Aigars Sīlis
Doktora studiju programmas “Viedā elektroenerģētika” doktorants

ENERGOSISTĒMAS VADĪBA TIRGUS
APSTĀKĻOS AR AUGSTU IZKLIEDĒTĀS,
ATJAUNOJAMĀS ENERĢIJAS RAŽOŠANU

Promocijas darba kopsavilkums

Zinātnieki
profesor Dr. habil. sc. ing. ANTANS SAUĻUS SAUHATS
profesor Dr. sc. ing. GATIS JUNGHĀNS

Zinātņiskais konsultants
Dr. sc. ing. KĀRLIS BALTPUTNIS

RTU Izdevniecība
Rīga 2024

Publicēts saskaņā ar promocijas padomes “RTU P-05” 2024. gada 25. aprīļa lēmumu Nr. 100/24.

Promocijas darbs izstrādāts ar Rīgas Tehniskās universitātes Doktorantūras grantu programmas atbalstu un Eiropas Sociālā fonda atbalstu darbības programmas “Izaugsme un nodarbinātība” 8.2.2. specifiskā atbalsta mērķa “Stiprināt augstākās izglītības institūciju akadēmisko personālu stratēģiskās specializācijas jomās” projektā Nr. 8.2.2.0/20/1/008 “Rīgas Tehniskās universitātes un Banku augstskolas doktorantu un akadēmiskā personāla stiprināšana stratēģiskās specializācijas jomās”.

Vāka attēls – AS “Augstsprieguma tīkls”

https://doi.org/10.7250/9789934370878
PROMOCIJAS DARBS IZVIRZĪTS ZINĀTNES DOKTORA
GRĀDA IEGŪŠANAI RĪGAS TEHNISKAJĀ UNIVERSITĀTĒ

Promocijas darbs zinātnes doktora (Ph. D.) grāda iegūšanai tiek publiski aizstāvēts 2024. gada 29. augustā plkst. 10.00 Rīgas Tehniskās universitātes Datorzinātnes, informācijas tehnoloģijas un enerģētikas fakultātē, Āzenes ielā 12/1, 306. auditorijā.

OFICIĀLIE RECENZENTI
Profesore Dr. sc. ing. Anna Mutule,
Rīgas Tehniskā universitāte
Profesors Dr. sc. ing. Saulius Gudzius,
Kauņas Tehnoloģiskā universitāte, Lietuva
Pētnieks Dr. sc. ing. Arījoms Obuševs,
Cīruhes Lietišķo zinātņu universitāte, Šveice

APSTIPRINĀJUMS

Apsprinu, ka esmu izstrādājis šo promocijas darbu, kas iesniegts izskatīšanai Rīgas Tehniskajā universitātē zinātnes doktora (Ph. D.) grāda iegūšanai. Promocijas darbs zinātniskā grāda iegūšanai nav iesniegts nevienā citā universitātē.

Aigars Sīlis……………………………. (paraksts)

Datums: ………………………

Promocijas darbs ir uzrakstīts angļu valodā, tajā ir ievads, četras nodaļas, secinājumi, literatūras saraksts, 18 attēli, trīs tabulas, 14 pielikumi, kopā 143 lappuses, ieskaitot pielikumus. Literatūras sarakstā ir 97 nosaukumi.
Satus

IEVADS ... 6
Pētījumu priekšvēsture un nozīmīgums ... 7
Promocijas darba hipoteze, mērķis un uzdevumi .. 9
Pētījuma metodes un rīki .. 10
Zinātniskā novitāte .. 10
Autora personīgais ieguldījums .. 11
Rezultātu aprobācija .. 11
Zinātniskās konferences un žurnāli .. 12
Promocijas darba struktūra ... 14
1. ENERĢĒTIKAS NOZARES TRANSFORMĀCIJA BALTIJAS VALSTĪS .. 15
 1.1. Baltijas valstu energosistēma ... 15
 1.2. Eiropas vienotā elektroenerģijas tirgus daļas ... 18
 1.3. Energosistēmas frekvences regulēšanas stratēģijas ... 20
 1.4. Izmaiņu tendence .. 22
 1.5. Ko darīt? ... 26
2. BALTIJAS ELEKTROENERĢIJAS SISTĒMAS PIETIEKAMĪBAS PROGNOZĒSHA .. 27
 2.1. Modelēšanas metodoloģija .. 27
 2.2. Baltijas elektroenerģijas sistēmas modelis ... 28
 2.3. Enerģijas tirgus modelis ... 29
 2.4. Minimālās jaudas rezerves uzturēšanas aplēses ... 31
 2.5. Elektroautomobiļu enerģijas patēriņa modelēšana ... 33
 2.6. Gadījumu izpēte un rezultāti ... 34
 2.7. Secinājumi .. 38
3. REGIONĀLO LĪDZSVAROŠANAS ZONU PRIEKŠROCĪBAS .. 39
 3.1. Ievads ... 39
 3.2. Kopēja balansēšanas tirgus izveide ... 40
 3.3. Ietekme uz baltijas balansēšanas rezervju pieejamības kontroles klūdu 41
 3.4. Tirgus likviditāte .. 42
 3.5. Nelīdzsvarotības cenu noteikšana ... 43
 3.6. Secinājumi .. 45
4. TIRGŪ BALSTĪTA UZGLABĀŠANAS PĀRVALDĪBAS STRATĒĢIJA FCR PAKALPOJUMU SNIEDZĒJAM

4.1. Ievads

4.2. SOC pārvaldības stratēģija

4.3. Algoritms

4.4. Validācija

4.5. Secinājumi

SADAĻU SEÇINĀJUMI UN TURPMĀKAIS DARBS

IZMANTOTĀ LITERATŪRA
IEVADS

Interesantāko problēmu sarakstā ir vairāki uzdevumi.

- Veikta padziļināta Baltijas valstu energosistēmu pārveides mērķu, uzdevumu, risināšanas metožu un tehnoloģiju analīze, kā arī apzināti nozīmīgie virzieni.
- Veikta rezerves jaudas novērtēšana saskaņā ar Baltijas enerģosistēmas attīstības plānu 2050. gadam.
- Veikts novērtējums par riskiem, kas saistīti ar ražošanas jaudas trūkumu maksimālās slodzes segšanai un balansēšanas jaudas atvainojumu aspektiem. Veikta arī balansēšanas jaudas tirgus un jaudas atlīdzības iespējamību mēšanīmā kā pasākumu, kas var mazināt šo risku, ieviešanas analīze.
- Ņemot vērā ievērojamo atjaunojamo enerģijas avotu integrāciju (10 GW) un divus miljonus milzīgu transportlīdzekļu, ir rūpīgi izpētīti scenāriji, kā panākt Baltijas reģiona energosistēmu pašpiedietikumā. Izpētīts jautājums par reģiona spēju eksportēt/importēt enerģiju un samazināt emisijas atmosfērā.
- Pamatojoties uz Ziemeļvalstu un Baltijas valstu tirgus datiem, pierādīts, ka līgumi, kas saistīti ar dinamiskām elektroenerģijas tirgus cenām, kopumā nodrošina zemākas cenas galalietotājiem.
Izstrādāta tirgus virzīta stratēģija, lai pārvaldītu enerģijas piegādātāju, kas piedalās primārajā frekvences regulēšanā, uzglabāšanas slodzes stāvokli. Šī pieeja parāda tās spēju saglabāt pietiekamu noturību pat visnelabvēlīgāko scenāriju gadījumā, pat ja īerice vienlaikus nodrošina vairākus rezerves produktus.

Pētījumu priekšvēsture un nozīmīgums

Šis jaunais politikas satvars palīdzina tiesisko noteiktību, ieviešot inaugurujošos valsts enerģētikas un klimata planus, tādējādi veicinot ieguldījumus šajā svarīgajā nozarē. Turklāt šajā mērķā ir ievērojami palielināt patērētāju lomu un sniegt viņiem iespēju aktīvi iesaistīties enerģētikas procesā. ES ir noteikts divi jauni mērķi, kas jāsasniedz līdz 2030. gadam:

1) saistošu atjaunojamo energoresursu enerģijas mērķis – vismaz 32 %;
2) energoefektivitātes mērķis – ne mazāk kā 32,5 % apmērā ar iespējamu paaugstināšanu 2023. gadā.

Attiecībā uz elektroenerģijas tirgu jaunajā politikā ir atkārtoti apstiprināti 2030. gadam noteiktajai energoresursu ražošanas mērķi – 15 % no uzstādītās ražošanas jaudas, tādējādi paplašinot 10 % mērķi, kas bija noteikts laikposms līdz 2020. gadam [10].

Lai sasniegtu noteiktos mērķus, ir jāērīcina virkne tehniku pasākumu, lai nodrošinātu elektroenerģijas sistēmu piejēmamību, stabilītāti un drošību, tostarp turpmāk nosauktie.

• Baltijas pārvades tīkla sinhronizācija ar kontinentālās Eiropas enerģoistēmu līdz 2025. gadam. Baltijas pārvades sistemā operatoriem būs jānodrošina speciālās frekvences regulēšanā gan normālos atpāršanās, gan incidentu gadījumā pēc liela generatora atslēgšanas vai starpsavienojumu līnijas bojājuma. Tāpēc Baltijas PSO būs jāuztur
frekvences regulēšana un balansēšanas rezerves, kā noteikts Kontinentālās Eiropas sinhronās darbības nolīgumā.

- Pārvades un sadales elektrotīklu modernizācija, tostarp starpsavienojumu elektroinfīkšu savienošana, lai pielāgotos prognozētajam straujajam elektroenerģijas pieprasījumam.

Minētie pasākumi ir nozīmīgs izaižinājums energosistēmu pētniekiem, attīstības plānotājiem un lēmumu pieņēmējiem, tostarp pārvades sistēmu operatoriem. Joprojām ir nepieciešams izveidot arī kārtīgi ārkārtas elektroenerģijas ražošanas un balansēšanas resursus [12], nostiprināt pārvades un sadales tīklu, pielāgojot enerģijas patēriņu, kā arī izstrādāt sarežģītu vadības un kontroles sistēmu, kas balstītos pilnībās enerģijas tirgos, tostarp balansēšanas rezervu tirgos. Ļoti svarīgi ir arī veicināt patērētāju veicinājumu un agregāciju.

Lai īstenotu iepriekš minētos enerģētikas pārveides plānus, ir nepieciešami saskaņot dažādu tautasainīgās nozarēs pārveides plānus, un pārveides sistēmu operatoriem. Joprojām ir nepieciešams izveidot gāzīgi dārgus elektroenerģijas ražošanas un balansēšanas resursus [12], nostiprināt pārvades un sadales tīklu, pielāgojot enerģijas patēriņu, kā arī izstrādāt sarežģītu vadības un kontroles sistēmu, kas balstītos pilnībās enerģijas tirgos, tostarp balansēšanas rezervu tirgos. Ļoti svarīgi ir arī veicināt patērētāju reakciju un agregāciju.

Risinot nepārtrauktu balansēšanas problēmu, autors aprobēzosies ar konkrētiem galējiem gadiņiem.
1. Energosistēmas struktūras ilgtermiņa plānošana, kur galvenais uzdevums ir nodrošināt pieejamās enerģijas ražošanas un nekontrolējamā patēriņa līdzsvaru [14].
2. Energosistēmas darbības režīma pārvaldība, kur, neraugoties uz ģenerācijas un patēriņa mainīgumu, frekvence tiek uzturēta pieņemamās šaurās robežās.

Abas minētās problēmas tiks aplūkotas Baltijas reģiona energosistēmu apstākļos un īpatnībās.

Promocijas darba hipotēze, mērķis un uzdevumi

Hipotēze

Izstrādājot piemērotu energosistēmas struktūru un izmantojot enerģijas uzkrāšanas tehnoloģijas, ir iespējams nodrošināt rentablu un enerģoefektīvu energoapgādi. Tas var uzlabot sistēmas adekvātumu, stabilitāti un elastīgumu, vienlaikus mazinot resursu un elektroenerģijas tirgus cenu svārstības, ko izraisīta nepastāvīgas atjaunojamās enerģijas ražošanas pieaugums Baltijas reģionā.

