl		69\%
4 e	n-Pentyl		89\%
4f	cy-Pentyl		81\%
4 g	cy-Hexy		80\%
4 i			72\%
4j			75\%

[^3]
3. Synthesis of 2-aminoquinazolines (3, 5a-j, 7a-f, 8a-f)

3.1. General procedure for the synthesis of $\mathbf{2}$-aminoquinazolines

A mixture of guanidine hydrochloride $\mathbf{2 a}(765 \mathrm{mg}, 8 \mathrm{mmol})$ and potassium hydroxide ($441 \mathrm{mg}, 8 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ and stirred for 10 min at room temperature. Then 2-formylbenzeneboronic acid ($400 \mathrm{mg}, 2.67 \mathrm{mmol}$) was added to the mixture in one portion, followed by $\mathrm{CuI}(76 \mathrm{mg}, 0.4 \mathrm{mmol})$. Then the mixture heated at $70^{\circ} \mathrm{C}$ overnight. The reaction mixture evaporated under reduced pressure and partitioned between of aqueous ammonia (30 mL) and of ethyl acetate $(120 \mathrm{~mL})$. The organic layer washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by trituration with ethyl acetate (3 mL) to afford 2aminoquinazoline 3 ($198 \mathrm{mg}, 51 \%$) as slightly beige solid.

3.2. Preparation of aminoquinazoline 5 a from 2-(4,4,5,5-tetramethyl-[1,3,2]dioxoborolan-2-yl)-benzaldehyde (9a)

Prepared according to general procedure using N-methylguanidine hydrochloride $\mathbf{4}$ a to obtain N-methylquinazoline-2-amine 5 a. Purified by silica gel column chromatography eluting with EtOAc in PE (gradient from 20 to 50%) to obtain 109 mg of product $5 \mathrm{a}, 58 \%$ yield.

3.3. Preparation of aminoquinazoline 5a from potassium 2-formylphenyltrifluoroborate (9b)

A mixture of N-methylguanidine hydrochloride $\mathbf{4 a}(310 \mathrm{mg}, 2.83 \mathrm{mmol})$ and potassium hydroxide ($260 \mathrm{mg}, 4.72 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and stirred for 10 min at room temperature. Then, potassium 2-formylphenyl trifluoroborate ($200 \mathrm{mg}, 0.95 \mathrm{mmol}$) was added in one portion, followed by $\mathrm{CuI}(27 \mathrm{mg}, 0.14 \mathrm{mmol})$. Then the mixture heated at $70{ }^{\circ} \mathrm{C}$ overnight. The reaction mixture evaporated under reduced pressure and partitioned between of aqueous ammonia $(20 \mathrm{~mL})$ and of ethyl acetate $(40 \mathrm{~mL})$. The organic layer washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography eluting with EtOAc in PE (gradient from 20 to 50%) to obtain 76 mg of the product 5 a as yellowish solid, 50% yield.

3.4. Reaction conditions screened for the synthesis of quinazoline 3

1

2a, hydrochloride, $\mathrm{n}=1$
2b, carbonate, $\mathrm{n}=0.5$

Entry ${ }^{3}$	Solvent, t°, time	2	Catalyst/oxidant system	Base	Additive	Yield of 3
1	$\mathrm{MeOH}, 70{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} 2 \mathrm{a} \\ 1.5 \mathrm{eq} \end{gathered}$	CuI $15 \mathrm{~mol} \%$, air	$\begin{gathered} \mathrm{Cs}_{2} \mathrm{CO}_{3} \\ 2.5 \mathrm{eq} \\ \hline \end{gathered}$	-	30\%
2	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} 2 \mathrm{a} \\ 1.5 \mathrm{eq} \end{gathered}$	CuI $15 \mathrm{~mol} \%$, air	$\begin{gathered} \mathrm{Cs}_{2} \mathrm{CO}_{3} \\ 2.5 \mathrm{eq} \\ \hline \end{gathered}$	$\begin{aligned} & \text { TMEDA, } \\ & 30 \mathrm{~mol} \% \\ & \hline \end{aligned}$	23\%
3	$\mathrm{MeOH}, 70{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} 2 \mathrm{a} \\ 1.5 \mathrm{eq} \end{gathered}$	CuI $15 \mathrm{~mol} \%$, air	$\begin{aligned} & \mathrm{K}_{2} \mathrm{CO}_{3} \\ & 2.5 \mathrm{eq} \\ & \hline \end{aligned}$	-	31\%
4	$\mathrm{MeOH}, 70{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} \mathbf{2 a} \\ 2.5 \mathrm{eq} \\ \hline \end{gathered}$	CuI $15 \mathrm{~mol} \%$, air	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	-	44\%
5	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} \mathbf{2 a} \\ 3.5 \mathrm{eq} \end{gathered}$	CuI $15 \mathrm{~mol} \%$, air	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ 3.5 \mathrm{eq} \\ \hline \end{gathered}$	-	46\%
6	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} \mathbf{2 a} \\ 5 \mathrm{eq} \end{gathered}$	CuI $15 \mathrm{~mol} \%$, air	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ 5 \mathrm{eq} \end{gathered}$	-	14\%
7	$\mathrm{MeOH}, 70{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} \mathbf{2 b} \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	$\begin{gathered} \text { CuI } 15 \mathrm{~mol} \%, \\ \text { air } \end{gathered}$	-	-	13\%
8	$\mathrm{MeOH}, 70{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} \mathbf{2 b} \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	CuI $15 \mathrm{~mol} \%$, air	$\begin{gathered} \mathrm{KOH} \\ 3 \mathrm{eq} \end{gathered}$	-	17\%
9	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} 2 \mathrm{a} \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CuI} 15 \mathrm{~mol} \%, \\ \text { air } \end{gathered}$	$\begin{gathered} \mathrm{KOH}, \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	-	$51 \%(65 \%)^{6}$
10	$\mathrm{MeOH}, 70{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} \mathbf{2 a} \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	CuI $5 \mathrm{~mol} \%$, air	$\begin{gathered} \mathrm{KOH}, \\ 3 \mathrm{eq} \end{gathered}$	-	11\%
11	$\mathrm{MeOH}, 70{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} 2 \mathrm{a} \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CuI} 30 \mathrm{~mol} \%, \\ \text { air } \end{gathered}$	$\begin{gathered} \mathrm{KOH}, \\ 3 \mathrm{eq} \end{gathered}$		41\%
12	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} 2 \mathrm{a} \\ 1.5 \mathrm{eq} \end{gathered}$	$\begin{gathered} \mathrm{CuI} 15 \mathrm{~mol} \%, \\ \text { air } \end{gathered}$	$\begin{aligned} & \mathrm{KOH}, \\ & 1.5 \mathrm{eq} \end{aligned}$	-	34\%
13	$\begin{aligned} & \mathrm{EtOH}, 90^{\circ} \mathrm{C} \text {, } \\ & 17 \mathrm{~h} \end{aligned}$	$\begin{gathered} \mathbf{2 a} \\ 3 \mathrm{eq} \end{gathered}$	$\begin{gathered} \mathrm{CuI} \underset{\text { air }}{15 \mathrm{~mol} \%} \% \text {, } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{KOH} \\ 3 \mathrm{eq} \end{gathered}$		52\%
14	i-PrOH, $90{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} \mathbf{2 a} \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	CuI $15 \mathrm{~mol} \%$, air	$\begin{gathered} \mathrm{KOH} \\ 3 \mathrm{eq} \end{gathered}$	-	n.r.
15	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} 2 \mathrm{a} \\ 2.5 \mathrm{eq} \\ \hline \end{gathered}$	$\underset{\text { air }}{\mathrm{Cu}(\mathrm{OAc})_{2}} 15 \mathrm{~mol} \%,$	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3}, \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	-	35\%
16	$\begin{aligned} & \text { DMF, } 60^{\circ} \mathrm{C} \text {, } \\ & 17 \mathrm{~h} \end{aligned}$	$\begin{gathered} 2 \mathrm{a} \\ 1.5 \mathrm{eq} \end{gathered}$	$\begin{gathered} \mathrm{Cu}(\mathrm{OAc})_{2} 20 \mathrm{~mol} \%, \\ \text { air } \end{gathered}$	$\begin{gathered} \mathrm{Cs}_{2} \mathrm{CO}_{3} \\ 2.5 \mathrm{eq} \\ \hline \end{gathered}$	$\begin{gathered} 2,2^{\prime}-\mathrm{BiPy}, \\ 2 \mathrm{eq} \end{gathered}$	n.r.
17	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} \mathbf{2 a} \\ 2.5 \mathrm{eq} \\ \hline \end{gathered}$	$\mathrm{CuCl} 15 \mathrm{~mol} \%$, air	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	-	23\%
18	$\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} \mathbf{2 a} \\ 3 \mathrm{eq} \end{gathered}$	$\begin{gathered} \mathrm{CuI} 15 \mathrm{~mol} \%, \\ \mathrm{O}_{2}{ }^{\mathrm{c}} \end{gathered}$	$\begin{gathered} \mathrm{KOH}, \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	-	56\%
19	$\mathrm{MeOH}, 70{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}$	$\begin{gathered} 2 \mathrm{a} \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CuI} 15 \mathrm{~mol} \% ; \\ 4 \mathrm{eq} 35 \% \mathrm{aq} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{KOH}, \\ 3 \mathrm{eq} \\ \hline \end{gathered}$	-	40\%

[^4] trimethoxybenzene as internal standard; ${ }^{〔} 1 \mathrm{~atm}$ of O_{2}.