Mērķis

Promocijas darba mērķis ir izstrādāt un novērtēt metodoloģiju un algoritmus, lai atvieglotu tehnoloģiju, tīkla pārvaldības, darbības un attīstības plānu un vadības algoritmu izvēli. Mērķis ir veicināt netraucētu enerģijas pāreju galalietotājiem, nodrošinot, ka elektroenerģija joprojām ir droša, uzticama un pieejama.

Uzdevumi

1. Veikt padziļinātu analīzi par Baltijas valstu energosistēmu pielāgošanu atbilstošiem mērķiem, uzdevumiem, risināšanas metodēm un tehnoloģijām, kā arī apzināt kritiskākos pētniecības virzienus.
2. Veikt rezerves jaudas novērtēšanu saskaņā ar Baltijas energosistēmas 2050. gada attīstības plānu.
3. Veikt risku, kas saistīti ar ražošanas jaudas trūkumu maksimālās slodzes segšanai un balansēšanas jaudas deficītu nākamajā desmitgadē, novērtējumu. Analizēt arī balansēšanas jaudas tirgu un jaudas atlīdzības mehānismu kā pasākumu, kas spēj mazināt šo risku, ieviešanu.
4. Ņemot vērā ievērojamo atjaunojamo energeoresursu integrāciju (10 GW) un divus miljonus elektrisko transportlīdzekļu, rūpējīgi izpētīt scenārijus Baltijas reģiona energosistēmu pašprietiekamības sasniegšanai. Izpētīt jautājumu par reģiona spēju eksportēt/importēt enerģiju un samazināt emisijas atmosfērā.
5. Pamatojoties uz Ziemeļvalstu un Baltijas valstu tirgu datiem, pierādīt, ka līgumi, kas saistīti ar dinamiskām elektroenerģijas tirgus cenām, nodrošina zemākas cenas galalietotājiem.
6. Izstrādāt tirgus virzītu stratēģiju, lai pārvaldītu enerģijas krātuves uzlādes stāvokli enerģijas piegādātājiem, kas piedalās primārajā frekvences regulēšanā. Šī pieeja parādīs tās spēju saglabāt pietiekamu noturību pat visnelavīgākā scenāriju gadījumā, pat ja iekārta vienlaikus nodrošina vairākus rezerves produktus.

Pētījuma metodes un rīki

Promocijas darbā izklāstītie pētījuma rezultāti tika iegūti, izmantojot RTU Enerģētikas institūtā (kopš 2024. gada 1. maija – Industriālās elektronikas, elektrotehnikas un enerģētikas institūts) izstrādātos adaptētos programmatūras modeļēšanas rīkus un algoritmus.

Veicot dažādu nākotnes scenāriju modelēšanu (2., 3. un 4. nodaļa), tika izmantota MATLAB un Excel programma, lai sakārtotu ievades datus, tos mērogotu un pielāgotu atbilstoši situācijas pieņēmumiem. Elektroenerģijas sistēmas pārejas stabilitātes modelēšanai tika izmantota ETAP 12.5 tīkla simulācijas programmatūra (saskaņā ar RTU izsniegto licenci).

Zinātniskā novitāte

Analizēti Baltijas valstu enerģētikas sistēmu pārveides mērķi, uzdevumi, risināšanas metodes un tehnoloģijas, kā arī apzināti svarīgākie pētniecības virzieni. Papildus izstrādāta metodoloģija rezerves elektrostaciju jaudas novērtēšanai saistībā ar Baltijas energosistēmas attīstības plānu 2050, nemot vērā Polijas, Zviedrijas un Somijas ietekmi [16].

Veikts risku, kas saistīti ar ražošanas jaudu trūkumu, novērtējums, lai apmierinātu maksimālās slodzes pieprasījumu un novērstu balansēšanas jaudu defīcītu nākamajā desmitgadē. Turklāt veikta arī balansēšanas jaudas tirgu un jaudas atlīdzības mehānismu ieviešanas kā pasākumu šo risku mazināšanai analīze.

Nemot vērā ievērojamo atjaunojamo eneģoresursu (10 GW) un divu miljonu elektrisko transportlīdzekļu integrāciju, izpētīti arī scenāriji Baltijas reģiona enerģosistēmu pašpieteikamības sasniegšanai. Turklāt tiek pētītas reģiona iespējas veicināt enerģijas eksportu/importu un samazināt emisijas atmosfērā.

Novērtēta līdzvairošanās tirgus apstākļu un akumulatoru enerģijas uzkrāšanas sistēmu (BESS) lietojamās ietekme uz Baltijas enerģosistēmas darbību. Lai simulētu BESS darbību, izstrādāta BESS vadības modeļa simulācijas programmatūra, tās darbību simulējot dažādos noteiktos darbības režīmos un scenārijos.
Pamatojoties uz Ziemeļvalstu un Baltijas valstu tirgu datiem, pierādīts, ka līgumi, kas saistīti ar dinamiskām elektroenerģijas tirgus cenām, nodrošina zemākas cenas galalietotājiem [17].

Izstrādāta tīrīgs virzīta stratēģija, lai pārvaldītu krātuves uzlādes stāvokli energijas piegādātājiem, kas piedalās primārajā frekvences regulēšanā. Šī pieceja demonstrē tās spēju saglabāt pietiekamu noturību pat visnelabvēlīgāko scenāriju gadījumā, pat tad, ja iekārtu vienlaikus nodrošina vairākus rezerves produktus. Tika pārbaudīti divi galvenie tirgus – Baltijas balansēšanas tirgus un Baltijas nākamās dienas tīrīgs.

Autora personīgais ieguldījums

Rezultātu aprobācija

Promocijas darba izstrādes laikā autora veikto pētījumu praktiskā nozīme ir sekmējusi vairāku pētniecības un inovāciju projektu īstenošanu. Turpmāk uzskaitītie projekti ietver ne tikai valsts un starptautiskus zinātniskos projektus, bet arī līgumdarbus nozīmīgai nozares ieteiktajai pusei.

Zinātniskās konferences un žurnāli

Promocijas darbā iekļautie pētījumu rezultāti prezentēti un apspriesti piecās starptautiskās zinātniskās konferencēs. Papildus tam publicēti astoņi raksti starptautiskos nozares žurnālos un viens raksts Latvijas žurnālā. Turklāt vairākas publikācijas ir publicētas vietējās fīmekļa vietnēs.

12

Promocijas darba struktūra

Pirmajā nodaļā sniegs pārskats par Baltijas enerģosistēmas pašreizējo stāvokli, kā arī par paredzamajām nākotnes norisēm saistībā ar Baltijas valstu sinchronizāciju ar ENTSO-E tīklu līdz 2025. gadam un formulēti klimata neitralitātes mērķi, kas noteikti 2050. gadam. Tie aplūkota pamatinformācija par enerģosistēmas infrastruktūru, tospējas elektroturīcību, primārās jaudas izmantojumu, frekvenci un sinhronās kondensatoru. Tie aplūkota un precizē ieguvumu, ko elektroenerģijas nozarei sniedz pāreja no filtra cena uz tūlītējām cenām uz tūlītējām cenām galalietotājiem.

Otrajā nodaļā izskaidrota reģionālo balansēšanas apgabalu loma un ieguvumi saistībā ar turpmāko problēmu risināšanu attiecībā uz sistēmas pietiekamību, ko rada enerģijas pārvedu. Otrā aplūkota šo apgabalu nozīme, lai efektīvi organizētu balansēšanas tirgus.

Ceturtā nodaļā veltīta Baltijas valstu enerģosasistēmu attīstības scenāriju izskatīšanai. Paredzams, ka līdz 2050. gadam eksploatacijā būs nodotas AES jaudas (10 GW) un divi miljoni elektromobili. Tiek pētīts jautājums par reģionālajām spējas pašspējas nodrošināšanu ar enerģiju, tās eksploatacijā ar nodrošinājumu un samazināt emisijas atmosfērā. Analīze ir pabeigta, pamatojoties uz Baltijas valstu enerģosasistēmas uzvedībās modelēšanu, 80% savienojumus ar Zviedriju, Somiju un Poliju. Papildus nodalā izskaidrota tirgus balstītā uzglabāšanas pārvaldības stratēģija FCR piegādātājam ar ierobežotu enerģijas rezervu kontekstā, risinot nākotnes problēmas saistībā ar sistēmas adekvātumu.
1. ENERĢĒTIKAS NOZARES TRANSFORMĀCIJA BALTIJAS VALSTĪS

1.1. BALTIJAS VALSTU ENERGOSISTĒMA

1.1. att. Baltijas valstu elektrostaciju uzstādītā jauda (MW) [24].
Baltijā gaidāms ražošanas jaudas samazinājums. Patlaban kopējā uzstādītā jauda Baltijas valstu elektrostacijās (1.1. att.) ir aptuveni 9000 MW [24], kas ir aptuveni divas reizes vairāk nekā maksimālais patēriņš Baltijas reģionā.

1.2. att. Baltijas valstīs saražotā elektroenerģija 2023. gadā MW

1.2 att. Baltijas valstīs saražotā elektroenerģija 2023. gadā [26].

Līdz 2030. gadam Baltijā varētu slēgt ražošanas jaudas ar kopējo jaudu aptuveni 2300 MW, kas ir aptuveni puse no esošo lielo termoelektrostaciju jaudas. Samazinoties ražošanas jaudām Baltijā, palielināsies starpsavienojumu nozīme elektroenerģijas piegādes nodrošināšanā. Starpsavienojumi nodrošinās gan elektroenerģijas apmaiņu, gan sistēmisko pakalpojumu (rezervju) sniegšanu, kas nepieciešami piegādes drošībai starp valstīm [27].

Pasaulē strauji samazinās ražošanas tehnoloģiju izmaksas, kuru pamatā ir atjaunojamie energijas avoti [28]. Paredzams, ka nākotnē Eiropā un Baltijā turpinās atfistitīties decentralizētā ražošana un ražošana, kas balstīta atjaunojamos enerģijas avotos [29]. Patlaban Baltijā jau darbojas aptuveni 5500 decentralizētās ģenerācijas vienību, un nākotnē paredzama turpmāka atfistība. Kopējā uzstādītā vēja elektroenerģijas jauda Baltijā patlaban pārsniedz 1871 MW, saules enerģijas – 2280 MW [24], kas ir aptuveni 87 % no Baltijas valstu maksimālā patēriņa (MW) (1.2. att.) [30]. Ņemot vērā vēja enerģijas ražošanas konkurencesitionalīzām izmaksas, salīdzinot ar citiem ražošanas veidiem, Baltijā ir paredzama turpmāka šī ražošanas veida atfistība. Baltijas pārvades tīkla nostiprināšana un integrācija ar Eiropas pārvades tīklu ir priekšnoteikums, lai Baltijas
energosistēmai varētu turpmāk pieslēgt lielus atjaunojamās enerģijas elektrostaciju apjomus. Ziemeļvalstu un Baltijas valstu pārvades sistēmu operatori kopīgi veikuši analīzi par elektroapgādes pietiekamību regionā (1.3. att.).

1.3. att. Ražošanas un starpsavienojumu jaudas pietiekamības novērtējums ziemos periodu.
Avots: AST, Elering, Litgrid.

Līdzteku Baltijas un Eiropas pārvades sistēmu starpsavienojumu izbūvei Baltijas pārvades sistēmu operatori stiprina Baltijas pārvades tīklu.

1.4. att. Baltijas 330 kV elektropārvades tīkla galvenie attīstības projekti.

Patlaban finansējums ir piešķirts trim projektiem – trešās līnijas izbūvei “Kurzemes loks” elektropārvades līnijas un apakšstaciju posmam (kopējās investīcijas – 128 miljoni eiro), trešās starpsavienojuma elektropārvades līnijas starp Latviju un Igauniju izbūwei un apakšstacijas paplašināšanai (kopējās investīcijas – 102 miljoni eiro), kā arī jaunu 330 kV elektropārvades līniju izbūvei, kas savieno Rīgas TEC-2 ar Rīgas HES (kopējās investīcijas – 20 miljoni eiro) (1.4. att.) [27].