4. Characterization data of 2 -aminoquinazolines 3 , 5a-j, 7a-f, 8a-f.

2-Aminoquinazoline (3)

Prepared according to general procedure. Purified by trituration with EtOAc, white beige solid, $51 \%(198 \mathrm{mg})$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.4,160.9,151.2,134.1,127.9,124.5,122.0,119.5$. LCMS: $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 146.17, found 146.16. Corresponds to the reported data. ${ }^{2}$
N -Methylquinazolin-2-amine (5a)

Prepared according to general procedure using commercially available N-methylguanidine hydrochloride (4a). Purified by silica gel column chromatography (gradient 20% to 50% EtOAc in PE), Rf 0.63 (EtOAc), yellowish solid; m.p. $81-83{ }^{\circ} \mathrm{C}, 63 \%(134 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 9.03(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (br. s, 1H), $3.12(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 162.01,160.50$, 152.44, 134.37, 127.79, 125.83, 122.72, 120.75, 28.77; HRMS: $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$; calculated 160.0875 , found 160.0881

N -phenylquinazolin-2-amine (5b)

Prepared according to general procedure using commercially available phenylguanidine carbonate (4b).The crude product was purified by silica gel column chromatography using EtOAc: PE (1:3), Rf 0.68 (EtOAc:PE, 1:3) to obtain 168 mg of the slightly beige solid, 56%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- $\left.d\right) \delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.71(\mathrm{~m}$, $3 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 161.99,156.96,151.68,139.77,134.52,129.11,127.57,126.50,123.93$, 122.69, 121.02, 119.15. LCMS $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 222.26, found 222.35 . Corresponds to the reported data. ${ }^{3}$
N-Benzylquinazolin-2-amine (5c)

[^5]Prepared according to general procedure, using N-benzylguanidine hydrochloride (4c). Crude material dissolved in EtOAc:PE 1:1 and undissolved materials discarded. After evaporation of organic phase residue crystallized from $\mathrm{EtOAc}: \mathrm{PE}(1: 10)$ to obtain pure product as a beige solid, Rf 0.56 (EtOAc:PE 1:3), 66\% (210 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.87$ (s, $1 \mathrm{H}), 7.87-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.20(\mathrm{~m}, 6 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 162.17,159.63,152.28,139.33,134.33,127.90,127.69$, 127.41, 125.81, 122.77, 120.51, 45.85, 45.73. LCMS $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 236.29, found 236.37 . Corresponds to the reported data. ${ }^{4}$
N-Phenethylquinazolin-2-amine (5d)

Prepared according to general procedure, using N-phenethylguanidine hydrochloride ($\mathbf{4 d}$). Purified by silica gel column chromatography using 10 to 40% EtOAc in PE gradient, Rf 0.46 (EtOAc:PE 1:3), slightly yellow solid, $52 \%(175 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroformd) $\delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.17(\mathrm{~m}, 6 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.97(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 162.06,159.67,152.34$, $139.45,134.28,129.02,128.72,127.67,126.52,122.66,120.39,42.93,35.82$. LCMS $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 250.32, found 250.43. Corresponds to the reported data. ${ }^{4}$

N -Pentylquinazolin-2-amine (5e)

Prepared according to general procedure, using N-(n-pentyl)guanidine hydrochloride (4e). Purified by silica gel column chromatography using 10 to 40% EtOAc in PE gradient, Rf 0.55 (EtOAc:PE 1:3), light yellow crystalline solid; m.p. $76-78{ }^{\circ} \mathrm{C}, 54 \%(187 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ $(\mathrm{s}, 1 \mathrm{H}), 3.65-3.46(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 159.87,152.38,134.27$, 127.68, 125.65, 122.51, 120.29, 41.75, 29.44, 29.30, 22.59, 14.17. HRMS: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]{ }^{+}$; calculated 216.1501, found 216.1508 .

N -cyclopentylquinazolin-2-amine (5f)

Prepared according to general procedure, using N-cyclopentylguanidine hydrochloride (4f). Purified by silica gel column chromatography using 10 to 40% EtOAc in PE gradient, Rf 0.46 (EtOAc:PE 1:3), yellow solid; m.p. $75-77{ }^{\circ} \mathrm{C}, 55 \%(198 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.44(\mathrm{~h}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR

[^6](101 MHz , Chloroform- d) $\delta 161.95,159.54,152.42,127.64,125.67,122.42,120.22,53.11$, 33.47, 23.82. HRMS: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 214.1344, found 214.1347.

N -Cyclohexylquinazolin-2-amine (5g)

Prepared according to general procedure using N-cyclohexylguanidine hydrochloride $\mathbf{(} \mathbf{4 g})$ (prepared from cyclohexylamine according to exemplary procedure B). Purified by silica gel column chromatography using 20 to $50 \% \mathrm{EtOAc}$ in PE gradient, Rf 0.56 (EtOAc:PE 1:3), slightly yellow solid, $37 \%(113 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 7.64$ $(\mathrm{m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{ddd}, J=8.0,6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01(\mathrm{dtd}, J=14.4,7.3,6.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.54$ $-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.16(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 162.07,152.49$, $134.19,127.64,125.62,122.38,120.24,49.75,33.37,25.93,25.00$. LCMS $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$; calculated 228.31, found 228.42. Corresponds to the reported data. ${ }^{5}$

N, N-Dimethylquinazolin-2-amine (5h)

Prepared according to general procedure using commercially available 1,1-dimethylguanidine sulphate ($\mathbf{4} \mathbf{h}$). The crude product was purified by silica gel column chromatography using 1:3 EtOAc:PE, Rf 0.79 (EtOAc:PE 1:3) to obtain 100 mg of the white solid, $43 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.99(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 161.38,160.06,152.60$, 134.08, 127.57, 125.66, 122.12, 119.24, 37.43. LCMS $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 174.22, found 174.28 . Corresponds to the reported data. ${ }^{6}$

2-(Pyrrolidin-1-yl)quinazoline (5i)

Prepared according to general procedure using pyrrolidine-1-carboximidamide hydrochloride (4i). Purified by silica gel column chromatography using 10 to 40% EtOAc in PE gradient, Rf 0.17 (EtOAc:PE 1:10), light yellow solid, 47% (108 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.99(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.65(\mathrm{~m}, 4 \mathrm{H}), 2.08-1.98(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 161.53,158.22,152.76,134.09,127.68,125.55$, 121.88, 119.43, 47.01, 25.71. LCMS $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 200.26, found 200.33 . Corresponds to the reported data. ${ }^{7}$

[^7]
4-(Quinazolin-2-yl)morpholine (5j)

Prepared according to general procedure using morpholine-1-carboximidamide hydrochloride (4j). Purified by silica gel column chromatography using 10 to 30% EtOAc in PE gradient, Rf 0.26 (EtOAc:PE 1:10), yellow crystalline solid, 39% (114 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}$, $1 \mathrm{H}), 4.01-3.92(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 161.60$, $159.38,152.32,134.29,127.55,125.86,122.89,119.95,67.11,44.72$. LCMS $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}$; calculated 216.26 , found 216.35 . Corresponds to the reported data. ${ }^{8}$

6-Methoxyquinazolin-2-amine (7a)

Prepared according to general procedure from boronic acid 6a and guanidine hydrochloride (2a). Purified by trituration with EtOAc, beige solid, $55 \%(27 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}\right.$, DMSO- ${ }_{6}$) $\delta 160.8,160.0,154.0,147.6,126.2,126.1,119.7,105.7,55.4$. LCMS: $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 176.19, found 176.26. Corresponds to the reported data. ${ }^{9}$

6-(Benzyloxy)quinazolin-2-amine (7b)

Prepared according to general procedure from boronic acid $\mathbf{6 b}$ and guanidine hydrochloride (2a). Purified by trituration with EtOH , beige solid; m.p. $149-150{ }^{\circ} \mathrm{C}, 32 \%(79 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.21(\mathrm{~m}, 8 \mathrm{H}), 6.61(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 160.84,160.07,153.01,147.70,136.80,128.45,127.93$, $127.84,126.53,126.17,119.61,107.13,69.62$; HRMS: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]{ }^{+}$; calculated 252.1137 , found 252.1136 .

7-Methoxyquinazolin-2-amine (7c)

Prepared according to general procedure from boronic acid 6c and guanidine hydrochloride (2a). Re-crystallized from EtOH, beige solid; m.p. 222-224 ${ }^{\circ} \mathrm{C}$, 17% (26 mg); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, \mathrm{J}=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ $(\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 163.84$,

[^8]$161.21,160.83,154.14,129.20,114.91,114.18,103.44,55.41$. HRMS: $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 176.0824 , found 176.0820

7-Fluoroquinazolin-2-amine (7d)

Prepared according to general procedure from boronic acid $\mathbf{6 d}$ and guanidine hydrochloride (2a). Re-crystallized from EtOH , white beige solid, $36 \%(52 \mathrm{mg}) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 165.71(\mathrm{~d}, J=250.4 \mathrm{~Hz}), 162.08,161.29,153.55(\mathrm{~d}, J=14.5 \mathrm{~Hz})$, $131.03(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 116.89,111.68(\mathrm{~d}, J=25.2 \mathrm{~Hz}), 108.18(\mathrm{~d}, J=20.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO- d_{6}) $\delta-104.1$. LCMS $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 164.16 , found 164.30 . Corresponds to the reported data. ${ }^{10}$

5-Fluoroquinazolin-2-amine (7e)

Prepared according to general procedure from boronic acid 6 e and guanidine hydrochloride (2a). Re-crystallized from EtOH, white yellow solid; m.p. 223-225 ${ }^{\circ} \mathrm{C}, 52 \%(76 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.25(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.22,158.54(\mathrm{~d}, J$ $=255.2 \mathrm{~Hz}), 156.06,153.11,134.45(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 120.94,109.50(\mathrm{~d}, J=15.7 \mathrm{~Hz}), 105.85$ $(\mathrm{d}, J=18.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO- d_{6}) $\delta-124.16$. HRMS: $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FN} \mathrm{N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 164.0624 , found 164.0621 .

7-Chloroquinazolin-2-amine (7f)

Prepared according to general procedure from boronic acid $\mathbf{6 f}$ and guanidine hydrochloride (2a). Re-crystallized from EtOH , beige solid; decomp. $>275{ }^{\circ} \mathrm{C}, 35 \%(52 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J$ $=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 162.40,161.31,152.53$, 138.71, 129.93, 123.22, 122.34, 117.97, 40.19; HRMS: $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{CIN}_{3}[\mathrm{M}+\mathrm{H}]{ }^{+}$; calculated 180.0328, found 180.0331 .

6-Methoxy-N-methylquinazolin-2-amine (8a)

[^9]Prepared according to general procedure from boronic acid 6a and N -methylguanidine hydrochloride 4a. Purified by silica gel column chromatography eluting with EtOAc, Rf 0.54 (EtOAc), yellow solid; m.p. $144-145{ }^{\circ} \mathrm{C}, 59 \%(94 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $8.89(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.23(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $160.54,159.78,155.00,148.31,127.21,126.70,120.37,105.25,55.68,28.75$; HRMS: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 190.0980 , found 190.0983 .

6-(benzyloxy)- N-methylquinazolin-2-amine (8b)

Prepared according to general procedure from boronic acid $\mathbf{6 b}$ and N -methylguanidine hydrochloride (4a). Purified by silica gel column chromatography using 20% to $60 \% \mathrm{EtOAc}$ in PE gradient, Rf 0.38 (EtOAc:PE 1:1), yellowish solid; m.p. $130-132{ }^{\circ} \mathrm{C}, 57 \%(150 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.32(\mathrm{~m}, 6 \mathrm{H})$, $7.05(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 160.67,159.78,154.12,148.30,136.70,128.80,128.28,127.67$, 127.23, 127.13, 120.32, 70.55, 28.76. HRMS: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]{ }^{+}$; calculated 266.1293, found 266.1292 .

7-Methoxy- N-methylquinazolin-2-amine (8c)

Prepared according to general procedure from boronic acid $\mathbf{6 c}$ and N -methylguanidine hydrochloride (4a). Purified by silica gel column chromatography eluting with EtOAc, Rf 0.54 (EtOAc), slightly yellow solid; m.p. $105-107^{\circ} \mathrm{C}, 48 \%(77 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 164.72,160.92,160.43,154.70,128.97,115.84,115.51,104.21,55.68,28.66$. HRMS: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 190.0980, found 190.0981 .

7-Fluoro- N-methylquinazolin-2-amine (8d)

Prepared according to general procedure from boronic acid 6d and N -methylguanidine hydrochloride (4a). Purified by silica gel column chromatography eluting with EtOAc, Rf 0.65 (EtOAc), white solid; m.p. $135-137{ }^{\circ} \mathrm{C}, 52 \%(83 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{td}, J=8.7,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $167.95,165.42,161.37,160.73,154.23,154.09,130.20,130.09,112.86,112.61,109.95$,
109.75; ${ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-103.00$. HRMS: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 178.0781, found: 178.0782 .

5-Fluoro- N -methylquinazolin-2-amine (8e)

Prepared according to general procedure from boronic acid $\mathbf{6 e}$ and N -methylguanidine hydrochloride (4a). Purified by silica gel column chromatography using 10\% to $40 \% \mathrm{EtOAc}$ in PE gradient, Rf 0.41 (EtOAc:PE 1:3), white beige solid; m.p. $142-144{ }^{\circ} \mathrm{C}, 46 \%(74 \mathrm{mg})$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88-6.76(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ $160.67,158.12,153.45,134.39,134.29,121.73,106.48,28.60 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO$\left.d_{6}\right) \delta-128.79$. HRMS: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 178.0781, found: 178.0779.

7-Chloro- N -methylquinazolin-2-amine (8f)

Prepared according to general procedure from boronic acid $6 \mathbf{f}$ and N -methylguanidine hydrochloride (4a). Purified by silica gel column chromatography in EtOAc, Rf 0.69 (EtOAc), white yellow solid; decomp. $>80^{\circ} \mathrm{C}, 55 \%(86 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.88,160.41,152.33$, 129.92, 123.62, 122.21, 118.01, 27.92. HRMS: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$; calculated 194.0485, found: 194.0484.

Annex III

Synthesis of indazoles from 2-formylphenylboronic acids

Vitalii V. Solomin, ${ }^{\text {ab }}$ Alberts Seins, ${ }^{\text {ab }}$ and Aigars Jirgensons ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia.
${ }^{\mathrm{b}}$ Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia

RSC Advances, 2021, DOI: 10.1039/D1RA04056A

Check for updates

Cite this: RSC Adv., 2021, 11, 22710

Received 24th May 2021
Accepted 22nd June 2021
DOI: 10.1039/d1ra04056a
rsc.li/rsc-advances

Synthesis of indazoles from 2-formylphenylboronic acids \dagger

Vitalii V. Solomin, ${ }^{\text {ab }}$ Alberts Seins ${ }^{\text {ab }}$ and Aigars Jirgensons (이 *ab
A method for the synthesis of indazoles was developed which involves a copper(ı) acetate catalysed reaction of 2-formylboronic acids with diazadicaboxylates followed by acid or base induced ring closure Hydrazine dicarboxylates were also shown as competent reaction partners for the synthesis of indazoles however, they required a stoichiometric amount of copper(in) acetate for the $\mathrm{C}-\mathrm{N}$ bond formation step. The transformation can be efficiently performed as a two step-one pot procedure to give a range of 1 N alkoxycarbonyl indazoles