1.2. EIROPAS VIENOTĀ ELEKTROENERĢIJAS TIRGUS DAĻAS

Turpinās Baltijas elektroenerģijas tirgus modeļa saskaņošana ar vienoto Eiropas tirgus modeli [33]. Lai izveidotu vienotu reģionālo elektroenerģijas tirgu, ir nepieciešams ne tikai izveidot starpsavienojumus. Atšķirīgi tirgus modeļi var būtiski ierobežot vai pat bloķēt pārrobežu tirdzniecību, neraugoties uz fizisku starpsavienojumu esamību. Tāpēc, pamatojoties uz Eiropas Komisijas izstrādātajiem elektrotīklu kodeksiem, ES dalībvalstu pārvades sistēmu operatori savās valstīs ievieš vienotu tirgus modeli ar mērķi nodrošināt, lai elektroenerģijas tirgus Eiropā efektīvi darbotos kā viens vienots tirgus [34].

Eiropas elektroenerģijas tirgus modelis ietver četras daļas.
Nākamās dienas tirgus patlaban ir galvenais tirgus, kurā tiek slēgti piegādes darījumi nākamajai dienai, nosakot iepirktais un pārdotājs elektroenerģijas apjomu stundā. Eiropas Tikla kodeksss paredz noteikumus koordinēta Eiropas nākamās dienas tirgus izveidei. Tāpēc ES dalībvalstīs pārvades sistēmu operatori sadarbībā ar elektroenerģijas biržām ėsteno Multi-Regional Coupling projektu, kura galvenais princips ir vienota platforma un vienots algoritms cenu un pārrobežu plūsmu noteikšanai. Šis kompleksais projekts, kas ir lielākais šada veida projekts ES praksē, tiek veiksmīgi īstenots, un patlaban ar centralizētās platformas starpniecību ir integrēti 75% no visa Eiropas elektroenerģijas tirgus, tostarp arī Latvija un pārējā Baltijas valstis.

Balansēšanas tirgus ir būtisks rīks pārvades sistēmu operatoriem, lai veiktu vienā savām svarīgākajām funkcijām – nodrošinātu nepārtrauktu elektroenerģijas līdzsvaru sistēmā, kuru strauji pieaug mainīgus un dalīto ģenerāciju skaits. Balansēšanas tirgus dalībnieki pārvades sistēmas operatoriem reālā laikā manuāli aktivizējas un regulējas elektroenerģijas ražošanu un uzņēmējdarbību, lai nodrošinātu nepārtrauktu elektroenerģijas līdzsvaru sistēmā. Balansēšanas tirgus ir īstenojīmās Eiropas pārvades sistēmu operatoriem, kura pamatā ir vienota platforma un vienots algoritms cenu un pārrobežu plūsmu noteikšanai. Šis komplesks projekts, kas ir lielākais šada veida projekts ES praksē, tiek veiksmīgi īstenots, un patlaban ar centralizētās platformas starpniecību ir integrēti 75% no visa Eiropas elektroenerģijas tirgus, tostarp arī Latvija un pārējā Baltijas valstis.
turpināšanu. Papildus Eiropas platformām balansēšanas enerģijas apmaiņai pastāv trīs kooperācijas, kas lauj veikt balansēšanas jaudas apmaiņu.

- **Ziemeļvalstu aFRR tirgus.** Saskanā ar Elektroenerģijas balansēšanas regulas 41. pantu Ziemeļvalstu PSO ir iesnieguši Ziemeļvalstu VRI metodoloģiju tirgū balstītām starpzonu jaudas piešķiršanas procesam balansēšanas jaudas apmaiņai vai rezervju koplietošanai. Šī metodika tika nodota ACER, kas to apstiprināja 2020. gada augustā. Pēc ACER lēmuma pieņemšanas Ziemeļvalstu PSO ieviesa Ziemeļvalstu aFRR jaudas tirgu, kas sāka darboties 2022. gada 7. decembrī. Ņemot vērā šo veiksmīgo projektu, paredzams, ka turpmākajos gados tiks izveidots kopīgs Ziemeļvalstu jaudas tirgus arī mFRR vajadzībām [21], [36].

1.3. ENERGOSISTĒMAS FREKVENCES REGULĒŠANAS STRATĒĢIJAS

Energosistēmas tiek plānotas darbam ar noteiktu nominālo frekvenci (parasti 50 Hz vai 60 Hz) atkarībā no reģiona. Elektroenerģijas pieprasījuma svārstības, izmaiņas ražošanas jaudā un neparedzēti notikumi, piemēram, iekārtu bojājumi, var izraisīt sistēmas frekvences novirzes. Frekvences kontrole un regulēšana attiecas uz instrumentiem un metodēm, ko izmanto, lai uzturētu energosistēmas frekvenci pieņemamās, stingri ierobežotās robežās. Savstarpēji savienotā elektrotīkla maiņstrāvas AC viļņu formas frekvence ir stingri jāregulē, lai nodrošinātu elektrisko ierīču un iekārtu stabilu darbību. Frekvences kontrole un regulēšana ietver darbību spektru, ko var iedalīt divās pamatgrupās – avārijas kontrole un regulēšana.

1. **Avārijas kontrole.** Lai atjaunotu tikla frekvenci līdz tās nominālajai vērtībai nepārlonotu, pēkšņu un lielu frekvences noviržu laikā, tiek īstenoti ārkārtas kontroles pasākumi. Šiem pasākumiem ir būtiska nozīme, lai novērstu kaskādveida traucējumus un elektrības padeves pārtraukumus. Avārijas kontroles pasākumi var ietvert darbības, lai sabalansētu energijas piedāvājumu un pieprasījumu:
 - slodzes samazināšana;
 - ģeneratoru izslēgšana;
 - uzkrāto energijas resursu, piemēram, akumulatoru energijas uzkrāšanas sistēmu (BESS), izmantošana, lai pēc vajadzības iesniegtu vai izņemtu papildu enerģiju no tīkla.

2. **Frekvences regulēšana (FR).** FR attiecas uz nepārtrauktu elektroenerģijas ražošanas vai pieprasījuma regulēšanu, lai uzturētu sistēmas frekvenci pieņemamās robežās normālos eksploatācijas apstākļos. FR sistēmas nepārtraukti uzrauga tīkla frekvenci un reāllaikā korīgē ģeneratoru jaudas, lai uzturētu frekvenci noteiktā dažāda veida kontroles cilpas, lai uzturētu līdzsvaru starp ražošanu un patēriņu, veicot ātras korekcijas, pamatojoties uz frekvences novirzēm. Energosistēmu frekvences kontrole un regulēšana klūst sarežģītāka savstarpēji savienotās sistēmas, kuros ir iesaistīti vairāki komunālos pakalpojumu uzņēmumi un ražošanas avoti. Savstarpēji savienotiem
tīkliem nepieciešama precīza frekvences un fāzes sinchronizācija starp dažādiem reģioniem, lai saglabātu sistēmas stabilitāti.

Kopumā frekvenču avārijas kontrole un regulēšana nodrošina tīkla stabilitāti, uzticamību un noturību pret traucējumiem un ārkārtas situācijām, un tai ir izšķiroša nozīme šo uzdevumu sekmēšanai izpildē. Frekvences regulēšana ietver trīs atšķirīgas pasākumu grupas – primāro, sekundāro un terciāro regulēšanu.

1. **Primāra frekvens regulešana.** Primāra frekvences regulēšana ir elektroenerģijas ražošanas avotu tūlītēja reakcija uz slodzes pieprasījuma vai ražošanas jaudas izmaiņām. Automātiskās ražošanas regulēšanas (AGC) sistēmas nepārtraukti uzrauga sistēmas frekvenci un attiecīgi regulē ģeneratoru jaudu, lai sekundēs vai minūtēs atjaunotu frekvences novirzes. Ģeneratori ar ātru reakcijas laiku, piemēram, gāzes turbīnas un hidroelektrostacijas, bieži nodrošina primāro frekvences regulēšanu.

2. **Sekundārais frekvenču regulēšums.** Sekundārais frekvenču regulējums papildina primāro frekvenču regulēšanu, nodrošinot papildu precīzu ģeneratoru jaudas regulēšanu, lai uzturētu sistēmas frekvenci stingrākās pielaidēs. To parasti panāk, izmantojot automatiskās ģenerācijas vadības algoritmus un vairāku ģeneratoru un vadības ierīču koordinētu darbību.

3. **Terciāra frekvenču regulēšana.** Terciārais frekvenču regulējums attiecas uz elektroenerģijas ražošanas vai patēriņa precīzējošām korekcijām, kas tiek veiktas, reaģējot uz ilgāka termiņa tīkla frekvences svārstībām. Terciāri noritām un sekundārām frekvences regulēšanas, kas attiecas uz tūlītējām un īstermiņa frekvences novirzēm, terciāra regulēšana regulē pakāpeniskās izmaiņas ilgāka laika posmā (Baltijas valstīs – 1 h). Terciārā frekvenču regulēšana darbojas ilgāka laika posmā, salīdzinot ar primāro un sekundāro regulēšanu. Primārās un sekundārās regulējums reaģē uz frekvences novirzēm dažu sekundē vai minūšu laikā, savukārt terciārais regulējums var ietvert korekcijas no dažām minūtiem līdz stundām. Terciārās frekvences regulēšanas resursi parasti ietver lēnāk reaģējošus aktīvus, piemēram, rezerves elektroenerģijas ražošanas jaudu, pieprasījuma reakcijas programmas, enerģijas uzkrāšanas sistēmas (piemēram, baterijas vai sūknētās hidroakumulācijas) un starpsavienojumus ar kaimiņos esošām energosistēmām vai tīkla reģioniem.

Īstenojot uzskaitītos frekvences regulēšanas pasākumus, tiek saglabātas divu veidu rezerves – ierobežošanas rezerves un atjaunošanas rezerves.

Frekvenčes ierobežošanas rezerves (FCR)

- Ar frekvences ierobežošanas rezervi apzīmē rezerves jaudu, ko var ātri aktivizēt, lai nevairākā frekvences novirzes.
- **FCR** ir daļa no primārā frekvences regulēšanas mehanīma.
FCR nodrošina ģeneratori un citi resursi, kas spēj ātri pielāgot savu jaudu, reaģējot uz frekvences novirzēm. Šie resursi parasti ir aprīkoti ar automatiskām frekvences regulēšanas sistēmām.

Frekvences atjaunošanas rezerve (FRR)

- FRR ir rezerves jauda, kas tiek aktivizēta ievērojamu traucējumu vai neparedzētu apstākļu gadājumā, kas izraisa lielas frekvences novirzes.
- FRR ir daļa no sekundārā frekvences regulēšanas mehānismas.
- FRR resursi parasti reaģē lēnāk nekā FCR resursi, bet nodrošina lielākas rezerves un var uzturēt savu jaudu ilgāku laiku.
- FRR resursi var ietvert papildu ražošanas jaudu, enerģijas uzkrāšanas sistēmas vai pieprasījuma reakcijas programmas, ko var aktivizēt, lai atjaunotu sistēmas frekvenci.

Kopumā frekvences ierobežošanas rezerves (FCR) un frekvences atjaunošanas rezerves (FRR) ir divu veidu rezerves jauda enerģisistēmā, kas tiek aktivizēta, lai regulētu sistēmas frekvenci un saglabātu stabilitāti, reaģējot uz izmaiņām elektroenerģijas pieprasījumā vai piedāvājumā un neparedzētiem traucējumiem vai neparedzētiem gadājumiem. FCR nodrošina ātru reakciju uz nelielām frekvences novirzēm, savukārt FRR nodrošina papildu rezerves jaudu, lai novērstu lielākus traucējumus un atjaunotu sistēmas frekvenci līdz tās nominālajai vērtībai [38]—[43].

1.4. IZMAIŅU TENDENCE

gada ir saistīta ar izmaiņām patēriņa uzskaites metodoloģijā, iekļaujot patēriņu no Krones hidroelektrostacijas sūkņa režīmā. Pēdējos gados aptuveni 80% patērētās elektroenerģijas Baltijas reģionā ir saražoti uz vietas, aptuveni 60% iegūstot no fosilā kurināmā (galvenokārt oglēm un dabasgāzes) un 40% – no atjaunojamiem energoresursiem (galvenokārt hidroenerģijas un vēja energijas). Elektroenerģijas ražošana no atjaunojamiem energoresursiem 2017. un 2018. gadā sasniedza vēsturiski augstu līmeni, pārsniedzot attiecīgi 10 TWh un 8 TWh.

Lielākie CO₂ emitētāji tiks pakāpeniski izstumti no tirgus. Igaunijas oglu spēkstacijām ir bijusi liela nozīme Baltijas enerģētikas sistēmā. Pēdējos gados ar oglēm darbināmās elektrostacijas ir saražojušas aptuveni 9–10 TWh elektroenerģijas gadā, kas veido aptuveni pusi no kopējās saražotās elektroenerģijas Baltijas reģionā. Svarīgi atzīmēt, ka, neņemot vērā to, ka Igaunijā ogles tiek iegūtas iekšzemes tirgū, šīs elektrostacijas ir nodrošinājušas elektroenerģijas ražošanu neatkarīgi no ārējiem resursu piegādātājiem.

Tomēr, sadedzinot ogles, rodas ievērojams daudzums emisiju, īpaši CO₂ emisiju, tāpēc šo elektrostaciju rentabilitāti iepriekšējā CO₂ emisiju kvotu cenu izmaiņas Eiropas tirgū. Pēdējos gados ogļu spēkstaciju stabilos ražošanas apjomus pastāvīgi ir veicinājušas zemas un stabilas CO₂ emisijas kvotu cenas (1.5. att.). Tomēr, sākot no 2019. gada, CO₂ emisijas kvotu cena pārsniedza 20 EUR par tonnu, jūlijā vien sasniedza pat 29 EUR par tonnu. Tā rezultātā ievērojami samazinājās elektroenerģijas ražošana no ogļu elektrostacijām.

1.5. att. CO₂ emisijas kvotu cena Eiropā (EUR/t) un elektroenerģijas ražošana Igaunijā.
Avots: Nord Pool.

2019. gada pirmajos 10 mēnešos Igaunija saražoja 517 GWh elektroenerģijas, kas ir par 41 % mazāk nekā šajos mēnešos 2018. gadā. Kopumā Baltijas reģionā elektroenerģijas ražošana tajā pašā periodā samazinājās par 22 %.

Reģionā samazinās centralizētas, regulētas ražošanas jaudas. Pēdējo piecu gadu laikā kopējā uzstādītā spēkstaciju jauda Baltijas reģionā ir bijusi relativi stābila un patlaban pārsniedz 9000 MW, kas ir aptuveni divas reizes vairāk nekā maksimālais patēriņš Baltijas valstīs. Pēdējo piecu gadu laikā ar gāzi darbināmo elektrostaciju uzstādītā jauda ir samazinājusies par 25 % (aptuveni 1000 MW) galvenokārt vecāku ar gāzi darbināmu elektrostaciju bloku, kas atrodas Lietuvā, slēgšanas dēļ. Savukārt ievērojamu ražošanas jaudas pieaugumu veicināja jaunu vēja un biomasas elektrostaciju (ar kopējo jaudu aptuveni 600 MW) nodošana ekspluatācijā, kā arī jaunās 300 MW Auveres ogļu elektrostacijas nodošana ekspluatācijā Igaunijā 2015. gadā.

Paredzams, ka turpmākajos gados lielo centralizēto bāzes elektroenerģijas jaudu Baltijā turpinās samazināties. Samazinās centralizētās ražošanas jaudas. Pēdējo piecu gadu laikā ar gāzi darbināmu elektrostaciju uzstādītā jauda ir samazinājusies par 25 % (aptuveni 1000 MW) galvenokārt vecāku ar gāzi darbināmu elektrostaciju bloku, kas atrodas Lietuvā, slēgšanas dēļ. Savukārt ievērojamu ražošanas jaudas pieaugumu veicināja jaunu vēja un biomasas elektrostaciju (ar kopējo jaudu aptuveni 600 MW) nodošana ekspluatācijā, kā arī jaunās 300 MW Auveres ogļu elektrostacijas nodošana ekspluatācijā Igaunijā 2015. gadā.

Turklāt jāatzīmē, ka patlaban Baltijas elektroenerģijas pārvades sistēma ir integrēta vienotajā energosistēmā BRELL, kur tākla frequenci centralizēti regulē Krievijā. Saistībā ar plānoto Baltijas pārvades tākla pāreju uz sinhronu darbību ar kontinentālās Eiropas energosistēmu līdz 2025. gadam Baltijas pārvades sistēmu operatoriem būs jānodrošina spēja piedalīties frekvences regulēšanā gan normālos apstākļos, gan incidentu gadījumā pēc liela generatora vai starpsavienojuma linijas attviņošanas. Tāpēc Baltijas valstu pārvades sistēmu operatoriem būs jānodrošina spēja iestādēšanā un balansēšanas rezerves saskaņā ar kontinentālās Eiropas sinhronnās darbības norādījuma prasībām. 1.1. tabulā apkopoti indikatīvie nepieciešamo rezervju apjomi [54]. Tas rada iespējams situācijas izairodījumu pārvades sistēmu operatoriem, ja Baltijas valstis vēl ir jāizveido pilnvērtīgs balansēšanas rezervju tirgus un jāveido nepieciešamie balansēšanas resursi.

1.1. tabula

Indikatīvie nepieciešamo rezervju apjomi Baltijas PSO pēc sinchronizācijas ar kontinentālās Eiropas elektroenerģijas sistēmu 2025. gadā (MW)

<table>
<thead>
<tr>
<th>Rezervju veids</th>
<th>Baltijas PSO (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCR</td>
<td>30</td>
</tr>
<tr>
<td>aFRR uz noslodzi</td>
<td>100</td>
</tr>
<tr>
<td>aFRR uz atslodzi</td>
<td>100</td>
</tr>
<tr>
<td>mFRR uz noslodzi</td>
<td>600</td>
</tr>
<tr>
<td>mFRR uz atslodzi</td>
<td>600</td>
</tr>
</tbody>
</table>

FCR – frekvences ierobežošanas rezerve (taisnāk ieslēgta dažu sekundē laikā pēc negadījuma un 30 sekundē laikā jāaktivizē 100 % rezerves jaudā).
aFRR – automātiskā frekvences atjaunošanas rezerve (tieka pārvaldīta ar centralizētu, automātisku ražošanas kontrolu; pēc sistēmas incidenta dažu minūšu laikā aktivizējas līdz pilnai jaudai).
mFRR – manuālā frekences atjaunošanas rezerve (aktivizēta manuāli, līdz pilnai jaudai tiek sasniegta dažu minūšu laikā).

1.5. KO DARĪT?

Aktivitātes, lai veicinātu energoapgādes pietiekamību un līdzsvarošanas jaudas attīstību

1. Veicināt ražošanas attīstību. Ir pieejami dažādi veicināšanas instrumenti, taču vispirms jāsāk ar esošo šķēršļu mazināšanu un jāizvairās no jaunu šķēršļu radīšanas (tostarp birokrātisko šķēršļu, atļauju iegūšanas, ražotāju nodevu u. c.).

4. Izstrādāt balansēšanas tirgu. Īpaši pēc plānotā Baltijas enerģosistēmas sinhronizācijas ar kontinentālās Eiropas tīklu 2025. gadā Latvijas pārvades sistēmas operatoram būs nepieciešamas papildu un jauna veida balansēšanas rezerves. Tāpēc ir nepieciešams turpināt veikt nepieciešamās darbības, lai Latvijā attīstītu balansēšanas rezervētu tirgu, kas ietver integrāciju plašākā Eiropas balansēšanas tirgū, kalpojot par komerciālu vidi balansēšanas resursu attīstībai un tirdzniecībai. Ir būtiski nodrošināt, lai Baltijas valsts, tostarā Latvija, līdz 2024. gada beigām varētu pievienoties MARI enerģijas tirgus platformai, bet 2025. gada sākumā – PICASSO enerģijas tirgus platformai. Šis gads būs nozīmīgs ne tikai tāpēc, ka Baltijas valsts tiks sinhronizēta ar kontinentālo Eiropu, bet arī tāpēc, ka būtiski mainīties balansēšanas tirgus modelis, jo tirgus dalībnieki iegūs piekļuvi Baltijas balansēšanas rezerves jaudā izsolei. Ņemot vērā veicamās darbības, tās nevar veikt atrauti no elektroenerģijas tirgus. Elektroenerģijas tirgū ir nepieciešamas arī izmaiņas tirgus struktūrā, jo īpaši 15 minūšu tirdzniecības intervāla ieviešana no nākamās dienas tirgus uz balansēšanas tirgu.
2. BALTIJAS ELEKTROENERĢIJAS SISTĒMAS PIETIEKAMĪBAS PROGNOZĒŠANA

2.1. MODELĒŠANAS METODOLOGIJA

Modelēšanas platforma Baltijas elektroenerģijas sistēmas (BPS) enerģijas bilances visaptverošam novērtējumam ir nepieciešams matemātisko modeļu saraksts. Shēma 2.1. attēlā atspoguļo BPS enerģijas bilances analīzei nepieciešamo modelu struktūru.

Kā redzams 2.1. attēlā, BPS darbības režīma prognozēšanai izmanto divas dažādas metodes:

- registrēto laika rindu ietekmes uz BPS darbības režīmu novērtējums (vēsturiskie dati);
- scenāriju pieeja; galvenais mērķis ir prognozēt BPS elektroenerģijas patēriņu, elektroenerģijas ražošanu utt.

Scenāriju ģeneratora bloks, kas redzams 2.1. attēlā, darbojas ar salīdzinoši lielu datu apjomu BPS modelēšanai – elektroenerģijas ražošana (P GEN) un patēriņš (P CON) BPS, elektroenerģijas tirgus cenas (Price EL) kaimiņvalstīs, kurām ir starpsavienojumi ar BPS, izmantojot pārvades līnijas, utt.

Pēdējais BPS modelēšanas posms sniedz iespēju ar stundas diskretizācijas soli analizēt BPS jaudas disbalansu, tās enerģijas importu/eksportu un enerģijas cenas.

![2.1. att. Modelēšanas platformas struktūra.](image-url)
2.2. BALTIJAS ELEKTROENERĢIJAS SISTĒMAS MODELIS

Baltijas elektroenerģijas sistēma (BPS) redzama 2.2. attēlā. Modelis ietver atsevišķus visaptverošus matemātiskos modeļus (apakšmodeļus) atbilstoši esošajiem un paredzamajiem enerģijas avotiem: hidroelektrostacijām [60], [59]; hidroelektrostacijām (HES) [59], [61]; mazajām hidroelektrostacijām (sHPP); saules elektrostacijām (SPE); vēja elektrostacijām (WPP); elektrotransportlīdzekļiem (EV); jaudas rezervei (PR (koģenerācijas elektrostacijas un termoelektrostacijas)) [62]–[64]; bioenerģijas elektrostacijām (BPP); BPS elektroenerģijas pieprasījumam un starpsavienojumiem starp Baltijas elektroenerģijas sistēmu un Somijas, Zviedrijas un Polijas elektroenerģijas sistēmām [66].

Turklāt katrā apakšmodelī ir ņemtas vērā dažādas specifiskas iezīmes – tehniski ekonomiskie ierobežojumi, kā arī vides ierobežojumi. BPS iekšējais sadales tīkls (330 kV) ir vienkāršots matemātisks modelis, kurā nav iekļauti mazajām hidroelektrostacijām (sHPP). 330 kV iekstrāšana ir vienkāršots vides ierobežojums [66]. Promocijas darbā ir pieņemtas atbilstošas pārvades līnijas jaudas: 1 016 MW (Igaunija-Somija), 700 MW (Lietuva-Zviedrija) un 1 700 MW (Lietuva-Polija). Tādējādi BPS matemātisks modelis dod iespēju analizēt Baltijas elektroenerģijas sistēmas enerģijas bilanci.