Introduction

The indazole motif plays an important role in pharmaceutically relevant compounds including drugs and candidate drugs e.g. Lonidamine, Gamendazole, Bendazac, Pazopanib, Axitinib (Fig. 1). ${ }^{1-4}$ A number of approaches have been developed to assemble indazole from 2-aminotoluenes, ${ }^{5} 2$-acyl-halobenzenes, ${ }^{6-8}$ 2-aminophenyloximes, ${ }^{9}$ and 2-nitrobenzaldehydes, ${ }^{1011}$ and by $[3+$ 2] annulations of in situ generated arynes. ${ }^{12-14}$ Most of the above mentioned methods lead to the defined $1 N$ or $2 N$ indazole substitution pattern, however, they require harsh conditions or long routes to the key intermediates limiting their application. Selective N-functionalization of indazoles has been reported for alkylation reactions ${ }^{25-17}$ and few reports can be found on selective N -acylation of indazoles. ${ }^{18}$

Previously, we demonstrated the construction of aminoquinazolines from 2-formylphenylboronic acids. ${ }^{19}$ This method involved the Chan-Evans-Lam reaction for the $\mathrm{C}-\mathrm{N}$ bond formation. To extend this approach for the synthesis of indazoles, we turned our attention to copper catalysed addition of phenyl boronic acids to azodicarboxylates reported by Uemura and Chatani. ${ }^{20}$ Using 2-formylphenylboronic acids $\mathbf{1}$ as substrates, the addition to $\mathrm{N}=\mathrm{N}$ bond in azadicarboxylates 2 would give N-arylhydrazine intermediates 3 which could be further transformed to indazoles 4 and 5 (Scheme 1).

Results and discussion

The initial investigation of the arylation conditions was performed for the reaction of 2 -formylphenylboronic acid (1a) with

[^10]diethylazodicarboxylate (DEAD, 2a) using $\mathrm{Cu}(\mathrm{OAc})_{2}$ as a catalyst in a range of solvents (Table 1, entries 1-9). Solvents such as MeCN, DMF and DMA were found to be appropriate to obtain the product 3 a together with its cyclic tautomer $\mathbf{6 a}$ in a good yield (Table 1, entries 5 and 6). Decreased catalyst loading was also possible using DMA as a solvent without affecting the product 6a yield (Table 1, entries 7-9). Range of other copper sources was investigated (Table 1, entries 10-14). CuCl_{2} $\mathrm{Cu}(\mathrm{OTf})_{2} \mathrm{Cu}(\mathrm{acac})_{2}$ performed as efficient catalysts for $\mathrm{C}-\mathrm{N}$ bond formation giving the product 3 a in high yield (Table 1, entries $10-12$). Copper (I) source such as CuCl proved to be ineffective catalyst, while catalytic amount of CuI enabled product 3a formation in good yield (Table 1, entries 13 and 14).

Next, the conditions were investigated for the indazole ring closure using arylhydrazine 3 a (Table 2). Acidic reaction conditions enabled the condensation of arylhydrazine 3 a to 1 N etoxycarbonyl indazole (4a) (Table 2, entries 1-5). TFA in DCM and in MeCN gave the expected product 4 a in good yield (Table 2, entries 1 and 2). Neat AcOH at r. t. did not enable the cyclization of arylhydrazine 3a, while heating in a solution of MeCN induced formation of indazole 4 a (Table 2, entries 3 and 4).

Fig. 1 Indazole containing drugs (Lonidamine, Gamendazole, Bendazac, Pazopanib) and candidate drug (Axitinib).

Scheme 1 Indazole synthesis from 2-formylphenylboronic acids. (4a) from 2 -formylphenylboronic acid (1a) was investigated (Table 3). Unfortunately, DMA which was the solvent of choice for high yielding arylation of DEAD was not suitable for the ring closure step in the presence of TFA (Table 3, entry 1). In this case, the arylhydrazine 3 a intermediate was not transformed to product 4a, according to LC-MS. In turn, the addition of TFA in DCM in an amount to sufficiently dilute DMA, enabled the formation of expected product $4 a$ in a good yield (Table 3, entry 2). The use of DCM as a solvent for both steps was less productive (Table 3, entry 3). However, MeCN was found as an appropriate solvent for both arylation and ring closure in the presence of TFA to give 1 N -protected indazole 4 a in a good overall yield (Table 3 , entry 4).
Formic acid was strong enough to enable the formation of indazole 4 a at room temperature in a solution of MeCN (Table 2, entry 5).

The use of a base in alcoholic solvent provided unprotected indazole 5 a (Table 2, entries 6-8). Both $\mathrm{K}_{2} \mathrm{CO}_{3}$ and KOH could be efficiently used for the ring closure - deacylation reaction of arylhydrazine 3 a .

Next, the one pot formation of 1 Netoxycarbonyl indazole

Table 2 Cyclization of arylhydrazone 3 a to indazoles 4 a and 5 a

			with 6a)		
Entry	Reagent	Solvent	Temp., time	Product	Yield
1	5 equiv. TFA	DCM	$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$	4 a	63\%
2	5 equiv. TFA	MeCN	$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$	4 a	64\%
3	AcOH	Neat	r. t., 12 h	4 a	0\%
4	30 equiv. AcOH	MeCN	$70{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	4 a	56\%
5	30 equiv HCOOH	MeCN	r. t., 12 h	4 a	56\%
6	3 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$	MeOH	$70^{\circ} \mathrm{C}, 1 \mathrm{~h}$	5 a	67\%
7	3 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$	MeOH	$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$	5 a	67\%
8	4 equiv. KOH	EtOH	r. t., 12 h	5 a	59\%

With one-pot conditions in hand, the synthesis of other alkoxycarbonylindazoles $\mathbf{4 b}$-d was performed by the reaction of boronic acid $1 \mathbf{a}$ with azodicarboxylates $\mathbf{2 b} \mathbf{b} \mathbf{d}$ (Table 4). The best yield of product $\mathbf{4 b}$ was obtained with diisopropyl azodicarboxylate (DIAD, 2b, Table 4, entry 1).

The scope of boronic acid substitution was investigated in the reaction of a range of formylboronic acids $\mathbf{1 b}-\mathbf{f}$ with DIAD ($\mathbf{2 b}$) followed by cyclization (Scheme 2). Substrates 1b-d bearing methoxy and benzyloxy groups provided indazoles $4 \mathrm{e}-\mathrm{g}$ in a good to moderate yield. In the case of substrates $\mathbf{1 e , f}$ bearing electronwithdrawing substituents, yields of products $\mathbf{4 h}, \mathbf{i}$ were decreased.

Thiophene boronic acid 8 was found a suitable substrate to obtain thienopyrazole derivative 9 in a good yield (Scheme 3).

Hydrazine dicarboxylate 7a was also explored as a reagent for the synthesis of indazoles instead of azodicarboxylate $2 \mathbf{a}$ (Table 5). 2-Formylphenylboronic acid (1a) was subjected to the reaction with diethyl hydrazine dicarboxylate (7a) using the two-step one-pot procedure for the formation of indazole 4a. The catalytic amount of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and excess of triethylamine was not sufficient to achieve good yield of product 4a formation (Table 5 , entry 1). The use of equimolar amount of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and an

Table 1 Conditions for the arylation of DEAD (2a)

Entry	Copper eatalyst	Solvent	Isolated yield
1	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	MeOH^{α}	0%
2	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	PhMe^{2}	0%
3	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	THF	64%
4	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	MeCN^{2}	80%
5	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	DMF^{b}	83%
6	$20 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	DMA^{c}	98%
7	$15 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	DMA^{c}	98%
8	$10 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	DMA^{c}	98%
9	$5 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OAc})_{2}$	DMA^{c}	96%
10	$10 \mathrm{~mol} \% \mathrm{CuCl})_{2}$	DMAc_{2}	94%
11	$10 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{OTf})_{2}$	DMAc^{2}	99%
12	$10 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{acac})_{2}$	DMAc^{2}	97%
13	$10 \mathrm{~mol} \% \mathrm{CuCl}$	DMAc^{2}	25%
14	$10 \mathrm{~mol} \% \mathrm{CuI}$	DMAc^{2}	93%
a Violent DEAD decomposition observed. ${ }^{b} N, N$-Dimethylformamide.			
${ }^{c} N, N$-Dimethylacetamide.			

${ }^{a}$ Violent DEAD decomposition observed. ${ }^{b} \mathrm{~N}, \mathrm{~N}$-Dimethylformamide.
${ }^{c} \mathrm{~N}, \mathrm{~N}$-Dimethylacetamide.

Table 4 Azodicarboxylate 2 scope for the synthesis of indazoles 4

Scheme 2 The reaction of substituted formylboronic acids with DIAD (2b).