2.2. att. Modelētās BPS struktūra.
2.3. ENERĢIJAS TIRGUS MODELIS

2.1. tabulā sniegti dati par prognozēto kopējo elektroenerģijas patēriņu un elektroenerģijas ražošanu pa avotiem 1. scenārijā (BPS 2030), 2. scenārijā (BPS 2050) un 3. scenārijā (BPS 2050).

Informācija 2.2. tabulā attiecas uz prognozētā elektroenerģijas patēriņa un elektroenerģijas ražošanas maksimālajām vērtībām pa avotiem aplūkotajiem BPS modelēšanas scenārijiem [70]. Prognozētais Baltijas elektroenerģijas sistēmas patēriņš (BPSC) 2030. gadā ir 37,86 TWh. Prognozētais BPS patēriņš 2050. gadā – 41,80 TWh [74]–[79].

Nemot vērā Baltijas valstu attīstības plānus attiecībā uz elektromobiļu integrāciju, promocijas darbā ir ņemti vērā šādi pieņēmumi:

- kopējais elektromobiļu skaits 2030. un 2050. gadā ir attiecīgi 1 miljons un 3 miljoni;
- vidējais dienas nobraukums ir 15 km/dienā; vidējais enerģijas patēriņš – 0,3 kWh/km;
- elektroautomobiļu akumulatoru enerģijas uzglabāšanas jauda ir 90 kWh.

2.1. tabula

Elektroenerģijas patēriņš un saražotās enerģijas dati 1., 2. un 3. modelēšanas scenārijam

<table>
<thead>
<tr>
<th></th>
<th>BPSC TWh</th>
<th>SPP TWh</th>
<th>WPP TWh</th>
<th>HP TWh</th>
<th>sHP TWh</th>
<th>BPP TWh</th>
<th>PSHP TWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>37,86</td>
<td>1,74</td>
<td>11,66</td>
<td>1,9</td>
<td>0,34</td>
<td>3,52</td>
<td>2,85</td>
</tr>
<tr>
<td>2.</td>
<td>41,8</td>
<td>2,19</td>
<td>17,64</td>
<td>1,9</td>
<td>0,34</td>
<td>3,52</td>
<td>2,85</td>
</tr>
<tr>
<td>3.</td>
<td>41,8</td>
<td>4,52</td>
<td>34,57</td>
<td>1,9</td>
<td>0,34</td>
<td>3,52</td>
<td>2,85</td>
</tr>
</tbody>
</table>

2.2. tabula

Dati par maksimālo enerģijas patēriņu un maksimālo saražoto jaudu 1., 2. un 3. modelēšanas scenārijam

<table>
<thead>
<tr>
<th></th>
<th>BPSC MW</th>
<th>SPP MW</th>
<th>WPP MW</th>
<th>HP MW</th>
<th>sHP MW</th>
<th>BPP MW</th>
<th>PSHP MW</th>
<th>PR MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6 026</td>
<td>1 489</td>
<td>3 907</td>
<td>1 562</td>
<td>165</td>
<td>522</td>
<td>1 625</td>
<td>4 300</td>
</tr>
<tr>
<td>2.</td>
<td>7 233</td>
<td>1 876</td>
<td>5 913</td>
<td>1 562</td>
<td>165</td>
<td>522</td>
<td>1 625</td>
<td>1 500</td>
</tr>
<tr>
<td>3.</td>
<td>7 233</td>
<td>3 872</td>
<td>11 586</td>
<td>1 562</td>
<td>165</td>
<td>522</td>
<td>1 625</td>
<td>1 500</td>
</tr>
</tbody>
</table>

2.3. att. Enerģijas tirgus modeļa vienkāršotā struktūra.
2.4. att. *BPS 2050* modelētais enerģijas patēriņš stundā.

2.5. att. Jaudas rezerves ietekme uz *BPS* enerģijas bilanci.

Vietējās elektroenerģijas rezerves jaudu nodrošina tradicionālās spēkstacijas, kas atmosfērā emitē siltumnīcefekta gāzes. Jaudas rezerves (*PR*) vērtība apkopā Igaunijā esošo termoelektrostaciju (TEC), ko darbina ar degslānekli, jaudu. *PR* ietver arī Latvijā un Lietuvā esošās un plānotās TEC.

2.4. MINIMĀLĀS JAUDAS REZERVES UZTURĒŠANAS APLĒSES

Jaudas rezerves vērtība, kas nepieciešama, lai izbeigtu *BPS* enerģijas deficītu, var mainīties pietiekami plašā diapazonā. Tādējādi maksimālā jaudas rezerves jauda, kas nepieciešama, lai kompensētu enerģijas deficītu *BPS 2030*. gadā, ir 1 740 MWh (2.6. att.). Tajā pašā laikā *BPS 2030* enerģijas deficīta kompensēšanai nepieciešamās *PR* aktivizēšanas biežuma analīze liecina, ka iepriekš minētā maksimālā vērtība tika piemērota tikai vienu reizi visa gada laikā. Tomēr, lai nodrošinātu *BPS 2030*. gada enerģijas bilanci, ir būtiski uzturēt nepieciešamo jaudas rezerves apjomu. Saskanā ar 2.2. tabulas datiem 2030. gadā jaudas rezerves jauda būs 4 300 MWh. Var atzīmēt, ka saglabātā *PR* vērtība sedz enerģijas deficītu *BPS 2030*. gadā. 2.7. attēla histogrammā...

2.6. att. Enerģijas deficīta histogramma BTS 2030 (1. scenārijs) pēc elektroenerģijas importa/eksporta procedūrām.
2.7. att. Enerģijas deficīta histogramma BTS 2030 (2. scenārijs) pēc elektroenerģijas importa/eksporta procedūrām.

2.8. att. Enerģijas deficīta histogramma BTS 2030 (3. scenārijs) pēc elektroenerģijas importa/eksporta procedūrām.

2.5. ELEKTROAUTOMOBIĻU ENERĢIJAS PATĒRIŅA MODELĒŠANA

Šī apakšnodaļa ir veltīta transporta elektrifikācijas problēmai.

Modelējot elektromobiļu patēriņu[70]–[72], tiek pieņemti šādi pieņēmumi:

- kopējais elektromobiļu skaits Baltijas valstīs ir 2 miljoni; tiek pieņemts, ka līdz 2050. gadam visi automobiļi reģionā būs elektriskie;
- vidējais dienas nobraukums ir zināms (pieņemam 15 km/dienā); ir zināms arī vidējais enerģijas patēriņš (0,3 kWh/km);
• elektroautomobiļu akumulatoru enerģijas uzglabāšanas jauda ir 90 kWh, visas automašīnas tiks vienmērīgi uzlādētas naktī no plkst. 23 līdz 7 (astoņu stundu laikā);
• naktī un 2050. gadā enerģijas cena būs zemāka nekā darba laikā; 2.9. attēlā redzams Baltijas enerģijas patēriņš 2050. gadā.

2.9. att. BPS 2050 modelētais enerģijas patēriņš.

2.9. attēlā redzams, ka elektromobiļu patēriņš ir aptuveni 10 % no enerģijas patēriņa Baltijā. Tas ir ievērojams daudzums, kas ietekmē energosistēmas darbību.

2.6. GADĪJUMU IZPĒTE UN REZULTĀTI

Lai parādītu transporta elektrifikācijas ietekmi uz Baltijas energosistēmas pašpieciešamību un nepieciešamību apmainīties ar enerģiju ar kaimiņvalstīm, tiks aplūkoti divi galvenie gadījumi:

1) energosistēma darbojas bez elektromobiļiem;
2) modelē nosacījumiem saskaņā ar pirmo punktu tiek pievienota automobiļu akumulatoru uzlādes enerģija.

1. gadījums

2.10. attēlā parādīta BPS enerģijas ražošanas/patēriņa nelīdzsvarotība situācijā, kad netiek izmantotas rezerves stacijas, kurās izmanto dabasgāzi.
2.10. att. BPS 2050 enerģijas nelīdzsvarotība pēc enerģijas importa/eksporta procedūrām (rezerves stacijas netiek izmantotas).

Grafikā redzami laika intervāli, kad enerģijas līdzsvars nav nodrošināts. Importa pieaugums nav iespējams līniju ierobežotās jaudas dēļ. Tajā pašā laikā ir periodi, kad tiek sarāžots enerģijas pārpalikums. Enerģijas pārpalikumu var novērst, izslēdzot ģeneratorus. Tomēr enerģijas deficīts ir 0,13 TWh. Katru stundu enerģijas deficīts ir 4,36 %. Līdz ar to ir nepieciešams izmantot rezerves spēkstaciju jaudas. 2.11. attēlā redzams BPS enerģijas ražošanas/patēriņa nelīdzsvarotība gadījumā, ja tiek izmantotas rezerves stacijas.

2.11. att. Enerģijas nelīdzsvarotība 2050. gadā pēc enerģijas importa/eksporta procedūrām (tiekt izmantotas rezerves stacijas).

Analizējot 2.11. attēlā sniegtos rezultātus, var secināt, ka rezerves staciju izmantošana samazina enerģijas deficītu līdz 0,009 TWh līmenim, kas ir 0,03 % no enerģijas patēriņa. Arī
enerģijas deficīta rašanās biežums samazinājās līdz 0,52 %. Nenozīmīgā energijas apjoma deficītu varētu novērst, piemēram, ar organizatoriskiem pasākumiem (tarifu paaugstināšana vai prēmijas par patēriņa samazināšanu). Tomēr, kā tiks parādīts turpmāk, automobiļu elektrifikācija krasi pasliktinās situāciju.

2.12. attēlā redzama BPS energijas ražošanas/patēriņa nelīdzsvarotība, kas atbilst elektromobiļu izmantošanai. Grafiks atspoguļo situāciju, kas atbilst divu miljonu elektromobiļu energoapgādei. Analizējot šo grafiku, var konstatēt, ka 2050. gadā energijas deficīta rašanās biežums ir 65,57 % (1. gadījumā tas ir 61,66 %). Tas ļauj secināt, ka aplūkojamās struktūras energosistēmas nespēj apmierināt pieprasījumu pēc energijas (bez rezerves stacijām).

![BPS 2050 enerģijas nelīdzsvarotība pēc enerģijas eksporta procedūras (rezerves stacijas netiek izmantotas, tiek izmantoti divi miljoni elektromobiļu).](image)

2.12. att. BPS 2050 enerģijas nelīdzsvarotība pēc enerģijas eksporta procedūras (rezerves stacijas netiek izmantotas, tiek izmantoti divi miljoni elektromobiļu).

Nepieciešami vai nu papildu elektroenerģijas ģeneratori, vai papildu stacijas, kas spēj uzglabāt energiju, vai arī ciešākas saites ar kaimiņvalstīm. Enerģijas imports BPS 2050 praktiski samazina energijas deficītu līdz 12,19 % (2.13. att.). Tomēr arī šī deficīta vērtība nav pieņemama.
2.13. att. BPS 2050. gada enerģijas nelīdzsvarotība pēc enerģijas importa/eksporta procedūrām (rezerves stacijas netiek izmantotas, tiek izmantoti divi miljoni elektromobiļu).

Enerģijas rezerves aktivizēšanas rezultātā elektroenerģijas deficīts, parādoties biežumam, samazinājas līdz 6,08 % līmenim, kas ir daudz vairāk nekā 1. gadījumā. Salīdzinot enerģijas nelīdzsvarotību BPS pirmajā un otrajā gadījumā, klūst redzama būtiska enerģijas deficīta problēma.
2.7. SECINĀJUMI

Lai sasniegtu minēto mērķi un apturētu klimata pārmaiņas, pasaules un Eiropas enerģētikas attīstības plānos ir iesaistīts izmantot vairākas stratēģijas, no kurām visspēcīgākais ir izveidotās enerģijas avotu izmantošana. 1. stratēģija – strauji palielināt to spēkstaciju jaudu, kas izmanto atjaunojamos enerģijas avotus; 2. stratēģija – samazināt jaudu, apturēt vai slēgt spēkstacijas, kurās izmanto fosilo kurināmo. Ir labi zināms, ka elektroenerģijas ražošana no AER ir neprognozējama un nepastāvīga. Tā rezultātā rodas problēma, kas saistīta ar enerģijas ražošanas pārvaldību un jebkuras energetikas sistēmas jaudas līdzsvaru nodrošināšanu. Dažkārt pilnībā kompensēt elektroenerģijas deficītu, importējot enerģiju no kaimiņvalstīm, ir neiespējams. Tādējādi, tādēļ ir vienīgās iespējas mazināt spēkstaciju jaudu, izveidot enerģijas rezervu. BPS 2030. gada enerģētikas attīstības plānā ir paredzēta rezerves jauda 300 MW. Tādējādi BPS 2030. gada enerģijas deficīts tiek pilnībā segts un enerģijas bilance tiek saglabāta.

Iepriekš minētās enerģētikas attīstības plāna stratēģijas (1. un 2. stratēģija) tiek īstenotas BPS 2050 (2. scenārijs). Tādējādi BPS 2050 (2. scenārijs) simulācijas rezultāti liecina, ka mēginājumi nodrošināt enerģijas līdzsvaru ar elektroenerģijas importu un kompensēt enerģijas deficītu, palielinot AER uzstādīto jaudu, nav sekmīgi. Tādēļ ir nepieciešama jauna enerģijas avotu izvietošana, kā arī izveidotās enerģijas avotu uzstādīšana no enerģijas deficīta. BPS 2050 (3. scenārijs) ir apsvērti gandrīz divkāršs vēja un saules enerģijas potenciāls. Tomēr iepriekš aprakstītais elektroenerģijas ražošanas potenciāls nav visspēcīgs, un BPS 2050 sistēmā joprojām ir enerģijas deficīts.

3. REGIÔNÂLO LĪDZSVAROŠANAS ZONU PRIEKŠROCĪBAS

3.1. IEVADS

Šajā nodaļā snieghta kopējâs balansēšanas zonas darbības analīze, pamatojoties uz Baltijas kopējâs balansēšanas energijas tirgus modeļa, kas tika ieviesta no 2018. gada 1. janvâra, gadâjumu izpēti. Manuâlā frekvences atjaunošanas rezerve (mFRR) ir tâ, kas palīdz stabilizēt elektroenerģijas tîkla frekvenci. Lielâkâjâ dalâ valstu tâs atrašanu un aktivizēšanu kontrolâ PSO (pârvades sistēmas operators). mFRR (arê terciârâ rezerve) palīdz atjaunot nepieciešamo 50 Hz tîkla frekvenci. Kopējâ Baltijas balansēšanas tirgus attīstības mērķi bija palielinât balansēšanas efektivitâtâ, palielinât balansēšanas resursu pieejamibû un samazinât elektroenerģijas sistēmas balansēšanas izmaksas. Kopējâ Baltijas balansēšanas tirgus izveidei bija nepieciešâms saskañot três Baltijas valstu balansēšanas tirgus regulâjumu, tostarp norêkinu noteikumus starp tirgus dalîbniekiem, ieviest koordinētu balansēšanas kontrolâ reģionâlân fîmenî un kopêju balansēšanas IT platformu.

Šajâ nodaîlâ analizēti darbības râditâji, kas novârête jaunâs balansēšanas sistēmas darbību, tostarp izmainâs apgabalâ kontroles kluðdâs, izmainâs tirgus likviditâtê un daudzveidibâ, izmainâs tirgus dalîbnieku balansēšanas izmaksâs. Nodaîlâ analizētas arê balansēšanas energijas cenu dinamikas izmainâs Baltijas valstîs, tostarp cenu svârstîgumus un cenu korelâciju, lai saprastu, kâ nelîdzsvarotâbas cenas varētu motivât par lîdzsvarâ atbildêgo pušu lîdzsvara vadîbu. Nodaîlâ snieght arê priekšlikumî turpmâkai balansēšanas tirgus modeļa izstrâdâjumi. Lai novârêtu jaunâs balansēšanas sistēmas darbîbû, tiek izmantotî vairäki râditâji, kas ietervez izmainâs apgabalâ kontroles kluðdâs (kas liecina par bilances vadîbas kvalitâtî), izmainâs tirgus likviditâtê un daudzveidibâ, kâ arê izmainâs tirgus dalîbnieku balansēšanas izmaksâs. Turklât šajâ nodaîlâ analizētas arê nelîdzsvarotâbas energijas cenu dinamikas izmainâs Baltijas valstîs, tostarp cenu svârstîgums un korelâciju.

Izmantotjot 2017. un 2018. gada datus (3.1. att.), kas aptver pilnû darbîbas gadu saskañâ ar jauno modeli, ir vieglâk salîdzinât veco un jauno piejû. Tâs lauj noteikt tendencies, kas izriet no kopējâ Baltijas balansēšanas tirgus ieviešanas, un sniedz ieskatu par iespîjamiem uzlabojuamiem turpmâkajos darbîbas periodos. Turklât iegûtâ pieredze kalpo kâ vârîgas zinâšanas citiem reģioniem, kas īsteno lîdzgâs iniciatîvâs.
3.1. att. Baltijas zonas kontroles klūda (*ACE*).

3.2. KOPĒJA BALANSĒŠANAS TIRGUS IZVEIDE

Kopējā Baltijas balansēšanas tirgus mērķis ir palielināt pārvades sistēmas darbības uzticamību, veicināt balansēšanas resursu pieejamību un samazināt sistēmas balansēšanas izmaksas. Kopējais balansēšanas tirgus rada konkurenci starp balansēšanas pakalpojumu sniedzējiem, kas attiecīgi samazina par balansēšanu atbildīgo pušu izmaksas.

Galvenie Baltijas kopējā balansēšanas tirgus mērķi ir šādi:

- palielināt atkarību no vietējiem balansēšanas resursiem un uzlabot balansēšanas tirgus likviditāti;
- izlīdzināt konkurences apstākļus un izveidot stimulējošus cenu signālus, kas veicina *BRP* pašbalansēšanu;
- saskaņotas norēķinu procedūras, lai novērstu šķēršļus ienākšanai tirgū;
- uzlabot datu pārredzamību.

Ar *Baltic CoBA* tika ieviestas šādas funkcijas:

- kopīga balansēšana attiecībā uz Krieviju;
- PSO un PSO nelīdzsvarotības ieskaits;
- kopējs centralizēts *mFRR* aktivizācijas modelis ar kopīgu nopelnu pasūtījumu sarakstu (*shared merit order list*);
- Ziemeļvalstu un Baltijas valstu *mFRR* apmaiņa;
• saskaņots BRP bilances pārvaldības modelis un nelīdzsvarotības cenu noteikšanas metodoloģija.

3.3. IETEKME UZ BALTIJAS BALANSĒŠANAS REZERVJU PIEEJAMĪBAS KONTROLES KĻŪDU

Baltijas reģiona kontroles klūda (turpmāk – ACE) ir Baltijas valstu neitralizētā nelīdzsvarotība attiecībā pret Krieviju.

Jau kādu laiku pastāv veiksmīgi sadarbības modeļi starp PSO līdzsvara kontroles un nelīdzsvarotības prasījuma dzēšana ar pretprasījumu (ieskaita) jomā, un viens no veiksmīgiem piemēriem ir Vācijas PSO sadarbība tīkla kontroles jomā (Grid Control Cooperation, GCC) [95], kas pārauga Eiropas mēroga nelīdzsvarotības ieskaita projektā, kurā piedalās 24 valstis. Līdzāgu principu ieviešana kopējā Baltijas balansēšanas apgabalā ļauj optimizēt balansēšanas darbu. Katra valsts atsevišķi balansē otrā posībī, tāpēc ir iespējams izvairīties no pretdarbības, ieskaita “garā” un “īsā” pozīcijas, un rezultātā ir lielāka mFRR rezervju pieejamība Baltijas zonas kontroles klūdas (ACE) minimizēšanai.

Nebalansa ieskaita priekšrocības un problēmas ir plaši apspriestas; [96] uzsver PSO-PSO norēķinu nozīmi, lai saglabātu finansiālo neitralitāti, tādējādi visi PSO gūst labumu no nebalansa ieskaita.

Ikmēneša uzkrāto ACE tendence (3.2. att.) liecina, ka ACE varētu turpināt samazināties vēl vairāk, gūstot pieredzi optimāla balansēšanas energijas apjoma izvēlē un pasūtīšanā. ACE prognozēšanas uzlabošana arī veicina ACE samazināšanos.

![ACE diagrama](image)

3.2. att. Ikmēneša uzkrāto ACE.
3.4. TIRGUS LIKVIDITĀTE

Aktīvāka CoBA balansēšana ar mērķi minimizēt Baltijas ACE balansēšanas enerģijas piedāvājumu biežāku izmantošanu. 2018. gadā Baltijas PSO pasūtīja mFRR produktus 79 % stundu, kas ir divreiz vairāk nekā 2017. gadā (36 % stundu; 3.3. att.).

3.3. att. Regulēto stundu īpatsvars, %.

Tas palielināja pieprasījumu pēc balansēšanas resursiem, palielināja balansēšanas tirgus likviditāti un padarīja to pievilcīgāku vietējai ražošanai. Tāpēc izmantotās balansēšanas enerģijas apjoms 2018. gadā, salīdzinot ar 2017. gadu, trīskāršojās (3.4. att.), bet tajā pašā laikā vietējo balansēšanas resursu īpatsvars saglabājās 66 % līmenī.
3.4. att. Balansēšanas enerģijas izmantošana.

3.5. NELĪDZSVARĪTĪBAS CENU NOTEIKŠANA

Būtiskas izmaiņas ir vērojamas ne tikai balansēšanas pakalpojumu sniedzējiem, bet arī par bilanci atbildīgajām pusēm – ieivia ievinta viena cenu noteikšana BRP neatkarīgi no to nelīdzsvarotības stāvokļa. Līdz 2018. gadam norēķinu procedūras bija atkarīgas no valsts, un nelīdzsvarotības cenās bija iekļautas katrai valstij specifiskas komponentes. Norēķinu procedūras saskaņošana un vienota nelīdzsvarotības cenu modela ieviešana (iepriekš divu cenu modeli) 2018. gadā radīja gandrīz pilnīgu nelīdzsvarotības cenu konvergenciju Baltijas valstīs. Stundu nelīdzsvarotības cenās Latvijā, Igaunijā un Lietuvā 2018. gadā 97 % stundu bija vienādas (3.5. att.).

3.5. att. Nelīdzsvarotības cena.
Nebalansa cena 2018. gadā, salīdzinot ar nākamās dienas tirgu, Baltijas valstīs liecina, ka 43 % stundu nebalansa cena ir augstāka nekā nākamās dienas cena. Turklāt ir nepārtraukti periodi līdz pat 88 stundu garumā ar nelīdzsvarotības cenas atšķirību vienā virzienā (mazāku vai lielāku), salīdzinot ar nākamās dienas cenu. Ilgstoši periodi ar cenu starpību vienā virzienā var motivēt BRP plānot paredzēto nelīdzsvarotību ar “garo” vai “īso” pozīciju. Šis efekts jāturpina uzraudzīt un analizēt, lai saprastu, vai tas nerada neproduktīvu rīcību sistēmas līmenī.

3.6. att. BRP nelīdzsvarotības izmaksas.
3.7. att. BRP nelīdzsvarotības izmaksas.

Mēneša uzkrāto ACE tendence (3.8. att.) liecina, ka ACE varētu turpināt samazināties vēl vairāk, gūstot pieredzi optimāla balansēšanas enerģijas daudzuma izvēlē un pasūtīšanā. ACE samazināšanos veicinās arī ACE prognozēšanas uzlabošana.

3.8. att. Ikmēneša uzkrātais ACE.