Scheme 3 The reaction of substituted formylboronic acids with DIAD (2b).
excess of triethylamine for the first step enabled good yield of product $4 \mathbf{a}$ over two steps, while increasing the amount of $\mathrm{Cu}(\mathrm{OAc})_{2}$ reduced the yield of product 4 a (Table 5, entries 2 and

Table 5 Synthesis of indazole using of hydrazine dicarboxylate 7a

Entry	Catalyst	Solvent	Additive	NMR yield ${ }^{a}$
1	20 mol $\% \mathrm{Cu}(\mathrm{OAc})_{2}$	MeCN	3 equiv. TEA	25%
2	1 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	MeCN	3 equiv. TEA	66%
3	1.5 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	MeCN	3 equiv. TEA	50%
4	1 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	MeCN	None	26%
5	1 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	MeCN	2 equiv. TMEDA	67%
6	1 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	MeCN	3 equiv. DIPEA	60%
7	1 equiv. CuCl	MeCN	3 equiv. TEA	35%
8	1 equiv. CuCl	2	MeCN	3 equiv. TEA

[^11]

Scheme 4 Scope of boronic acids 1 in the reaction with diazadicarboxylate 7 g .
3). The transformation of 2 -formylphenylboronic (1a) to indazole 4a was not efficient in the absence of base for the first step, however, TEA could be replaced by TMEDA and DIPEA without significantly reducing the product $\mathbf{4 b}$ yield (Table 5, entries 5 and 6). Several other Cu salts were tried for the first step of indazole $\mathbf{4 b}$ formation, however, were found to be ineffective (Table 5, entries 7 and 8). The need for an equimolar amount of $\mathrm{Cu}(\mathrm{OAc})_{2}$ for successful synthesis of indazole 4a using hydrazine dicarboxylate 7 a implies in situ oxidation of reagent 7 a to azodicarboxylate 2a (see also Scheme 5). However, C-N bond formation with hydrazine dicarboxylate 7 a in the Chan-EvansLam reaction cannot be excluded. ${ }^{21}$

Next, a range of hydrazine dicarboxylates 7a-g was explored as reaction components for a one-pot two-step synthesis of indazoles $\mathbf{4 a - d}, \mathbf{j}-\mathbf{1}$ (Table 6). TFA was a suitable acid for the cyclization step to give the corresponding products $4 a-\mathbf{d}, \mathbf{j}, \mathbf{k}$ from the reaction of boronic acid $\mathbf{1 a}$ with hydrazine dicarboxylates 7a-f (Table 6, entries 1-6). For the synthesis of product 41 bearing acid labile t-Bu group, acetic acid at elevated temperature was used instead of TFA (Table 6, entry 7). This approach successfully provided product 41 in a very good yield (Table 6 , entry 8).

The scope of phenyl boronic acids $\mathbf{l b}$ - \mathbf{i} was explored with di-tert-butyl hydrazine dicarboxylate 7 g as a reaction component

Scheme 5 Proposed mechanism for the $\mathrm{C}-\mathrm{N}$ bond forming step.

Table 6 Hydrazine dicarboxylate 7 scope for the synthesis of indazoles 4

Conclusions

In summary, copper catalysed reaction of 2-formylboronic acids with diazadicaboxylates followed by acid or base induced ring closure is a convenient method for the synthesis of 1 N -alkoxycarbonyl indazole derivatives. The indazole synthesis can also be performed using hydrazine dicarboxylates as reaction partners for the synthesis of indazoles, however, required a stoichiometric amount of copper(II) acetate for the $\mathrm{C}-\mathrm{N}$ bond formation step. The method is based on readily available building blocks and can be performed at relatively mild reaction conditions which enables its application for the synthesis of indazole motif containing compounds.

Author contributions

V. S. and A. S performed the synthesis. A. J. wrote the paper.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Funding from H2020 MSC-ITN project CARTNET "Combating Antimicrobial Resistance Training Network", grant agreement ID: 765147 is acknowledged.

Notes and references

1 K. B. Goodman, H. Cui, S. E. Dowdell, D. E. Gaitanopoulos, R. L. Ivy, C. A. Sehon, R. A. Stavenger, G. Z. Wang, A. Q. Viet, W. Xu, G. Ye, S. F. Semus, C. Evans, H. E. Fries, L. J. Jolivette, R. B. Kirkpatrick, E. Dul, S. S. Khandekar, T. Yi, D. K. Jung, L. L. Wright, G. K. Smith, D. J. Behm, R. Bentley, C. P. Doe, E. Hu and D. Lee, J. Med. Chem., 2007, 50, 6-9.
2 Y. Hu, D. Cole, R. A. Denny, D. R. Anderson, M. Ipek, Y. Ni, X. Wang, S. Thaisrivongs, T. Chamberlain, J. P. Hall, J. Liu, M. Luong, L.-L. Lin, J.-B. Telliez and A. Gopalsamy, Bioorg. Med. Chem. Lett., 2011, 21, 4758-4761.
3 J. Schoene, T. Gazzi, P. Lindemann, M. Christmann, A. Volkamer and M. Nazaré, ChemMedChem, 2019, 14, 1514-1527.
4 S.-G. Zhang, C.-G. Liang and W.-H. Zhang, Molecules, 2018, 23, 2783.
5 J.-H. Sun, C. A. Teleha, J.-S. Yan, J. D. Rodgers and D. A. Nugiel, J. Org. Chem., 1997, 62, 5627-5629.

6 X. Xiong, Y. Jiang and D. Ma, Org. Lett., 2012, 14, 2552-2555.
7 E. Dubost, S. Stiebing, T. Ferrary, T. Cailly, F. Fabis and V. Collot, Tetrahedron, 2014, 70, 8413-8418.

8 K. Lukin, M. C. Hsu, D. Fernando and M. R. Leanna, J. Org. Chem., 2006, 71, 8166-8172.
9 B. C. Wray and J. P. Stambuli, Org. Lett., 2010, 12, 4576-4579.
10 J. Schoene, H. Bel Abed, P. Schmieder, M. Christmann and M. Nazaré, Chem.-Eur. J., 2018, 24, 9090-9100.

11 H. Bel Abed, N. Weißing, J. Schoene, J. Paulus, N. Sewald and M. Nazaré, Tetrahedron Lett., 2018, 59, 1813-1815.

12 G. Chen, M. Hu and Y. Peng, J. Org. Chem., 2018, 83, 15911597.

13 Z. Liu, F. Shi, P. D. G. Martinez, C. Raminelli and R. C. Larock, J. Org. Chem., 2008, 73, 219-226.

14 P. Li, C. Wu, J. Zhao, D. C. Rogness and F. Shi, J. Org. Chem., 2012, 77, 3149-3158.
15 K. W. Hunt, D. A. Moreno, N. Suiter, C. T. Clark and G. Kim, Org. Lett., 2009, 11, 5054-5057.

16 M. Cheung, A. Boloor and J. A. Stafford, J. Org. Chem., 2003, 68, 4093-4095.
17 G. Luo, L. Chen and G. Dubowchik, J. Org. Chem., 2006, 71, 5392-5395.
18 D. M. M. M. Dissanayake and A. K. Vannucci, Org. Lett., 2019, 21, 457-460.
19 V. Solomin, A. Seins and A. Jirgensons, Synlett, 2020, 31.
20 T. Uemura and N. Chatani, J. Org. Chem., 2005, 70, 86318634.

21 L. Raus, O. Tsubrik and U. Maeorg, Proc. Est. Acad. Sci. Chem., 2005, 54, 12.

Supporting Information

Synthesis of indazoles from 2-formylphenylboronic acids

Vitalii V. Solomin, ${ }^{\mathrm{a}, \mathrm{b}}$ Alberts Seins, ${ }^{\mathrm{a}, \mathrm{b}}$ Aigars Jirgensons ${ }^{\mathrm{a}, \mathrm{b} *}$
a Latvian Institute of Organic Synthesis, Aizkroukles 21, Riga, LV-1006, Latvia aigars@osi./v
Faculty of Materials Science and Applied Chemistry, Riga, Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia

Procedure of synthesis of diethyl 1-(2-formylphenyl)hydrazine-1,2-dicarboxylate (3a) from (2-formylphenyl)boronic acid (1a)

To a stirred solution of (2-formylphenyl)boronic acid ($150 \mathrm{mg}, 1 \mathrm{mmol}$), N, N Dimethylacetamide (5 mL) and DEAD $(315 \mu \mathrm{~L}, 2 \mathrm{eq})$, catalytic $\mathrm{Cu}(\mathrm{OAc})_{2}$ was added (20 $\mathrm{mol} \%, 37 \mathrm{mg}$). Reaction sealed under air, and stirred overnight at room temperature. Then r.m. partitioned between EtOAc (20 mL) and brine (20 mL) washed with brine ($3 \times 15 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude material. Compound was purified on silica gel, using EtOAc in PE gradient to obtain product 3a (as a mixture with the cyclic tautomer) as colourless oil ($283 \mathrm{mg}, 98 \%$).

Compound 3a was difficult to characterize due to the mixture of tautomers. Therefore it was transformed to product $\mathbf{S 1}$, using reduction with NaBH_{4}.

To a stirred solution of $\mathbf{3 a}(120 \mathrm{mg}, 0.43 \mathrm{mmol})$ in 2 ml EtOH , cooled to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(8.6$ $\mathrm{mg}, 0.53 \mathrm{eq}$) added in one portion. After warming up to room temperature, reaction stirred for 1 h and quenched with 1 M aqueous $\mathrm{HCl}(5 \mathrm{~mL})$ and stirred for additional 15 min . Reaction mixture partitioned between $\operatorname{EtOAc}(20 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, washed with saturated NaHCO_{3} solution $(10 \mathrm{~mL})$ and brine $(10 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude material. Compound purified using reverse phase chromatography to obtain product S1 as viscous oil ($63 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}$, Chloroform- d) $\delta 7.34$ (ddd, $J=8.3,6.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 5.40-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.26$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=18.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 155.9$, $152.4,138.4,129.5,124.3,124.0,119.1,112.7,68.1,63.0,14.5$. HRMS C ${ }_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 237.0875 , found 237.0886 .

General Procedure A for the synthesis of alkoxycarbonyl-protected indazoles.

To a stirred solution of (2-formylphenyl)boronic acid ($150 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{MeCN}(5 \mathrm{~mL})$ and DIAD ($296 \mu \mathrm{~L}, 1.5 \mathrm{eq}$), catalytic $\mathrm{Cu}(\mathrm{OAc})_{2}$ was added ($20 \mathrm{~mol} \%, 37 \mathrm{mg}$). Reaction sealed under air, and stirred overnight at room temperature. Then TFA ($384 \mu \mathrm{~L}, 5 \mathrm{eq}$) added at room temperature, and reaction stirred for 2 h before evaporated to dryness. Resulting residue partitioned between EtOAc (20 mL) and saturated NaHCO_{3} solution (30 mL), washed with brine ($2 \times 15 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude material. Compound purified on silica, using EtOAc in PE gradient to obtain product $4 \mathbf{b}$ as yellowish oil ($176 \mathrm{mg}, 86 \%$).

Ethyl 1H-indazole-1-carboxylate (4a) (Reported in literature')

Prepared according to the General Procedure A, replacing DIAD with DEAD. Purified by silica gel column chromatography (gradient 5% to 20% EtOAc in PE), Rf 0.76 (EtOAc:PE 1:1), white yellow oil; $78 \%(150 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.24$ (d, $J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $150.8,140.2,139.9,129.3,125.9,124.1,121.2,114.6,64.1,14.5$. HRMS: $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 191.0821, found 191.0826.

Isopropyl 1H-indazole-1-carboxylate (4b) (Reported in literature ${ }^{1}$)

Prepared according to the General Procedure A. Purified by silica gel column chromatography (gradient 5 to 15% EtOAc in PE), Rf 0.48 (EtOAc:PE 1:4), yellowish oil; $86 \%(176 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.24$ (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.19(\mathrm{~s}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (hept, $J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}$), $1.52(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 150.4,140.1,140.0$, 129.2, 126.0, 124.0, 121.3, 114.7, 72.5, 22.1. HRMS: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 227.0796 , found 227.0803 .

Benzyl 1H-indazole-1-carboxylate (4c) (Reported in literature ${ }^{2}$)

Prepared according to the General Procedure A, replacing DIAD with di-benzyl azodicaboxylate. Purified by silica gel column chromatography (gradient 5\% to $20 \% \mathrm{EtOAc}$ in PE), Rf 0.55 (EtOAc:PE 1:3), white solid; m.p. $78-80^{\circ} \mathrm{C}, 60 \%(76 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-$ $7.51(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 4 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 150.8$, $140.5,140.0,135.0,129.4,128.9,128.9,128.9,126.0,124.2,121.3,114.7,69.5$.

Isobutyl 1H-indazole-1-carboxylate (4d)

Prepared according to the General Procedure A, replacing DIAD with di-isobutyl azodicaboxylate. Purified by silica gel column chromatography (gradient 5% to $10 \% \mathrm{EtOAc}$ in PE), Rf 0.23 (EtOAc:PE 1:10), yellow oil; $45 \%(99 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 8.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{dh}, J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 150.9,140.2,139.8,129.2,126.0,124.0$, 121.2, 114.5, 73.9, 28.0, 19.2. HRMS: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 241.0953, found 241.0962.

Isopropyl 5-methoxy-1H-indazole-1-carboxylate (4e)

Prepared according to the General Procedure A. Purified by silica gel column chromatography (gradient 5% to $35 \% \mathrm{EtOAc}$ in PE), Rf 0.38 (EtOAc:PE 1:3), white oil, solidifies on standing; m.p. $73-75^{\circ} \mathrm{C}, 76 \%(99 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $8.11(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (hept, J $=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, Chloroform- $d) \delta$
156.7, 150.4, 139.7, 135.3, 126.7, 120.0, 115.5, 101.4, 72.5, 55.8, 22.1. HRMS:
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 257.0902, found 257.0911.

Isopropyl 5-(benzyloxy)-1H-indazole-1-carboxylate (4f)

Prepared according to the General Procedure A. Purified by silica gel column chromatography (gradient 5% to 20% EtOAc in PE), Rf 0.45 (EtOAc:PE 1:3), white solid; m.p. $110-111^{\circ} \mathrm{C}, 74 \%(89.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $88.13(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.27$ (dd, J $=9.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.36($ hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 1.51(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 6 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 155.8,150.3,139.7,136.8,135.4$, 128.8, 128.3, 127.6, 126.7, 120.5, 115.6, 103.0, 72.5, 70.7, 22.1. HRMS: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$; calculated 311.1396, found 311.1400 .

Isopropyl 4-fluoro-1H-indazole-1-carboxylate ($\mathbf{4 g}$)

Prepared according to the General Procedure A. Purified by silica gel column chromatography (gradient 5% to $15 \% \mathrm{EtOAc}$ in PE), Rf 0.85 (EtOAc:PE 1:3), white yellow solid; m.p. $80-82^{\circ} \mathrm{C}, 33 \%(44 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.99$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=8.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{ddd}, J=9.4,7.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.50(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 155.4$ (d, J=253.5 Hz), 150.2, $142.1(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}), 135.9(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}), 130.4(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz})$, 115.9 (d, J = 22.7 Hz), 110.7 (d, J = 4.4 Hz), $108.8(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}), 72.9$, 22.0. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) δ-117.70. HRMS: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaF}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 245.0702, found 245.0707 .

Isopropyl 6-methoxy-1H-indazole-1-carboxylate (4h)

Prepared according to the General Procedure A. Purified by silica gel column chromatography (gradient 5% to $35 \% \mathrm{EtOAc}$ in PE), Rf 0.36 (EtOAc:PE 1:4), white crystalline solid; m.p. $69-70^{\circ} \mathrm{C}, 55 \%(72 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.04(\mathrm{~s}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.7,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.33 (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 161.4,150.6,141.7,139.9,121.7,120.0,115.2,96.7,72.4,55.7,22.0$. HRMS: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 257.0902, found 257.0909.

Isopropyl 6-chloro-1H-indazole-1-carboxylate (4i)

Prepared according to the General Procedure A. Purified by silica gel column chromatography (gradient 5% to 15% EtOAc in PE), Rf 0.55 (EtOAc:PE 1:4), white yellow solid; m.p. $76-78^{\circ} \mathrm{C}, 28 \%(36 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.13$ $(\mathrm{s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.51(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 150.1,140.4,139.7,135.7$, 125.0, 124.5, 122.0, 114.8, 73.0, 22.0. HRMS: $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaCl}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 261.0407 , found 261.0410 .

Isopropyl 1H-thieno[3,2-c]pyrazole-1-carboxylate (9)

Prepared according to the General Procedure A. Purified by silica gel column chromatography (gradient 5\% to 20\% EtOAc in PE), Rf 0.29 (EtOAc:PE 1:10), yellow oil; $69 \%(112 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 149.1,148.7,135.9,134.2,125.3,113.4,73.0,22.0$. HRMS:
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 233.0361, found 233.0368.