3.6. SECINĀJUMI

Baltijas balansēšanas sistēmas darbības rādītāju analīze liecina par skaidriem ieguvumiem no kopējām balansēšanas zonām un koordinētas balansa pārvaldības. Tirgus dalībnieki, tostarp balansēšanas pakalpojumu sniedzēji un par bilanci atbildīgās puses, guva labumu no vienotās cenās un vienota portfēla modela ieviešanas. Ņemot vērā to, ka 2018. gadā 97 % stundu nelīdzsvarotības cenās visās trijās Baltijas valstīs bija līdzīgas, par balansēšanas pakalpojumiem atbildīgās puses var veikt nelīdzsvarotības ieskaitu un būtiski samazināt balansēšanas izmaksas, kas tiek pārnestas uz galalietotājiem. Analīze liecina, ka kopējās balansēšanas zonas un
centralizētas bilances pārvaldības ieviešana reģionālā līmenī ir uzlabojusi sistēmas balansēšanas efektivitāti, samazinājusi ACE, uzlabojusi balansēšanas resursu pieejamību, tādējādi uzlabojot piegādes drošību.

Šajā nodaļā aplūkotais modelis vēl nav gatavs nodrošināt aktīvu balansēšanu reālajā laikā no BRP puses, jo nelīdzsvarotības un balansēšanas cenas tiek publicētas pēc reālā laika, un tas ir jautājums, kas prasa turpmāku izpēti.
4. TIRGŪ BALSĪTA UZGLABĀŠANAS PĀRVALDĪBAS STRATĒĢIJA FCR PAKALPOJUMU SNIEDZĒJAM

4.1. IEVADS

Šīs nodaļas uzmanības centrā bija publikācija [83], kurā aprakstīta tirgū balsīta uzlādes stāvokļa pārvaldības stratēģija primāro frekvences regulēšanas pakalpojumu sniedzējiem ar ierobežotām enerģijas rezervuāriem, piemēram, akumulatoru enerģijas uzkrāšanas sistēmām. Frekvences ierobežošanas rezerve (FCR), kas pažīstama arī kā primāras kontroles rezerve, ir pirmā reakcija uz frekvences traucējumiem. Ja rodas novirze, automātiskā frekvences atjaunošana (aFRR) automātiski iesaistās dažu sekunžu laikā, lai atjaunotu nominālo frekvenci un līdzsvaru starp piedāvājumu un pieprasījumu. Šī stratēģija ir pētniecības darba rezultāts, ko pamato salīdzinoši nesen veiktie regulatīvo nosacījumu atjauninājumi kontinentālajā Eiropā, kuros noteikts, ka frekvences ierobežošanas rezervu nodošinātāji, lai pārvaldītu savas rezerves, nevar palīdzēties ar "mirušās" joslas izmantošanu un piegādi, kas pārsniedz izpildi. Turklāt tiek parādīts, kā izstrādātā stratēģija liela izmēra akumulatoru sistēmai ļauj pienācīgi izturēt vissliktākā scenārija realizāciju pat tad, ja vienība nodošina vairākus rezerves produktus vienlaikus un tai ir atļauts atjaunot tās uzlādes stāvokli tikai ar dienas tirgus starpniecību.

Lai gan veicinātu, gan regulētu uzglabāšanas sistēmu integrāciju palīgpakalpojumu tirgos, jo ūpāša frekvences ierobežošanas rezerves (FCR) nodošināšanai, ES sistēmas darbības pamatnostādnēs [85] ir paredzēti īpaši noteikumi, kas piemērojami ierobežotām enerģijas rezervuāriem (LER), t. i., uzglabāšanas iekārtām, ko var iztukšot divu stundu laikā. Proti, minimālais aktivizācijas periods (Tmin LER kritērijs), kas jānodrošina FCR nodošinātājiem, kuri kvalificēti kā LER, ir 15–30 min. sistēmas traukuves stāvokļa laikā, un katru sinhronā apgabalu visiem PSO jāierosina konkrēta vērtība. Lai gan kontinentālās Eiropas (CE) PSO sliecas noteikt 30 min. Tā expozīcijas jaunuzstādītājām akumulācijas elektrostacijām, galīgais priekšlikums 2023. gada vidū vēl tika izstrādāts.

LER kā FCR un frekvences atjaunošanas rezervu (FRR) nodošinātāji ir ūpāši svarīgi Baltijas elektroenerģijas sistēmai, kurai līdz 2025. gadam plānēts atteikties no IPS/UPS un pievienoties CE sinhronajai zonai [86]. Līdz tam laikam Baltijas PSO būtu jāspēj pašiem nodošināt savas FCR un FRR vajadzības, kamēr vēsturiski primāro frekvences kontrolu ir nodošinājusi Krievijas enerģoīmesistēma [87], [88]. Tāpēc Baltijas valstis tiek izstrādāti liela mēroga akumulatoru enerģijas uzkrāšanas sistēmu (BEES) projekti, lai nodošinātu FCR un FRR pietiekamību [89]–[91]. Aprakstītas ES līmeņa norises un reģionālās problēmas saistībā ar Baltijas sinhronizācijas projektu ir motivējušas šā pētījuma jautājumu – izstrādāt efektīvu tirgū balsītu BESS darbības pārvaldības stratēģiju, ievērojot tehnisko un regulatīvo ierobežoju kopumu, kas saistāts ar
palīgpakalpojumu tirgiem un īpašiem rezervju produktiem, kā arī ar elektroenerģijas vairumtirdzniecības tirgiem krātuvju atjaunošanai.

4.2. SOC PĀRVALDĪBAS STRATĒĢIJA

Stratēģijas galvenais mērķis ir sagatavot ID piedāvājumus, vienlaikus nodrošinot rezerves, lai nodrošinātu pietiekamu SOC līmeni saskaņā ar uzņemtajām rezervu (FCR un/vai FRR) saistībām. Stratēģijas vispārējā filozofija paredz robustu pieejumu, t. i., BESS jācenšas būt gatavai sliktākā scenārija īstenošanai jebkurā brīdī nākotnē.

Pieņēmumi un vienkāršojumi

Tiek pieņemts, ka FCR nodrošinātājs ir viena BESS ar LER, kas var izmantot tikai tirgū balstītus mehānismus, lai atjaunojotu energijas saturu savā rezervu (t. i., nav alternatīvas generācijas vai slodzes ne rezerves nodrošinātāja portfēļi, ne divpusēji noslēgts līgums, ko varētu izmantot BESS uzlādei/izlādei; apzināta nelīdzstarbīte, lai pārvaldītu uzglabāšanu, nav atļauta). Galu galā tas nozīmē, ka BESS var pārvaldīt savu SOC, tikai piedaloties ID tirgū, jo tam ir daudz īsāks sagatavošanās laiks nekā DA tirgum, un tādējādi tas nodrošina lielāku elastību. Lai saskaņā ar izklāstītajiem nosacījumiem panāktu visēduitāko uzglabāšanas pārvaldību, optimālais lēmuma piemērošanas laiks par to, vai ir jāiesniedz ID tirdzniecības piedāvājums, būtu pēdējais iespējamais brīdis pirms GCT. Tomēr, lai nodrošinātu stabilitāti, pirms katra ID GCT, ar kuru tiek pieņemts lēmums, būtu jāizvēlas ilgstoša jeb līdz starpām piedāvājuma sagatavošanas laiks. Saistība starp dažādiem laiku saistītiem mainīgajiem, kas izmantoti pārvaldības stratēģijā, ir izskaidrota 4.1. attēlā, kur $t_{ID, lēmums} – ID$ piedāvājuma lēmuma piemērošanas laiks; $t_{ID, GCT} -$ tā GCT, nākamais – tuvākais ID GCT; $t_{ID, sākums}$ un $t_{ID, beigas} – ID$ tirdzniecības perioda ar tuvāko GCT sākuma un beigu laiks; $Δt_{prepare} –$ lietotājam pievērstā attieksme pievienošanās laiks (izteikts minūtēs pirms GCT, piemēram, 5 min.); $Δt_{ID, GCT} – ID$ GCT (izteikts minūtēs pirms piegādes sākuma, piemēram, 60 min. Baltijā [91]; $Δt_{MTU} –$ tirgus laika vienības ilgums (pieņemts 15 min. [87]).

4.1. att. Savstarpējā saistība starp mainīgiem lielumiem, kas mainās laika gaitā

ID darījumi tiek plānoti tikai uz šiem piegādes periodiem, lai izvairītos no pārmērīgām izmaiņām, ņemot vērā faktoru izmaiņas laika gaitā., t. i., katrā lēmuma piemērošanas laikā piegādei

48
ties vērā tikai viens potenciālais MTU. No otras puses, tas nozīmē, ka pirms katra ID GCT ir jāizvērtē korekcijas darījuma nepieciešamība; ar 15 min. MTU tas nozīmē 96 lēmumus dienā.

Pamatojoties uz ES tiesiskā regulējuma analīzi, tiek noteiktas šādas galvenās prasības BESS SOC pārvaldības stratēģijai, lai nodrošinātu FCR ar LER kvalifikāciju:

• spēja nodrošināt ilgstošu FCR pilnīgu aktivizēšanu vismaz līdz brīdim, kad sistēmas traukmes stāvokļa laikā tiek izpildīts TminLER kritērijs;
• spēja nodrošināt nepārtrauktu ilgstošu FCR līdz 25 % no kopējās piešķirtās rezerves jaudas vienā virzienā sistēmas normālā stāvoklī;
• pietiekama uzkrāšanas līmeņa atjaunošana, lai varētu atkal izpildīt TminLER kritēriju ne vēlāk kā divas stundas pēc iepriekšējā sistēmas traukmes stāvokļa beigām;
• iepriekšējās trīs prasības jāizpilda arī tad, ja BESS nodrošina FRR līdztekuks FCR. Tomēr FRR, kas nodota rīcībā, jāspēj pilnībā aktivizēt jebkurā laikā un uz jebkuru laiku neatkarīgi no TminLER kritērija un atjaunošanās stāvokļa pēc traukmes stāvokļa, jo FRR nodrošinātājam ar LER nav definētas īpašas īpašības vai atlauti izņēmumi.

4.3. ALGORITMS

Izstrādātā algoritma galvenie soļi apkopoti 4.2. attēlā un detalizēti izskaidroti sagatavotajā pielikumā [83].
4.2. att. Enerģijas atgūšanas algoritma galvenie soļi [83].

Turklāt matemātisko modeli, kas izstrādāts, lai simulētu un apstiprinātu izklāstīto stratēģiju, varētu izmantot turpmākajā darbā, lai pētītu BESS tehnisko parametrus ietekmi uz to rezervju nodrošināšanas iespējām, kā arī tirgus noteikumu ietekmi uz BESS darbību.

4.4. VALIDĀCIJA

Izveidojot modeli algoritma validācijai, publikācijā [83] tika izmantots BESS ar 80 MW uzlādes/izlādes jaudu, 160 MWh nominālo krātuvi, 0,95 uzlādes un izlādes efektivitāti, rezervuāra robežvērtībām 10 % un 90 %. BESS jānodrošina 8 MW FCR un 32 MW FRR katrā virzienā. Izvēlētie parametri ir iegūti, pamatojoties uz aplēstajām rezervju vajadzībām Latvijas enerģisistēmā pēc desinhronizācijas no IPS/UPS 2025. gadā un BESS specifikācijai, kas tiek apspriesta uzstādīšanai Latvijā [84]. Attiecībā uz rezervju aktivizēšanu FCR gadā jumā tika pieņemts sešu stundu frekences novirzes profilis, kā parādīts 4.3. attēlā (brūnā līnija / labā ass; NB! FCR nodrošinātājī ievēro ± 10 mHz "mirušo" joslu, kam seko proporcionāla reakcija, sasniedzot pilnīgu aktivizēšanu pie ± 200 mHz novirzes). Šis profils ir pilnīgi mākslīgs, jo tā vienīgais mērķis ir parādīt, ka izstrādātā BESS pārvaldības stratēģija var nodrošināt paredzētā
rezerves. FRR aktivizācijas arī tiek simulētas, lai īstenotu slītkā šenārija realizāciju (t. i., pilnīgā aktivizācija visu sešu stundu laikā).