General Procedure B for the synthesis of alkoxycarbonyl-protected indazoles from dialkyl hydrazine-1,2-dicarboxylates.

To a stirred solution of (2-formylphenyl)boronic acid ($100 \mathrm{mg}, 0.67 \mathrm{mmol}$), $\mathrm{MeCN}(5 \mathrm{~mL})$, diethyl hydrazine-1,2-dicarboxylate ($235 \mathrm{mg}, 2 \mathrm{eq}$) and $\mathrm{Cu}(\mathrm{OAc})_{2}(121 \mathrm{mg}, 1 \mathrm{eq})$, TMEDA was added ($200 \mu \mathrm{~L}, 2$ eq). Reaction sealed under air, and stirred overnight at room temperature. Then TFA ($768 \mu \mathrm{~L}, 15 \mathrm{eq}$) added dropwise at room temperature, and reaction stirred for 4 h before evaporated to dryness. Resulting residue partitioned between EtOAc (20 $\mathrm{mL})$ and saturated NaHCO_{3} solution $(20 \mathrm{~mL})$, washed with brine $(2 \times 15 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude material. Compound purified on silica, using EtOAc in PE gradient to obtain product 4a as a light yellow oil ($80.2 \mathrm{mg}, 63 \%$).

Ethyl 1H-indazole-1-carboxylate (4a)

Prepared according to the General Procedure B. Purified by silica gel column chromatography (gradient 5% to 25% EtOAc in PE); 63% (80.2 mg). Analytical data corresponds to the previously described compound $\mathbf{4 a}$.

Isopropyl 1H-indazole-1-carboxylate (4b)

Prepared according to the General Procedure B, using diisopropyl hydrazine-1,2dicarboxylate instead of diethyl hydrazine-1,2-dicarboxylate. Purified by silica gel column chromatography (gradient 5\% to $15 \% \mathrm{EtOAc}$ in PE); 46% (76 mg). Analytical data corresponds to the previously described compound $\mathbf{4 b}$.

Benzyl 1H-indazole-1-carboxylate (4c)

Prepared according to the General Procedure B, using dibenzyl hydrazine-1,2-dicarboxylate instead of diethyl hydrazine-1,2-dicarboxylate. Purified by silica gel column chromatography
(gradient 5\% to 20\% EtOAc in PE); 46\% (54 mg). Analytical data corresponds to the previously described compound $4 \mathbf{c}$.

Isobutyl 1H-indazole-1-carboxylate (4d)

Prepared according to the General Procedure B, using diisobutyl hydrazine-1,2-dicarboxylate instead of diethyl hydrazine-1,2-dicarboxylate. Purified by silica gel column chromatography (gradient 5% to $10 \% \mathrm{EtOAc}$ in PE); $61 \%(107 \mathrm{mg})$. Analytical data corresponds to the previously described compound $4 d$.

Methyl 1 H -indazole-1-carboxylate $(\mathbf{4 j})$ (Reported in literature ${ }^{3}$)

Prepared according to the General Procedure B, using dimethyl hydrazine-1,2-dicarboxylate instead of diethyl hydrazine-1,2-dicarboxylate. Purified by silica gel column chromatography (gradient 5\% to $25 \% \mathrm{EtOAc}$ in PE), Rf 0.3 (EtOAc:PE 1:4), white crystalline solid; m.p. 56$57^{\circ} \mathrm{C}, 64 \%(75 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 151.0,140.1,139.7,129.1,125.7,123.9,121.0,114.3$, 54.3. HRMS: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 177.0664, found 177.0688 .

Allyl 1H-indazole-1-carboxylate ($\mathbf{4 k}$)

Prepared according to the General Procedure B, using diallyl hydrazine-1,2-dicarboxylate instead of diethyl hydrazine-1,2-dicarboxylate. Purified by silica gel column chromatography (gradient 5\% to 20\% EtOAc in PE), Rf 0.42 (EtOAc:PE 1:4), yellow oil; 40% (64 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{dq}, J=17.2$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dq}, J=10.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dt}, J=6.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101$

MHz , Chloroform-d) $\delta 150.5,140.3,139.9,131.2,129.3,125.9,124.1,121.2,120.2,114.5$, 68.4. HRMS: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 225.0640 , found 225.0647

General Procedure C for the synthesis of $1 N$-Boc-protected indazoles from di-tert-butyl hydrazine-1,2-dicarboxylate.

To a stirred solution of (2-formylphenyl)boronic acid ($120 \mathrm{mg}, 0.8 \mathrm{mmol}$), $\mathrm{MeCN}(7 \mathrm{~mL})$, di-tert-butyl hydrazine-1,2-dicarboxylate ($372 \mathrm{mg}, 2 \mathrm{eq}$) and $\mathrm{Cu}(\mathrm{OAc})_{2}(145 \mathrm{mg}, 1 \mathrm{eq})$, TMEDA was added ($240 \mu \mathrm{~L}, 2 \mathrm{eq}$). Reaction sealed under air, and stirred overnight at room temperature. Then $\mathrm{AcOH}(916 \mu \mathrm{~L}, 20$ eq) added dropwise at room temperature, and reaction heated at $50^{\circ} \mathrm{C}$ for 2 h before evaporated to dryness. Resulting residue partitioned between EtOAc (20 mL) and saturated NaHCO_{3} solution $(30 \mathrm{~mL})$, washed with brine $(2 \times 20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude material. Compound purified on silica, using EtOAc in PE gradient to obtain product 41 as a yellow oil $(128 \mathrm{mg}$, $73 \%)$. Major isolated by-product identified as 1-(1H-indazol-1-yl)ethan-1-one 10a, which ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are consistent with those previously reported in literature ${ }^{4}$.

Tert-butyl 1H-indazole-1-carboxylate (41) (Reported in literature ${ }^{5}$)

Prepared according to the General Procedure C. Purified by silica gel column chromatography (gradient 5% to 12% EtOAc in PE), Rf 0.47 (EtOAc:PE 1:4), yellow oil; $73 \%(128 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.19(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 149.4,139.8,139.7,129.0,126.0,123.8,121.2,114.7$, 85.0, 28.3. HRMS: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 241.0953, found 241.0953 .

Tert-butyl 5-methoxy-1H-indazole-1-carboxylate (4m)

Prepared according to the General Procedure C. Purified by silica gel column
chromatography (gradient 5\% to $15 \% \mathrm{EtOAc}$ in PE), Rf 0.28 (EtOAc:PE 1:4), white oil; 50\% $(69 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 8.10-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, Chloroform- $d)$
$\delta 156.5,149.3,139.2,135.2,126.6,119.8,115.6,101.2,84.8,55.8,28.3$. HRMS:
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 271.1059, found 271.1070 .

Tert-butyl 5-(benzyloxy)-1H-indazole-1-carboxylate (4n)

Prepared according to the General Procedure C. Purified by silica gel column chromatography (gradient 5% to $20 \% \mathrm{EtOAc}$ in PE), Rf 0.31 (EtOAc:PE 1:4), white solid; m.p. $92-94{ }^{\circ} \mathrm{C}, 58 \%(74 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H})$, $7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{Chloroform-} d$) $\delta 155.6$, 149.3, 139.2, 136.8, 135.3, 128.8, 128.2, 127.6, 126.6, 120.4, 115.6, 102.9, 84.9, 70.7, 28.3. HRMS: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 347.1372, found 347.1373.

Tert-butyl 6-methoxy-1H-indazole-1-carboxylate (40)

Prepared according to the General Procedure C. Purified by reverse phase chromatography (gradient 5% to $60 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$), slightly yellow viscous oil; 71% (98 mg). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=$ $8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 161.3$, 149.7, 141.6, 139.6, 121.8, 120.1, 115.2, 96.8, 84.9, 55.8, 28.3. HRMS: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 271.1059 , found 271.1062 .

Tert-butyl 4-fluoro-1H-indazole-1-carboxylate (4p)

Prepared according to the General Procedure C. Purified by silica gel column chromatography (gradient 5% to $15 \% \mathrm{EtOAc}$ in PE), Rf 0.69 (EtOAc:PE 1:4), yellow oil;
$35 \%(49 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.41(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 155.4$ (d, $J=253.3 \mathrm{~Hz}), 149.1,142.0(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 135.5,130.2$ (d, $J=7.5 \mathrm{~Hz}), 115.9$ $(\mathrm{d}, J=22.7 \mathrm{~Hz}), 110.8(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 108.5(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 85.5,28.2 ;{ }^{19} \mathrm{~F} \operatorname{NMR}(376$ MHz , Chloroform- d) δ-117.89. HRMS: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{FNa}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 259.0859, found 259.0858 .

Tert-butyl 6 -chloro-1H-indazole-1-carboxylate (4q)

Prepared according to the General Procedure C. Purified by silica gel column chromatography (gradient 5% to $30 \% \mathrm{EtOAc}$ in PE), Rf 0.38 (EtOAc:PE 1:4), white yellow oil; $56 \%(77 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J$ $=8.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, Chloroform- d) $\delta 149.1,140.3,139.3,135.6,124.8,124.4,121.9,114.9,85.6,28.3$. HRMS: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaCl}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 275.0563, found 275.0567.

Tert-butyl 6-fluoro-1H-indazole-1-carboxylate (4r)

Prepared according to the General Procedure C. Purified by silica gel column chromatography (gradient 5% to 12% EtOAc in PE), Rf 0.34 (EtOAc:PE 1:4), white yellow oil; $43 \%(60 \mathrm{mg})$. ${ }^{~}{ }^{\prime} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.13$ (s, 1H), $7.88(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 163.6(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 149.1,140.5(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 139.4$, $122.5,122.4(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 113.2(\mathrm{~d}, J=25.7 \mathrm{~Hz}), 101.6(\mathrm{~d}, J=28.6 \mathrm{~Hz}), 85.4,28.3 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-110.49$. HRMS: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{FNa}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 259.0859 , found 259.0859 .

Tert-butyl 6-methyl-1H-indazole-1-carboxylate (4s) (Reported in literature ${ }^{6}$)

Prepared according to the General Procedure C. Purified by silica gel column chromatography (gradient 5% to $15 \% \mathrm{EtOAc}$ in PE), Rf 0.53 (EtOAc:PE 1:4), yellow oil; $46 \%(66 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 149.6,140.5,139.7,139.6,125.7,124.0,120.7,114.6,84.8,28.3,22.3$. HRMS: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; calculated 255.1109, found 255.1115 .

Tert-butyl 6-(trifluoromethyl)-1H-indazole-1-carboxylate (4t) (Reported in literature ${ }^{7}$)

Prepared according to the General Procedure C. Purified by silica gel column chromatography (gradient 5% to $20 \% \mathrm{EtOAc}$ in PE), Rf 0.46 (EtOAc:PE 1:4), white solid; m.p. $63-65^{\circ} \mathrm{C}, 25 \%(32 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H})$, $7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, Chloroform- d) $\delta 148.9,139.2,139.1,131.0(\mathrm{q}, J=32.3 \mathrm{~Hz}), 127.8,124.3(\mathrm{q}, J=272.7 \mathrm{~Hz})$, $122.0,120.5(\mathrm{q}, J=3.3 \mathrm{~Hz}), 112.6(\mathrm{q}, J=4.7 \mathrm{~Hz}), 85.9,28.2 ;{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, Chloroform- d) $\delta-61.82$. LCMS: $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{3}[\mathrm{M}-(\mathrm{t}-\mathrm{Bu})+\mathrm{H}]^{+} 231.27$.

References

1. Ramesh, S.; Arunachalam, P. N.; Lalitha, A., Regioselective ethoxy-carbonylation of indoles and indazoles using DEAD and tetraethylammonium cyanide. RSC Advances 2013, 3, 8666-8669.
2. Kingsbury, W. D.; Gyurik, R. J.; Theodorides, V. J.; Parish, R. C.; Gallagher, G., Synthesis of 1- and 2-substituted indazoles as anthelmintic agents. Journal of Medicinal Chemistry 1976, 19, 839-840.
3. Teixeira, F. C.; Ramos, H.; Antunes, I. F.; Curto, M. J. M.; Duarte, M. T.; Bento, I., Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives. Molecules 2006, 11, 867-889.
4. Kerr, W. J.; Lindsay, D. M.; Owens, P. K.; Reid, M.; Tuttle, T.; Campos, S., SiteSelective Deuteration of N-Heterocycles via Iridium-Catalyzed Hydrogen Isotope Exchange. ACS Catalysis 2017, 7, 7182-7186.
5. Unsinn, A.; Knochel, P., Regioselective zincation of indazoles using TMP2Zn and Negishi cross-coupling with aryl and heteroaryl iodides. Chemical Communications 2012, 48, 2680-2682.
6. Giroud, M.; Ivkovic, J.; Martignoni, M.; Fleuti, M.; Trapp, N.; Haap, W.; Kuglstatter, A.; Benz, J.; Kuhn, B.; Schirmeister, T.; Diederich, F., Inhibition of the Cysteine Protease Human Cathepsin L by Triazine Nitriles: Amide \cdots Heteroarene π-Stacking Interactions and Chalcogen Bonding in the S3 Pocket. ChemMedChem 2017, 12, 257-270.
7. Zhao, X.; MacMillan, D. W. C., Metallaphotoredox Perfluoroalkylation of Organobromides. Journal of the American Chemical Society 2020, 142, 19480-19486.

Vitalii Solomin was born in 1993 in Kharkiv, Ukraine. He obtained a Bachelor's degree in Chemistry from Taras Shevchenko National University of Kyiv in 2014 and a Master's degree from the Institute of High Technologies in 2016. From 2011 to 2018 he was working as a Synthetic Chemist at Enamine Ltd in Kyiv. In 2018, V. Solomin was awarded the Marie Sklodowska-Curie scholarship and started his career at the Latvian Institute of Organic Synthesis under the supervision of Professor Dr. chem. Aigars Jirgensons. In 2019, Vitalii performed a secondment to Oxford Drug Design company to master his skills in the field of computer-aided drug design (CADD). The results of V. Solomin's Doctoral Thesis are published in three international scientific journals. V. Solomin's main research interests are connected with the synthesis of heterocyclic compounds and their medicinal chemistry research.

[^0]: ${ }^{\mathrm{a}} 3 \mathrm{~mL}$ of TFA/DCM mixture added per 1 mL of DMA

[^1]: * Staphylococcus aureus Newman.

[^2]: *Staphylococcus aureus Newman.

[^3]: ${ }^{1}$ An T.; Kang B.; Kang S.; Pac J.; Youk J.; Lin D.; Lee Y. Chem. Commun. 2019, 55, 10222.

[^4]: ${ }^{\text {a }}$ Reaction was performed in open flask, until otherwise noted; ${ }^{\text {b }}$ The yield was determined by NMR using $1,3,5$ -

[^5]: ${ }^{2}$ Liu, Q.; Zhao, U.; Fu, H.; Cheng, C. Synlett 2013, 24, 2089-2094.
 ${ }^{3}$ Leitch J. A.; McMullin C. L.; Paterson A. J.; Mahon M. F; Bhonoah Y.; Frost C. G. Angew. Chem. Int. Ed. 2017, 56, 15131.

[^6]: ${ }^{4}$ Li, F.; Chen, L.; Kang, Q.; Cai, J.; Zhu, G. New J. Chem., 2013,37, 624.

[^7]: ${ }^{5}$ Wang H. X.; Wei T. Q.; Xu P.; Wang S. Y.; Ji S. J. J. Org. Chem. 2018, 83, 21, 13491.
 ${ }^{6}$ Suzuki, Y.; Takemura, Y.; Iwamoto, K.; Higashino, T.; Miyashita, A. Chem. Pharm. Bull. 1998, 46, 199.
 ${ }^{7}$ Huang, X.; Yang, H.; Fu, H.; Qiao, R.; Zhao, Y. Synthesis 2009, 16, 2679.

[^8]: ${ }^{8}$ Huang, X.; Yang, H.; Fu, H.; Qiao, R.; Zhao, Y. Synthesis 2009, 16, 2679.
 ${ }^{9}$ Liu, Q.; Zhao, U.; Fu, H.; Cheng, C. Synlett 2013, 24, 2089-2094.

[^9]: ${ }^{10}$ Taylor N. J.; Emer E.; Preshlock S.; Schedler M.; Tredwell M.; Verhoog S.; Mercier J.; Genicot C.; Gouverneur V.J. Am. Chem. Soc. 2017, 139, 8267.

[^10]: -Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia. E-mail: aigars@osi.lv
 ${ }^{\text {'Facuity }}$ of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
 \dagger Electronic supplementary information (ESI) available. See DOI: 10.1039/dira04056a

[^11]: ${ }^{a}$ NMR yield, using 1,3,5-trimethoxybenzene as internal standard.