4.3. att. Simulētā frekvences novirze un LER SOC attīstība.

4.4. att. Korektīvo ID darījumu un FCR nodrošināšanas režīma grafiks.

Simulētajā scenārijā BESS spēj nepārtraukti nodrošināt 25 % FCR aktivizāciju elektroenerģijas sistēmas normālā stāvoklī kopā ar pilnu FRR aktivizāciju bez jebkādām problēmām. Plkst. 2.15 tiek izsludināts trauksmes stāvoklis, jo frekvences novirze pārsniedz 50 mHz uz 15 minūtēm un 100 mHz uz 5 minūtēm. LER sāk pāreju uz rezerves režīmu tikai plkst. 2.44, kad ir izpildīts 30 minūšu TminLER kritērijs. Plkst. 3 trauksmes stāvoklis beidzas, jo frekvences novirze samazinās nedaudz zem 50 mHz, un tad sākas divu stundu atpakaļskaitīšana LER atjaunošanai. Tomēr plkst. 3.16 LER jau pabeidz atjaunošanos, kas nozīmē, ka tās pabeigšanai bija nepieciešamas tikai 16 minūtes. Tas skaidrojams ar užglabāšanas pārvaldības algoritma robustumu. Dalēji arī tāpēc, ka, izvērējot atkopšanas nosacījumus, tiek nēmotas vērā plānotās ID
piegādes nākotnē, ja vien nepastāv risks pārkāpt SOC ierobežojumus jebkurā brīdī attiecīgajā nākotnes laika periodā. Plkst. 5.15 tiek izsludināts vēl viens trauksmes stāvoklis, un atkal LER sāk pāreju uz rezerves režīmu tikai tad, kad ir izturētas 30 minūtes pilnīgas aktivizācijas. 4.3. attēlā redzams, kā SOC trajektorija tuvojas 90 % augšējam ierobežojumam, bet to nepārkāpj, taču paliek tā tuvumā. Turklāt, pateicoties plānotajām ID piegādēm (4.4. att.), LER var pat garantēt nepārtrauktu spēju nodrošināšanu nepieciešamo FCR un FRR, neraugoties uz to, ka SOC patlaban ir tuvu ierobežojumam.

4.5. SECINĀJUMI

Apstiprinātā tirgū balstītā BESS SOC pārvaldības stratēģija nodrošina stabilu un uzticamu LER dalību FCR nodrošināšanā, kas atbilst visām papildu īpašībām un regulatīvajiem noteikumiem, kas kontinentālajā Eiropā ir jāievēro FCR nodrošinātājiem ar LER. Tā ir piemērota arī LER, kas nodrošina gan FCR, gan FRR. Izmēģinātā strategija var piemērot potenciālajām BESS iekārtām Baltijas elektroenerģijas sistēmā pēc sinhronzācijas ar CE un arī citur ES, jo tā atbilst jaunākājiem noteikumiem, kas jāpieņem dalībvalstīm. Turklāt šī tehnoloģija parametru un tirgus iestatījumu ietekmi, lai palīdzētu pieņemt lēmumus. Pārveidotās pieejas būtība ir prognozēt un sagatavoties siltākā scenārija rašanās gadījumiem. Ņemot vērā nodalās apjoma ierobežojumus, ir izklāstīta tikai daļa no vispārējās BESS darbības stratēģijas, kas turklāt pārvalda arī LER pāreju starp normālo/rezerves režīmu un novērtē brīvprātīgos FRR enerģijas piedāvājumus. Tāpēc papildu modela komponentu un funkciju izstrāde ir turpmākā darba temats. Turklāt matemātisko modeli, kas izstrādāts, lai simulētu un apstiprinātu izklāstīto stratēģiju, varētu izmantot turpmākā darbā, lai ietekmētu BESS tehnisko parametru ietekmi uz to rezervu nodrošināšanas spējām, kā arī tirgus noteikumu ietekmi uz BESS darbību. Potenciālie turpmāko pētījumu temati ietver BESS un rezerves lieluma noteikšanu, LER kvalifikācijas plusus un mīnusus, TminLER kritērija ilgumu, atjaunošanas ilgumu, tirgus sagatavosanās laiku utt. Turklāt modeli var paplašināt, ņemot vērā arī dažādus ekonomiskos kritērijus, lai sniegtu visaptverošu izmaksu un ieguvumu novērtējumu BESS, kas kvalificēts kā LER, ar dažādām vadības stratēģijām.
SADAĻU SECINĀJUMI UN TURPMĀKAIS DARBS

Galvenie priekšnoteikumi Baltijas valstīm, kas minēti 1. nodaļā par enerģētikas nozares pārveidi Baltijas valstīs, lai veicinātu energyapgādes pietiekamību un balansēšanas jaudas attīstību, ir šādi:

1) veicināt ražošanas attīstību;
2) ieguldīt tīkla attīstībā;
3) veicināt patērētāju reakciju un agregāciju;
4) attīstīt balansēšanas tirgu. Ši paši pēc plānotās Baltijas enerģosistēmas sinhronizācijas ar kontinentālās Eiropas tīklu 2025. gadā.

Otrajā nodaļā tika uzsvērts, ka globālajos un Eiropas enerģētikas attīstības plānos ir ierosināts piemērot vairākas stratēģijas, no kurām vismaz divas būtiski ietekmē enerģosistēmu struktūru.

1. stratēģija – straujš atjaunojamo enerģoresursu spēkstaciju jaudas palielinājums.
2. stratēģija – samazināt jaudu, apturēt vai slēgt spēkstacijas, kurās izmanto fosilo kurināmu.

Ir labi zināms, ka elektroenerģijas ražošana no AER ir neprognozējams un nepastāvīgs process. Tā rezultātā rodas problēma, kas saistīta ar enerģijas ražošanas pārvaldību un jebkurās energosistēmas jaudas līdzsvara nodrošināšanu. Dažkārt pilnībā kompensēt elektroenerģijas defīcītu, importējot enerģiju no kaimiņvalstīm, ir neiespējams pārvades līniju ierobežotās jaudas dēļ.

Visu BPS 2050 scenāriju simulācijas rezultāti liecina, ka mēģinājumi nodrošināt enerģijas līdzsvaru ar enerģijas importu un kompensēt enerģijas defīcītu, palielinot AER uzstādīto jaudu, nav sekmīgi.

Turklāt automobiļu elektrifikācija ievērojami pasliktina Baltijas enerģosistēmu jaudas līdzsvarošanu situāciju. Lai apmierinātu pieprasījumu pēc elektroenerģijas, būs nepieciešams būvēt papildu stacijas, kas var ražot enerģiju bez saules un vēja, vai izveidot jaunas starpsavienojumu pārvades līnijas un ilgtermiņa enerģijas uzglabāšanas jaudas.

Trešās nodaļās secinājumi, kas balstīti Baltijas balansēšanas sistēmas darbības rādītāju analīzē, liecina par skaidriem ieguvumiem no kopējām balansēšanas zonām un koordinētas balansēšanas pārvaldības. Tīrīgs dalībnieki, tostarp balansēšanas pakalpojumu sniedzēji un par bilanci atbildīgā puses, guva labumu no vienotas cenās un vienota portfeļa modeļa ieviešanas. Nezemē to, ka 2018. gadā 97 % stundu nelīdzsvarotās cenās visās trijās Baltijas valstīs bija līdzīgas, par balansēšanas pakalpojumiem atbildīgās puses var veikt nelīdzsvarotības ieskaitu un būtiski samazināt balansēšanas izmaksas, kas tiek pārnestas uz galalietotājiem.
Analīze liecina, ka kopējas balansēšanas zonas un centralizētas bilances pārvaldības ieviešana reģionālā līmenī ir uzlabojusi sistēmas balansēšanas efektivitāti, samazinājusi ACE, uzlabojusi balansēšanas resursu pieejamību, tādējādi uzlabojot piegādes drošību.

Šajā nodaļā izklāstītais modelis vēl nav gatavs nodrošināt aktīvu balansēšanu reāllaikā no BRP puses, jo nelfidzsvarošanas un balansēšanas cenas tiek publicētas pēc reālā laika, un tas ir jautājums, kas vēl jāizpēta.

Ceturtās nodaļas secinājumi, kas balstīti apstiprinātā tirgus principos balstītu BESS SOC pārvaldības stratēģijā, šauj nodrošināt stabilu un uzticamu LER dalību FCR nodrošināšanā, ievērojot visas papildu īpašības un normatīvos noteikumus, kas kontinentālajā Eiropā ir jāievēro FCR nodrošinātājiem ar LER. Tā ir piemērota arī LER, kas nodrošina gan FCR, gan FRR. Izstrādāto stratēģiju var piemērota piemērot potenciālajām BESS iekārtām Baltijas elektroenerģijas sistēmā pēc sinhronizācijas ar CE un arī citur ES, jo tā atbilst jaunākajiem noteikumiem, kas jāpieņem dalībvalstu laikā. Turklāt šis modelis šauj pārbaudīt svarīgu tehniko parametru un tīkla iestatījumu ietekmi, lai palīdzētu pieņemt lēmumus. Piedāvātais tiek pieejams arī prognozēt un sagatavojot sliktākā scenārija rašanos gadījumā. Ņemot vērā nodalas apjoma ierobežojumus, ir izklāstīta tikai daļa no vispārējās BESS darbības pārvaldības stratēģijas, kas pārvalda arī LER pāreju starp normālo/rezerves režīmu un novērtē brīvprātīgos FRR enerģijas piedāvājumus. Tāpēc papildu modeļa komponentu un funkciju izstrāde ir turpmākā darba temats. Turklāt matemātisko modeli, kas izstrādāts, lai simulētu un apstiprinātu izklāstīto stratēģiju, varētu ietekmēt turpmākā darbību, lai velkita BESS tehniko parametru ietekmi uz to rezervu nodrošināšanas spējām, kā arī tīkla noteikumu ietekmi uz BESS darbību. Potenciālie turpmāko ietekmju temi tiek ietveikti BESS un rezerves lieluma noteiktām, LER kvalifikācijām plusus un mīnus, TminLER kritērija ilgumu, atjaunošanas ilgumu, tīkla sagatavošanās laiku utt. Turklāt modeli var paplašināt, ņemot vērā arī dažādus ekonomiskos kritērius, lai sniegtu visaptverošu izmaksu un ieguvumu novērtējumu BESS, kas kvalificētais kā LER, ar dažādām vadības stratēģijām.
IZMANTOTĀ LITERATŪRA

[27] Junghāns G., Sīlis A. “Latvijas integrācija Eiropas elektroenerģijas tirgū” (Latvia's Integration into the European Electricity Market), Enerģija un pasaule 2017.februāris; Nr.6/107 26.-30.lpp. ISSN 1407-5911.

[34] Eurelectric, Europe’s Electricity Market Design: where are we and where are we headed?, Available online: https://www.eurelectric.org/detail/electricitymarketdesign.

The International Renewable Energy Agency (IRENA), [accessed on 09 May 2021]. Available online: https://www.irena.org/

[58] Emil Hillberg (RISE), Antony Zegers (AIT), Barbara Herndler (AIT), Steven Wong (NRCan), Jean Pompee (RTE), Jean-Yves Bourmaud (RTE), Sebastian Lehnhoff (OFFIS), Gianluigi Migliavacca (RSE), Kjetil Uhlen (NTNU), Irina Oleinikova (NTNU), Hjalmar Pihl (RISE), Markus Norström (RISE), Mattias Persson (RISE), Joni Rossi (RISE) & Giovanni Beccuti (ETHZ). Power Transmission & Distribution Systems Flexibility needs in the future power system, Discussion paper, 2019.

Kalimoldayev M., Drozdenko A., Koplyk I., Marinich, T., Abdildayeva A. Zhukabayeva T. "Analysis of modern approaches for the prediction of electric energy consumption" Open Authorized licensed use limited to: Riga Technical University. Downloaded on February 22,2024 at 00:27:50 UTC from IEEE Xplore. Restrictions apply. 2021 IEEE 62nd International Scientific Conference on Power and Electrical

63
Aigars Sīlis